Quantum droplets in two-dimensional optical lattices

Yi-Yin Zheng, Shan-Tong Chen, Zhi-Peng Huang, Shi-Xuan Dai, Bin Liu, Yong-Yao Li, Shu-Rong Wang

PDF(1611 KB)
PDF(1611 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 22501. DOI: 10.1007/s11467-020-1011-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum droplets in two-dimensional optical lattices

Author information +
History +

Abstract

We study the stability of zero-vorticity and vortex lattice quantum droplets (LQDs), which are described by a two-dimensional (2D) Gross–Pitaevskii (GP) equation with a periodic potential and Lee– Huang–Yang (LHY) term. The LQDs are divided in two types: onsite-centered and offsite-centered LQDs, the centers of which are located at the minimum and the maximum of the potential, respectively. The stability areas of these two types of LQDs with different number of sites for zero-vorticity and vorticity with S = 1 are given. We found that the μ–N relationship of the stable LQDs with a fixed number of sites can violate the Vakhitov–Kolokolov (VK) criterion, which is a necessary stability condition for nonlinear modes with an attractive interaction. Moreover, the μ–N relationship shows that two types of vortex LQDs with the same number of sites are degenerated, while the zero-vorticity LQDs are not degenerated. It is worth mentioning that the offsite-centered LQDs with zero-vorticity and vortex LQDs with S = 1 are heterogeneous.

Keywords

lattice quantum droplets / optical lattices / vortex

Cite this article

Download citation ▾
Yi-Yin Zheng, Shan-Tong Chen, Zhi-Peng Huang, Shi-Xuan Dai, Bin Liu, Yong-Yao Li, Shu-Rong Wang. Quantum droplets in two-dimensional optical lattices. Front. Phys., 2021, 16(2): 22501 https://doi.org/10.1007/s11467-020-1011-3

