Quantum droplets in two-dimensional optical lattices
Yi-Yin Zheng, Shan-Tong Chen, Zhi-Peng Huang, Shi-Xuan Dai, Bin Liu, Yong-Yao Li, Shu-Rong Wang
Quantum droplets in two-dimensional optical lattices
We study the stability of zero-vorticity and vortex lattice quantum droplets (LQDs), which are described by a two-dimensional (2D) Gross–Pitaevskii (GP) equation with a periodic potential and Lee– Huang–Yang (LHY) term. The LQDs are divided in two types: onsite-centered and offsite-centered LQDs, the centers of which are located at the minimum and the maximum of the potential, respectively. The stability areas of these two types of LQDs with different number of sites for zero-vorticity and vorticity with S = 1 are given. We found that the μ–N relationship of the stable LQDs with a fixed number of sites can violate the Vakhitov–Kolokolov (VK) criterion, which is a necessary stability condition for nonlinear modes with an attractive interaction. Moreover, the μ–N relationship shows that two types of vortex LQDs with the same number of sites are degenerated, while the zero-vorticity LQDs are not degenerated. It is worth mentioning that the offsite-centered LQDs with zero-vorticity and vortex LQDs with S = 1 are heterogeneous.
lattice quantum droplets / optical lattices / vortex
[1] |
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Moscow: Nauka publishers, 1974
|
[2] |
W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, Observation of two-dimensional spatial solitary waves in a quadratic medium, Phys. Rev. Lett. 74(25), 5036 (1995)
CrossRef
ADS
Google scholar
|
[3] |
X. Liu, K. Beckwitt, and F. Wise, Two-dimensional optical spatiotemporal solitons in quadratic media, Phys. Rev. E 62(1), 1328 (2000)
CrossRef
ADS
Google scholar
|
[4] |
D. Mihalache, D. Mazilu, L. C. Crasovan, B. A. Malomed, and F. Lederer, Three-dimensional spinning solitons in the cubic–quintic nonlinear medium, Phys. Rev. E 61(6), 7142 (2000)
CrossRef
ADS
Google scholar
|
[5] |
S. Konar, M. Mishra, and S. Jana, Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic–quintic nonlinear media, Phys. Lett. A 362(5–6), 505 (2007)
CrossRef
ADS
Google scholar
|
[6] |
E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, Robust two-dimensional spatial solitons in liquid carbon disulfide, Phys. Rev. Lett. 110(1), 013901 (2013)
CrossRef
ADS
Google scholar
|
[7] |
Y. Y. Wang, L. Chen, C. Q. Dai, J. Zheng, and Y. Fan, Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearity, Nonlinear Dyn. 90(2), 1269 (2017)
CrossRef
ADS
Google scholar
|
[8] |
C. Q. Dai, R. P. Chen, Y. Y. Wang, and Y. Fan, Dynamics of light bullets in inhomogeneous cubic–quanticseptimal nonlinear media with PT-symmetric potentials, Nonlinear Dyn. 87(3), 1675 (2017)
CrossRef
ADS
Google scholar
|
[9] |
Y. Chen, L. Zheng, and F. Xu, Spatiotemporal vector and scalar solitons of the coupled nonlinear Schringer equation with spatially modulated cubic–quantic-septimal nonlinearities, Nonlinear Dyn. 93(4), 2379 (2018)
CrossRef
ADS
Google scholar
|
[10] |
J. Li, Y. Zhu, J. Han, W. Qin, C. Dai, and S. Wang, Scalar and vector multipole and vortex solitons in the spatially modulated cubic–quintic nonlinear media, Nonlinear Dyn. 91(2), 757 (2018)
CrossRef
ADS
Google scholar
|
[11] |