References

[1]
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Moscow: Nauka publishers, 1974
[2]
W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, Observation of two-dimensional spatial solitary waves in a quadratic medium, Phys. Rev. Lett. 74(25), 5036 (1995)
CrossRef ADS Google scholar
[3]
X. Liu, K. Beckwitt, and F. Wise, Two-dimensional optical spatiotemporal solitons in quadratic media, Phys. Rev. E 62(1), 1328 (2000)
CrossRef ADS Google scholar
[4]
D. Mihalache, D. Mazilu, L. C. Crasovan, B. A. Malomed, and F. Lederer, Three-dimensional spinning solitons in the cubic–quintic nonlinear medium, Phys. Rev. E 61(6), 7142 (2000)
CrossRef ADS Google scholar
[5]
S. Konar, M. Mishra, and S. Jana, Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic–quintic nonlinear media, Phys. Lett. A 362(5–6), 505 (2007)
CrossRef ADS Google scholar
[6]
E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, Robust two-dimensional spatial solitons in liquid carbon disulfide, Phys. Rev. Lett. 110(1), 013901 (2013)
CrossRef ADS Google scholar
[7]
Y. Y. Wang, L. Chen, C. Q. Dai, J. Zheng, and Y. Fan, Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearity, Nonlinear Dyn. 90(2), 1269 (2017)
CrossRef ADS Google scholar
[8]
C. Q. Dai, R. P. Chen, Y. Y. Wang, and Y. Fan, Dynamics of light bullets in inhomogeneous cubic–quanticseptimal nonlinear media with PT-symmetric potentials, Nonlinear Dyn. 87(3), 1675 (2017)
CrossRef ADS Google scholar
[9]
Y. Chen, L. Zheng, and F. Xu, Spatiotemporal vector and scalar solitons of the coupled nonlinear Schringer equation with spatially modulated cubic–quantic-septimal nonlinearities, Nonlinear Dyn. 93(4), 2379 (2018)
CrossRef ADS Google scholar
[10]
J. Li, Y. Zhu, J. Han, W. Qin, C. Dai, and S. Wang, Scalar and vector multipole and vortex solitons in the spatially modulated cubic–quintic nonlinear media, Nonlinear Dyn. 91(2), 757 (2018)
CrossRef ADS Google scholar
[11]
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, Steady-state spatial screening solitons in photorefractive materials with external applied field, Phys. Rev. Lett. 73(24), 3211 (1994)
CrossRef ADS Google scholar
[12]
M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, Nonlocal spatial soliton interactions in nematic liquid crystals,Opt. Lett. 27(16), 1460 (2002)
CrossRef ADS Google scholar
[13]
P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)
CrossRef ADS Google scholar
[14]
I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406 (2008)
CrossRef ADS Google scholar
[15]
J. Huang, X. Jiang, H. Chen, Z. Fan, W. Pang, and Y. Li, Quadrupolar matter-wave soliton in two-dimensional free space, Front. Phys. 10(4), 100507 (2015)
CrossRef ADS Google scholar
[16]
F. Maucher, N. Henkel, M. Saffman, W. Królikowski, S. Skupin, and T. Pohl, Rydberg-induced solitons: Threedimensional self-trapping of matter waves, Phys. Rev. Lett. 106(17), 170401 (2011)
CrossRef ADS Google scholar
[17]
Y. Xu, Y. Zhang, and C. Zhang, Bright solitons in a two-dimensional spin–orbit-coupled dipolar Bose– Einstein condensate, Phys. Rev. A 92(1), 013633 (2015)
CrossRef ADS Google scholar
[18]
X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose–Einstein condensates with spin–orbit coupling, Phys. Rev. A 93(2), 023633 (2016)
CrossRef ADS Google scholar
[19]
Y. Li, Y. Liu, Z. Fan, W. Pang, S. Fu, and B. A. Malomed, Two-dimensional dipolar gap solitons in free space with spin–orbit coupling, Phys. Rev. A 95(6), 063613 (2017)
CrossRef ADS Google scholar
[20]
X. Chen, Z. Deng, X. Xu, S. Li, Z. Fan, Z. Chen, B. Liu, and Y. Li, Nonlinear modes in spatially confined spin–orbit-coupled Bose–Einstein condensates with repulsive nonlinearity, Nonlinear Dyn. 101(1), 569 (2020)