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, Steady-state spatial screening solitons in photorefractive materials with external applied field, Phys. Rev. Lett. 73(24), 3211 (1994)
CrossRef
ADS
Google scholar
|
[12] |
M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, Nonlocal spatial soliton interactions in nematic liquid crystals,Opt. Lett. 27(16), 1460 (2002)
CrossRef
ADS
Google scholar
|
[13] |
P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)
CrossRef
ADS
Google scholar
|
[14] |
I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406 (2008)
CrossRef
ADS
Google scholar
|
[15] |
J. Huang, X. Jiang, H. Chen, Z. Fan, W. Pang, and Y. Li, Quadrupolar matter-wave soliton in two-dimensional free space, Front. Phys. 10(4), 100507 (2015)
CrossRef
ADS
Google scholar
|
[16] |
F. Maucher, N. Henkel, M. Saffman, W. Królikowski, S. Skupin, and T. Pohl, Rydberg-induced solitons: Threedimensional self-trapping of matter waves, Phys. Rev. Lett. 106(17), 170401 (2011)
CrossRef
ADS
Google scholar
|
[17] |
Y. Xu, Y. Zhang, and C. Zhang, Bright solitons in a two-dimensional spin–orbit-coupled dipolar Bose– Einstein condensate, Phys. Rev. A 92(1), 013633 (2015)
CrossRef
ADS
Google scholar
|
[18] |
X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose–Einstein condensates with spin–orbit coupling, Phys. Rev. A 93(2), 023633 (2016)
CrossRef
ADS
Google scholar
|
[19] |
Y. Li, Y. Liu, Z. Fan, W. Pang, S. Fu, and B. A. Malomed, Two-dimensional dipolar gap solitons in free space with spin–orbit coupling, Phys. Rev. A 95(6), 063613 (2017)
CrossRef
ADS
Google scholar
|
[20] |
X. Chen, Z. Deng, X. Xu, S. Li, Z. Fan, Z. Chen, B. Liu, and Y. Li, Nonlinear modes in spatially confined spin–orbit-coupled Bose–Einstein condensates with repulsive nonlinearity, Nonlinear Dyn. 101(1), 569 (2020)
CrossRef
ADS
Google scholar
|
[21] |
Z. Ye, Y. Chen, Y. Zheng, X. Chen, and B. Liu, Symmetry breaking of a matter-wave soliton in a double-well potential formed by spatially confined spin–orbit coupling, Chaos Solitons Fractals 130, 109418 (2020)
CrossRef
ADS
Google scholar
|
[22] |
B. Liu, R. Zhong, Z. Chen, X. Qin, H. Zhong, Y. Li, and B. A. Malomed, Holding and transferring matter-wave solitons against gravity by spin–orbit-coupling tweezers, New J. Phys. 22(4), 043004 (2020)
CrossRef
ADS
Google scholar
|
[23] |
B. Liao, S. Li, C. Huang, Z. Luo, W. Pang, H. Tan, B. A. Malomed, and Y. Li, Anisotropic semi-vortices in dipolar spinor condensates controlled by Zeeman splitting, Phys. Rev. A 96(4), 043613 (2017)
CrossRef
ADS
Google scholar
|
[24] |
B. Liao, Y. Ye, J. Zhuang, C. Huang, H. Deng, W. Pang, B. Liu, and Y. Li, Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin–orbit coupling, Chaos Solitons Fractals 116, 424 (2018)
CrossRef
ADS
Google scholar
|
[25] |
S. Liu, B. Liao, J. Kong, P. Chen, J. Lü, Y. Li, C. Huang, and Y. Li, Anisotropic semi vortices in spinor dipolar Bose–Einstein condensates induced by mixture of Rashba–Dresselhaus coupling, J. Phys. Soc. Jpn. 87(9), 094005 (2018)
CrossRef
ADS
Google scholar
|
[26] |
W. Pang, H. Deng, B. Liu, J. Xu, and Y. Li, Twodimensional vortex solitons in spin–orbit-coupled dipolar Bose–Einstein condensates, Appl. Sci. (Basel) 8(10), 1771 (2018)
CrossRef
ADS
Google scholar
|
[27] |
X. Cui, Spin–orbit-coupling-induced quantum droplet in ultracold Bose–Fermi mixtures, Phys. Rev. A 98(2), 023630 (2018)