CrossRef ADS Google scholar
[21]
Z. Ye, Y. Chen, Y. Zheng, X. Chen, and B. Liu, Symmetry breaking of a matter-wave soliton in a double-well potential formed by spatially confined spin–orbit coupling, Chaos Solitons Fractals 130, 109418 (2020)
CrossRef ADS Google scholar
[22]
B. Liu, R. Zhong, Z. Chen, X. Qin, H. Zhong, Y. Li, and B. A. Malomed, Holding and transferring matter-wave solitons against gravity by spin–orbit-coupling tweezers, New J. Phys. 22(4), 043004 (2020)
CrossRef ADS Google scholar
[23]
B. Liao, S. Li, C. Huang, Z. Luo, W. Pang, H. Tan, B. A. Malomed, and Y. Li, Anisotropic semi-vortices in dipolar spinor condensates controlled by Zeeman splitting, Phys. Rev. A 96(4), 043613 (2017)
CrossRef ADS Google scholar
[24]
B. Liao, Y. Ye, J. Zhuang, C. Huang, H. Deng, W. Pang, B. Liu, and Y. Li, Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin–orbit coupling, Chaos Solitons Fractals 116, 424 (2018)
CrossRef ADS Google scholar
[25]
S. Liu, B. Liao, J. Kong, P. Chen, J. Lü, Y. Li, C. Huang, and Y. Li, Anisotropic semi vortices in spinor dipolar Bose–Einstein condensates induced by mixture of Rashba–Dresselhaus coupling, J. Phys. Soc. Jpn. 87(9), 094005 (2018)
CrossRef ADS Google scholar
[26]
W. Pang, H. Deng, B. Liu, J. Xu, and Y. Li, Twodimensional vortex solitons in spin–orbit-coupled dipolar Bose–Einstein condensates, Appl. Sci. (Basel) 8(10), 1771 (2018)
CrossRef ADS Google scholar
[27]
X. Cui, Spin–orbit-coupling-induced quantum droplet in ultracold Bose–Fermi mixtures, Phys. Rev. A 98(2), 023630 (2018)
CrossRef ADS Google scholar
[28]
M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau, Self-bound droplets of a dilute magnetic quantum liquid, Nature 539(7628), 259 (2016)
CrossRef ADS Google scholar
[29]
L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
CrossRef ADS Google scholar
[30]
C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018)
CrossRef ADS Google scholar
[31]
D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
CrossRef ADS Google scholar
[32]
D. S. Petrov and G. E. Astrakharchik, Ultradilute lowdimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
CrossRef ADS Google scholar
[33]
P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose–Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018)
CrossRef ADS Google scholar
[34]
Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and crossinteractions in spin–orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
CrossRef ADS Google scholar
[35]
T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98(5), 051604 (2018)
CrossRef ADS Google scholar
[36]
Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
CrossRef ADS Google scholar
[37]
X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, Ch. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019)
CrossRef ADS Google scholar
[38]
Z. Lin, X. Xu, Z. Chen, Z. Yan, Z. Mai, and B. Liu, Twodimensional vortex quantum droplets get thick, Commun. Nonlinear Sci. Numer. Simul. 93, 105536 (2020)
CrossRef ADS Google scholar
[39]
B. Liu, H. Zhang, R. Zhong, X. Zhang, X. Qin, X. Huang, Y. Li, and B. A. Malomed, Symmetry breaking of quantum droplets in a dual-core trap, Phys. Rev. A 99(5), 053602 (2019)
CrossRef ADS Google scholar
[40]
G. E. Astrakharchik and B. A. Malomed, Dynamics of one-dimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)
CrossRef ADS Google scholar
[41]
Zh. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in a one-dimensional optical lattice, Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019)
CrossRef ADS Google scholar
[42]
Zh. Zhou, B. Zhu, H. Wang, and H. Zhong, Stability and collisions of quantum droplets in PT-symmetric dualcore couplers, Commun. Nonlinear Sci. Numer. Simul. 91, 105424 (2020)
CrossRef ADS Google scholar
[43]
F. Wächtler and L. Santos, Quantum filaments in dipolar Bose–Einstein condensates, Phys. Rev. A 93, 061603(R) (2016)
CrossRef ADS Google scholar
[44]
F. Wächtler and L. Santos, Ground-state properties and elementary excitations of quantum droplets in dipolar Bose–Einstein condensates, Phys. Rev. A 94(4), 043618 (2016)
CrossRef ADS Google scholar
[45]
D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, Self-bound dipolar droplet: A localized matter wave in free space, Phys. Rev. A 94, 021602(R) (2016)
CrossRef ADS Google scholar
[46]
D. Edler, C. Mishra, F. Wächtler, R. Nath, S. Sinha, and L. Santos, Quantum fluctuations in quasi-onedimensional dipolar Bose–Einstein condensates, Phys. Rev. Lett. 119(5), 050403 (2017)
CrossRef ADS Google scholar
[47]
I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
CrossRef ADS Google scholar
[48]
I. Ferrier-Barbut, M. Wenze, F. Böttcher, T. Langen, M. Isoard, S. Stringari, and T. Pfau, Scissors mode of dipolar quantum droplets of dysprosium atoms, Phys. Rev. Lett. 120(16), 160402 (2018)
CrossRef ADS Google scholar
[49]
A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macrí, Vortices in self-bound dipolar droplets, Phys. Rev. A 98(2), 023618 (2018)
CrossRef ADS Google scholar
[50]
R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie, Ground-state phase diagram of a dipolar condensate with quantum fluctuations, Phys. Rev. A 94(3), 033619 (2016)
CrossRef ADS Google scholar
[51]
Y. Sekino and Y. Nishida, Quantum droplet of onedimensional bosons with a three-body attraction, Phys. Rev. A 97, 011602(R) (2018)
CrossRef ADS Google scholar
[52]
C. Staudinger, F. Mazzanti, and R. E. Zillich, Self-bound Bose mixtures, Phys. Rev. A 98(2), 023633 (2018)
CrossRef ADS Google scholar
[53]
V. Cikojević, K. Dželalija, P. Stipanović, and L. V. Markić, Ultradilute quantum liquid drops, Phys. Rev. B 97, 140502(R) (2018)
CrossRef ADS Google scholar
[54]
P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
CrossRef ADS Google scholar
[55]
G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets in atomic mixtures, Phys. Rev. Lett. 120(23), 235301 (2018)
CrossRef ADS Google scholar
[56]
A. Cappellaro, T. Macrì, and L. Salasnich, Collective modes across the soliton–droplet crossover in binary Bose mixtures, Phys. Rev. A 97(5), 053623 (2018)
CrossRef ADS Google scholar
[57]
A. Pricoupenko and D. S. Petrov, Dimer–dimer zero crossing and dilute dimerized liquid in a one-dimensional mixture, Phys. Rev. A 97(6), 063616 (2018)
CrossRef ADS Google scholar
[58]
A. Cappellaro, T. Macrí, G. F. Bertacco, and L. Salasnich, Equation of state and self-bound droplet in Rabicoupled Bose mixtures, Sci. Rep. 7(1), 13358 (2017)
CrossRef ADS Google scholar
[59]
N. Westerberg, K. E. Wilson, C. W. Duncan, D. Faccio, E. M. Wright, P. Öhberg, and M. Valiente, Self-bound droplets of light with orbital angular momentum, Phys. Rev. A 98(5), 053835 (2018)
CrossRef ADS Google scholar
[60]
E. Shamriz, Zh. Chen, B. A. Malomed, and H. Sakaguchi, Singular mean-field states: A brief review of recent results,Condens. Matter 5, 20 (2020)
CrossRef ADS Google scholar
[61]
Z. Luo, W. Pang, B. Liu, Y. Li, and A. B. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. (2021) (submitted), arXiv: 2009.01061
[62]
T. D. Lee, K. S. Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. 106(6), 1135 (1957)
CrossRef ADS Google scholar
[63]
O. Morsch and M. Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)
CrossRef ADS Google scholar
[64]