CrossRef
ADS
Google scholar
|
[28] |
M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016)
CrossRef
ADS
Google scholar
|
[29] |
L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
CrossRef
ADS
Google scholar
|
[30] |
C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018)
CrossRef
ADS
Google scholar
|
[31] |
D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
CrossRef
ADS
Google scholar
|
[32] |
D. S. Petrov and G. E. Astrakharchik, Ultradilute lowdimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
CrossRef
ADS
Google scholar
|
[33] |
P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose–Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018)
CrossRef
ADS
Google scholar
|
[34] |
Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and crossinteractions in spin–orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
CrossRef
ADS
Google scholar
|
[35] |
T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98(5), 051604 (2018)
CrossRef
ADS
Google scholar
|
[36] |
Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
CrossRef
ADS
Google scholar
|
[37] |
X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, Ch. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019)
CrossRef
ADS
Google scholar
|
[38] |
Z. Lin, X. Xu, Z. Chen, Z. Yan, Z. Mai, and B. Liu, Twodimensional vortex quantum droplets get thick, Commun. Nonlinear Sci. Numer. Simul. 93, 105536 (2020)
CrossRef
ADS
Google scholar
|
[39] |
B. Liu, H. Zhang, R. Zhong, X. Zhang, X. Qin, X. Huang, Y. Li, and B. A. Malomed, Symmetry breaking of quantum droplets in a dual-core trap, Phys. Rev. A 99(5), 053602 (2019)
CrossRef
ADS
Google scholar
|
[40] |
G. E. Astrakharchik and B. A. Malomed, Dynamics of one-dimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)
CrossRef
ADS
Google scholar
|
[41] |
Zh. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in a one-dimensional optical lattice, Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019)
CrossRef
ADS
Google scholar
|
[42] |
Zh. Zhou, B. Zhu, H. Wang, and H. Zhong, Stability and collisions of quantum droplets in PT-symmetric dualcore couplers, Commun. Nonlinear Sci. Numer. Simul. 91, 105424 (2020)
CrossRef
ADS
Google scholar
|
[43] |
F. Wächtler and L. Santos, Quantum filaments in dipolar Bose–Einstein condensates, Phys. Rev. A 93, 061603(R) (2016)
CrossRef
ADS
Google scholar
|
[44] |
F. Wächtler and L. Santos, Ground-state properties and elementary excitations of quantum droplets in dipolar Bose–Einstein condensates, Phys. Rev. A 94(4), 043618 (2016)
CrossRef
ADS
Google scholar
|
[45] |
D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, Self-bound dipolar droplet: A localized matter wave in free space, Phys. Rev. A 94, 021602(R) (2016)
CrossRef
ADS
Google scholar
|
[46] |
D. Edler, C. Mishra, F. Wächtler, R. Nath, S. Sinha, and L. Santos, Quantum fluctuations in quasi-onedimensional dipolar Bose–Einstein condensates, Phys. Rev. Lett. 119(5), 050403 (2017)
CrossRef
ADS
Google scholar
|
[47] |
I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
CrossRef
ADS
Google scholar
|
[48] |
I. Ferrier-Barbut, M. Wenze, F. Böttcher, T. Langen, M. Isoard, S. Stringari, and T. Pfau, Scissors mode of dipolar quantum droplets of dysprosium atoms, Phys. Rev. Lett. 120(16), 160402 (2018)
CrossRef
ADS
Google scholar
|
[49] |
A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macrí, Vortices in self-bound dipolar droplets, Phys. Rev. A 98(2), 023618 (2018)
CrossRef
ADS
Google scholar
|
[50] |
R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie, Ground-state phase diagram of a dipolar condensate with quantum fluctuations, Phys. Rev. A 94(3), 033619 (2016)
CrossRef
ADS
Google scholar
|
[51] |
Y. Sekino and Y. Nishida, Quantum droplet of onedimensional bosons with a three-body attraction, Phys. Rev. A 97, 011602(R) (2018)
CrossRef
ADS
Google scholar
|
[52] |
C. Staudinger, F. Mazzanti, and R. E. Zillich, Self-bound Bose mixtures, Phys. Rev. A 98(2), 023633 (2018)
CrossRef
ADS
Google scholar
|
[53] |
V. Cikojević, K. Dželalija, P. Stipanović, and L. V. Markić, Ultradilute quantum liquid drops, Phys. Rev. B 97, 140502(R) (2018)
CrossRef
ADS
Google scholar
|
[54] |
P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
CrossRef
ADS
Google scholar
|
[55] |
G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets in atomic mixtures, Phys. Rev. Lett. 120(23), 235301 (2018)
CrossRef
ADS
Google scholar
|
[56] |
A. Cappellaro, T. Macrì, and L. Salasnich, Collective modes across the soliton–droplet crossover in binary Bose mixtures, Phys. Rev. A 97(5), 053623 (2018)
CrossRef
ADS
Google scholar
|
[57] |
A. Pricoupenko and D. S. Petrov, Dimer–dimer zero crossing and dilute dimerized liquid in a one-dimensional mixture, Phys. Rev. A 97(6), 063616 (2018)
CrossRef
ADS
Google scholar
|
[58] |
A. Cappellaro, T. Macrí, G. F. Bertacco, and L. Salasnich, Equation of state and self-bound droplet in Rabicoupled Bose mixtures, Sci. Rep. 7(1), 13358 (2017)
CrossRef
ADS
Google scholar
|
[59] |
N. Westerberg, K. E. Wilson, C. W. Duncan, D. Faccio, E. M. Wright, P. Öhberg, and M. Valiente, Self-bound droplets of light with orbital angular momentum, Phys. Rev. A 98(5), 053835 (2018)
CrossRef
ADS
Google scholar
|
[60] |
E. Shamriz, Zh. Chen, B. A. Malomed, and H. Sakaguchi, Singular mean-field states: A brief review of recent results,Condens. Matter 5, 20 (2020)
CrossRef
ADS
Google scholar
|
[61] |
Z. Luo, W. Pang, B. Liu, Y. Li, and A. B. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. (2021) (submitted), arXiv: 2009.01061
|
[62] |
T. D. Lee, K. S. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. 106(6), 1135 (1957)
CrossRef
ADS
Google scholar
|
[63] |
O. Morsch and M. Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)
CrossRef
ADS
Google scholar
|
[64] |
H. Zhang, F. Chen, C. Yu, L. Sun, and D. Xu, Tunable ground-state solitons in spin–orbit coupling Bose– Einstein condensates in the presence of optical lattices, Chin. Phys. B 26(8), 080304 (2017)
CrossRef
ADS
Google scholar
|
[65] |
R. Campbell, and G. L. Oppo, Stationary and traveling solitons via local dissipation in Bose–Einstein condensates in ring optical lattices, Phys. Rev. A 94(4), 043626 (2016)
CrossRef
ADS
Google scholar
|
[66] |
X. Zhu, H. Li, Z. Shi, Y. Xiang, and Y. He, Gap solitons in spin–orbit-coupled Bose–Einstein condensates in mixed linear–nonlinear optical lattices, J. Phys. At. Mol. Opt. Phys. 50(15), 155004 (2017)
CrossRef
ADS
Google scholar
|
[67] |
F. Li, F. Zong, and Y. Wang, Vortical solitons of threedimensional Bose–Einstein condensates under both a bichromatic optical lattice and anharmonic potentials, Chin. Phys. Lett. 30(6), 060306 (2013)