H. Zhang, F. Chen, C. Yu, L. Sun, and D. Xu, Tunable ground-state solitons in spin–orbit coupling Bose– Einstein condensates in the presence of optical lattices, Chin. Phys. B 26(8), 080304 (2017)
CrossRef ADS Google scholar
[65]
R. Campbell, and G. L. Oppo, Stationary and traveling solitons via local dissipation in Bose–Einstein condensates in ring optical lattices, Phys. Rev. A 94(4), 043626 (2016)
CrossRef ADS Google scholar
[66]
X. Zhu, H. Li, Z. Shi, Y. Xiang, and Y. He, Gap solitons in spin–orbit-coupled Bose–Einstein condensates in mixed linear–nonlinear optical lattices, J. Phys. At. Mol. Opt. Phys. 50(15), 155004 (2017)
CrossRef ADS Google scholar
[67]
F. Li, F. Zong, and Y. Wang, Vortical solitons of threedimensional Bose–Einstein condensates under both a bichromatic optical lattice and anharmonic potentials, Chin. Phys. Lett. 30(6), 060306 (2013)
CrossRef ADS Google scholar
[68]
Sh. Chen, Q. Guo, S. Xu, M. R. Belić, Y. Zhao, D. Zhao, and J. He, Vortex solitons in Bose–Einstein condensates with spin–orbit coupling and Gaussian optical lattices, Appl. Math. Lett. 92, 15 (2019)
CrossRef ADS Google scholar
[69]
Z. He, Z. Zhang, Sh. Zhu, and W. Liu, Oscillation and fission behavior of bright–bright solitons in two-species Bose–Einstein condensates trapped in an optical potential, Acta Physica Sinica 63, 190502 (2014)
[70]
Z. Li and Q. Li, Dark soliton interaction of spinor Bose–Einstein condensates in an optical lattice, Ann. Phys. 322(8), 1961 (2007)
CrossRef ADS Google scholar
[71]
Ch. Song, J. Li, and F. Zong, Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose–Einstein condensates, Chin. Phys. B 21(2), 020306 (2012)
CrossRef ADS Google scholar
[72]
Z. D. Li, P. B. He, L. Li, J. Q. Liang, and W. M. Liu, Magnetic soliton and soliton collisions of spinor Bose– Einstein condensates in an optical lattice, Phys. Rev. A 71(5), 053611 (2005)
CrossRef ADS Google scholar
[73]
A. Muñoz Mateo, V. Delgado, M. Guilleumas, R. Mayol, and J. Brand, Nonlinear waves of Bose–Einstein condensates in rotating ring-lattice potentials, Phys. Rev. A 99(2), 023630 (2019)
CrossRef ADS Google scholar
[74]
X. Zhao, Y. Zhang, and W. Liu, Magnetic excitation of ultra-cold atoms trapped in optical lattice, Acta Physica Sinica 68, 043703 (2019)
[75]
G. Verma, U. D. Rapol, and R. Nath, Generation of dark solitons and their instability dynamics in two-dimensional condensates, Phys. Rev. A 95(4), 043618 (2017)
CrossRef ADS Google scholar
[76]
Z. Fan, J. Mai, Z. Chen, M. Xie, and Z. Luo, Matterwave soliton buffer realized by a tailored one-dimensional lattice, Mod. Phys. Lett. B 32(06), 1850070 (2018)
CrossRef ADS Google scholar
[77]
H. Li, S. Xu, M. R. Belić, and J. Cheng, Threedimensional solitons in Bose–Einstein condensates with spin–orbit coupling and Bessel optical lattices, Phys. Rev. A 98(3), 033827 (2018)
CrossRef ADS Google scholar
[78]
Z. Zhou, H. Zhong, B. Zhu, F. Xiao, K. Zhu, and J. Tan, Collision dynamics of dissipative matter-wave solitons in a perturbed optical lattice, Chin. Phys. Lett. 33(11), 110301 (2016)
CrossRef ADS Google scholar
[79]
L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattice, Nonlinear Dynamics, 2020
CrossRef ADS Google scholar
[80]
A. Mock, Paritytime-symmetry breaking in two-dimensional photonic crystals: Square lattice, Phys. Rev. A 93(6), 063812 (2016)
CrossRef ADS Google scholar
[81]
L. Salasnich and F. Toigo, Pair condensation in the BCS– BEC crossover of ultracold atoms loaded onto a twodimensional square lattice, Phys. Rev. A 86(2), 023619 (2012)
CrossRef ADS Google scholar
[82]
R. Zaera, J. Vila, J. Fernandez-Saez, and M. Ruzzene, Propagation of solitons in a two-dimensional nonlinear square lattice, Int. J. Non-linear Mech. 106, 188 (2018)
CrossRef ADS Google scholar
[83]
Zh. Niu, Y. Tai, J. Shi, and W. Zhang, Bose–Einstein condensates in an eightfold symmetric optical lattice, Chin. Phys. B 29(5), 056103 (2020)
CrossRef ADS Google scholar
[84]
H. Chen, Y. Liu, Q. Zhang, Y. Shi, W. Pang, and Y. Li, Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices, Phys. Rev. A 93(5), 053608 (2016)
CrossRef ADS Google scholar
[85]
Y. Gao and S. Chu, Optical induction of non-diffracting discrete photonic lattice, Superlattices Microstruct. 78, 163 (2015)
CrossRef ADS Google scholar
[86]
K. Xie, A. D. Boardman, Q. Li, Z. Shi, H. Jiang, H. Xia, Z. Hu, J. Zhang, W. Zhang, Q. Mao, L. Hu, T. Yang, F. Wen, and E. Wang, Spatial algebraic solitons at the Dirac point in optically induced nonlinear photonic lattices, Opt. Express 25(24), 30349 (2017)
CrossRef ADS Google scholar
[87]
M. Metcalf, G. Chern, M. D. Ventra, and C. Chien, Matter-wave propagation in optical lattices: Geometrical and flat-band effects, J. Phys. At. Mol. Opt. Phys. 49(7), 075301 (2016)
CrossRef ADS Google scholar
[88]
D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice, Ann. Phys. (Berlin) 529(9), 1700149 (2017)
CrossRef ADS Google scholar
[89]
Q. E. Hoq, P. G. Kevrekidis, and A. R. Bishop, Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices, J. Opt. 18(2), 024008 (2016)
CrossRef ADS Google scholar
[90]
L. H. Haddad, C. M. Weaver, and L. D. Carr, The nonlinear Dirac equation in Bose–Einstein condensates (I): Relativistic solitons in armchair nanoribbon optical lattices, New J. Phys. 17(6), 063033 (2015)
CrossRef ADS Google scholar
[91]
V. E. Vekslerchik, Solitons of a vector model on the honeycomb lattice, J. Phys. A Math. Theor. 49(45), 455202 (2016)
CrossRef ADS Google scholar
[92]
R. Zhong, N. Huang, H. Li, H. He, J. Lü, C. Huang, and Z. P. Chen, Matter-wave solitons supported by quadrupole quadrupole interactions and anisotropic discrete lattices, Int. J. Mod. Phys. B 32(09), 1850107 (2018)
CrossRef ADS Google scholar
[93]
Q. Wang and Z. Deng, Multi-pole solitons in nonlocal nonlinear media with fourth-order diffraction, Results in Physics 17, 103056 (2020)
CrossRef ADS Google scholar
[94]
H. Wang, X. Ren, J. Huang, and Y. Weng, Evolution of vortex and quadrupole solitons in the complex potentials with saturable nonlinearity, J. Opt. 20(12), 125504 (2018)
CrossRef ADS Google scholar
[95]
G. Chen, Y. Liu, and H. Wang, Mixed-mode solitons in quadrupolar BECs with spin–orbit coupling, Commun. Nonlinear Sci. Numer. Simul. 48, 318 (2017)
CrossRef ADS Google scholar
[96]
Y. V. Kartashov and D. A. Zezyulin, Stable multiring and rotating solitons in two-dimensional spin–orbit-coupled, Bose–Einstein condensates with a radially periodic potential, Phys. Rev. Lett. 122(12), 123201 (2019)
CrossRef ADS Google scholar
[97]
C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, New York: Cambridge University Press, 2002
CrossRef ADS Google scholar
[98]
L. M. Chiofalo, S. Succi, and P. M. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary time algorithm, Phys. Rev. E 62(5), 7438 (2000)
CrossRef ADS Google scholar
[99]
J. Yang and T. I. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud. Appl. Math. 120, 265 (2008)
CrossRef ADS Google scholar
[100]
I. M. Merhasin, B. V. Gisin, R. Driben, and B. A. Malomed, Finite-band solitons in the Kronig–Penney model with the cubic–quintic nonlinearity, Phys. Rev. E 71, 016613 (2005)
CrossRef ADS Google scholar
[101]
R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, Cubic–quintic solitons in the checkerboard potential, Phys. Rev. E 76, 066604 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1611 KB)

Accesses

Citations

Detail

Sections
Recommended

/