CrossRef
ADS
Google scholar
|
[68] |
Sh. Chen, Q. Guo, S. Xu, M. R. Belić, Y. Zhao, D. Zhao, and J. He, Vortex solitons in Bose–Einstein condensates with spin–orbit coupling and Gaussian optical lattices, Appl. Math. Lett. 92, 15 (2019)
CrossRef
ADS
Google scholar
|
[69] |
Z. He, Z. Zhang, Sh. Zhu, and W. Liu, Oscillation and fission behavior of bright–bright solitons in two-species Bose–Einstein condensates trapped in an optical potential, Acta Physica Sinica 63, 190502 (2014)
|
[70] |
Z. Li and Q. Li, Dark soliton interaction of spinor Bose–Einstein condensates in an optical lattice, Ann. Phys. 322(8), 1961 (2007)
CrossRef
ADS
Google scholar
|
[71] |
Ch. Song, J. Li, and F. Zong, Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose–Einstein condensates, Chin. Phys. B 21(2), 020306 (2012)
CrossRef
ADS
Google scholar
|
[72] |
Z. D. Li, P. B. He, L. Li, J. Q. Liang, and W. M. Liu, Magnetic soliton and soliton collisions of spinor Bose– Einstein condensates in an optical lattice, Phys. Rev. A 71(5), 053611 (2005)
CrossRef
ADS
Google scholar
|
[73] |
A. Muñoz Mateo, V. Delgado, M. Guilleumas, R. Mayol, and J. Brand, Nonlinear waves of Bose–Einstein condensates in rotating ring-lattice potentials, Phys. Rev. A 99(2), 023630 (2019)
CrossRef
ADS
Google scholar
|
[74] |
X. Zhao, Y. Zhang, and W. Liu, Magnetic excitation of ultra-cold atoms trapped in optical lattice, Acta Physica Sinica 68, 043703 (2019)
|
[75] |
G. Verma, U. D. Rapol, and R. Nath, Generation of dark solitons and their instability dynamics in two-dimensional condensates, Phys. Rev. A 95(4), 043618 (2017)
CrossRef
ADS
Google scholar
|
[76] |
Z. Fan, J. Mai, Z. Chen, M. Xie, and Z. Luo, Matterwave soliton buffer realized by a tailored one-dimensional lattice, Mod. Phys. Lett. B 32(06), 1850070 (2018)
CrossRef
ADS
Google scholar
|
[77] |
H. Li, S. Xu, M. R. Belić, and J. Cheng, Threedimensional solitons in Bose–Einstein condensates with spin–orbit coupling and Bessel optical lattices, Phys. Rev. A 98(3), 033827 (2018)
CrossRef
ADS
Google scholar
|
[78] |
Z. Zhou, H. Zhong, B. Zhu, F. Xiao, K. Zhu, and J. Tan, Collision dynamics of dissipative matter-wave solitons in a perturbed optical lattice, Chin. Phys. Lett. 33(11), 110301 (2016)
CrossRef
ADS
Google scholar
|
[79] |
L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattice, Nonlinear Dynamics, 2020
CrossRef
ADS
Google scholar
|
[80] |
A. Mock, Paritytime-symmetry breaking in two-dimensional photonic crystals: Square lattice, Phys. Rev. A 93(6), 063812 (2016)
CrossRef
ADS
Google scholar
|
[81] |
L. Salasnich and F. Toigo, Pair condensation in the BCS– BEC crossover of ultracold atoms loaded onto a twodimensional square lattice, Phys. Rev. A 86(2), 023619 (2012)
CrossRef
ADS
Google scholar
|
[82] |
R. Zaera, J. Vila, J. Fernandez-Saez, and M. Ruzzene, Propagation of solitons in a two-dimensional nonlinear square lattice, Int. J. Non-linear Mech. 106, 188 (2018)
CrossRef
ADS
Google scholar
|
[83] |
Zh. Niu, Y. Tai, J. Shi, and W. Zhang, Bose–Einstein condensates in an eightfold symmetric optical lattice, Chin. Phys. B 29(5), 056103 (2020)
CrossRef
ADS
Google scholar
|
[84] |
H. Chen, Y. Liu, Q. Zhang, Y. Shi, W. Pang, and Y. Li, Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices, Phys. Rev. A 93(5), 053608 (2016)
CrossRef
ADS
Google scholar
|
[85] |
Y. Gao and S. Chu, Optical induction of non-diffracting discrete photonic lattice, Superlattices Microstruct. 78, 163 (2015)
CrossRef
ADS
Google scholar
|
[86] |
K. Xie, A. D. Boardman, Q. Li, Z. Shi, H. Jiang, H. Xia, Z. Hu, J. Zhang, W. Zhang, Q. Mao, L. Hu, T. Yang, F. Wen, and E. Wang, Spatial algebraic solitons at the Dirac point in optically induced nonlinear photonic lattices, Opt. Express 25(24), 30349 (2017)
CrossRef
ADS
Google scholar
|
[87] |
M. Metcalf, G. Chern, M. D. Ventra, and C. Chien, Matter-wave propagation in optical lattices: Geometrical and flat-band effects, J. Phys. At. Mol. Opt. Phys. 49(7), 075301 (2016)
CrossRef
ADS
Google scholar
|
[88] |
D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice, Ann. Phys. (Berlin) 529(9), 1700149 (2017)
CrossRef
ADS
Google scholar
|
[89] |
Q. E. Hoq, P. G. Kevrekidis, and A. R. Bishop, Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices, J. Opt. 18(2), 024008 (2016)
CrossRef
ADS
Google scholar
|
[90] |
L. H. Haddad, C. M. Weaver, and L. D. Carr, The nonlinear Dirac equation in Bose–Einstein condensates (I): Relativistic solitons in armchair nanoribbon optical lattices, New J. Phys. 17(6), 063033 (2015)
CrossRef
ADS
Google scholar
|
[91] |
V. E. Vekslerchik, Solitons of a vector model on the honeycomb lattice, J. Phys. A Math. Theor. 49(45), 455202 (2016)
CrossRef
ADS
Google scholar
|
[92] |
R. Zhong, N. Huang, H. Li, H. He, J. Lü, C. Huang, and Z. P. Chen, Matter-wave solitons supported by quadrupole quadrupole interactions and anisotropic discrete lattices, Int. J. Mod. Phys. B 32(09), 1850107 (2018)
CrossRef
ADS
Google scholar
|
[93] |
Q. Wang and Z. Deng, Multi-pole solitons in nonlocal nonlinear media with fourth-order diffraction, Results in Physics 17, 103056 (2020)
CrossRef
ADS
Google scholar
|
[94] |
H. Wang, X. Ren, J. Huang, and Y. Weng, Evolution of vortex and quadrupole solitons in the complex potentials with saturable nonlinearity, J. Opt. 20(12), 125504 (2018)
CrossRef
ADS
Google scholar
|
[95] |
G. Chen, Y. Liu, and H. Wang, Mixed-mode solitons in quadrupolar BECs with spin–orbit coupling, Commun. Nonlinear Sci. Numer. Simul. 48, 318 (2017)
CrossRef
ADS
Google scholar
|
[96] |
Y. V. Kartashov and D. A. Zezyulin, Stable multiring and rotating solitons in two-dimensional spin–orbit-coupled, Bose–Einstein condensates with a radially periodic potential, Phys. Rev. Lett. 122(12), 123201 (2019)
CrossRef
ADS
Google scholar
|
[97] |
C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, New York: Cambridge University Press, 2002
CrossRef
ADS
Google scholar
|
[98] |
L. M. Chiofalo, S. Succi, and P. M. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary time algorithm, Phys. Rev. E 62(5), 7438 (2000)
CrossRef
ADS
Google scholar
|
[99] |
J. Yang and T. I. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud. Appl. Math. 120, 265 (2008)
CrossRef
ADS
Google scholar
|
[100] |
I. M. Merhasin, B. V. Gisin, R. Driben, and B. A. Malomed, Finite-band solitons in the Kronig–Penney model with the cubic–quintic nonlinearity, Phys. Rev. E 71, 016613 (2005)
CrossRef
ADS
Google scholar
|
[101] |
R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, Cubic–quintic solitons in the checkerboard potential, Phys. Rev. E 76, 066604 (2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |