Properties of nuclear pastas

Jorge A. López, Claudio O. Dorso, Guillermo Frank

PDF(12009 KB)
PDF(12009 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 24301. DOI: 10.1007/s11467-020-1004-2
REVIEW ARTICLE
REVIEW ARTICLE

Properties of nuclear pastas

Author information +
History +

Abstract

In this review we study the nuclear pastas as they are expected to be formed in neutron star crusts. We start with a study of the pastas formed in nuclear matter (composed of protons and neutrons), we follow with the role of the electron gas on the formation of pastas, and we then investigate the pastas in neutron star matter (nuclear matter embedded in an electron gas).

Nuclear matter (NM) at intermediate temperatures (1 MeV ≲ T ≲ 15 MeV), at saturation and sub-saturation densities, and with proton content ranging from 30% to 50% was found to have liquid, gaseous and liquid–gas mixed phases. The isospin-dependent phase diagram was obtained along with the critical points, and the symmetry energy was calculated and compared to experimental data and other theories. At low temperatures (T ≲ 1 MeV) NM produces crystal-like structures around saturation densities, and pasta-like structures at sub-saturation densities. Properties of the pasta structures were studied with cluster-recognition algorithms, caloric curve, the radial distribution function, the Lindemann coefficient, Kolmogorov statistics, Minkowski functionals; the symmetry energy of the pasta showed a connection with its morphology.

Neutron star matter (NSM) is nuclear matter embedded in an electron gas. The electron gas is included in the calculation by the inclusion of an screened Coulomb potential. To connect the NM pastas with those in neutron star matter (NSM), the role the strength and screening length of the Coulomb interaction have on the formation of the pastas in NM was investigated. Pasta was found to exist even without the presence of the electron gas, but the effect of the Coulomb interaction is to form more defined pasta structures, among other effects. Likewise, it was determined that there is a minimal screening length for the developed structures to be independent of the cell size.

Neutron star matter was found to have similar phases as NM, phase transitions, symmetry energy, structure function and thermal conductivity. Like in NM, pasta forms at around T ≈ 1.5 MeV, and liquid-to-solid phase changes were detected at T ≈ 0.5 MeV. The structure function and the symmetry energy were also found to depend on the pasta structures.

Keywords

nuclear pasta / neutron star matter / nuclear symmetry energy / molecular dynamics / nuclear phase transitions

Cite this article

Download citation ▾
Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas. Front. Phys., 2021, 16(2): 24301 https://doi.org/10.1007/s11467-020-1004-2

References

[1]
D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of matter below nuclear saturation density, Phys. Rev. Lett. 50(26), 2066 (1983)
CrossRef ADS Google scholar
[2]
K. Oyamatsu, Nuclear shapes in the inner crust of a neutron star, Nucl. Phys. A 561(3), 431 (1993)
CrossRef ADS Google scholar
[3]
T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba, and A. Iwamoto, Quantum molecular dynamics approach to the nuclear matter below the saturation density, Phys. Rev. C 57(2), 655 (1998)
CrossRef ADS Google scholar
[4]
C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Neutron star crusts, Phys. Rev. Lett. 70(4), 379 (1993)
CrossRef ADS Google scholar
[5]
K. S. Cheng, C. C. Yao, and Z. G. Dai, Properties of nuclei in the inner crusts of neutron stars in the relativistic meanfield theory, Phys. Rev. C 55(4), 2092 (1997)
CrossRef ADS Google scholar
[6]
T. Kido, T. Maruyama, K. Niita, and S. Chiba, MD simulation study for nuclear matter, Nucl. Phys. A663–664, 877c (2000)
CrossRef ADS Google scholar
[7]
G. Watanabe, K. Iida, and K. Sato, Thermodynamic properties of nuclear “pasta” in neutron star crusts, Nucl. Phys. A 676(1–4), 455 (2000)
CrossRef ADS Google scholar
[8]
R. D. Williams and S. E. Koonin, Sub-saturation phases of nuclear matter, Nucl. Phys. A 435(3–4), 844 (1985)
CrossRef ADS Google scholar
[9]
M. Hashimoto, H. Seki, and M. Yamada, Shape of Nuclei in the Crust of Neutron Star, Prog. Theor. Phys. 71(2), 320 (1984)
CrossRef ADS Google scholar
[10]
P. N. Alcain and C. O. Dorso, The neutrino opacity of neutron rich matter, Nucl. Phys. A 961, 183 (2017)
CrossRef ADS Google scholar
[11]
D. Page, J. M. Lattimer, M. Prakash and A. W. Steiner, Minimal Cooling of Neutron Stars: A New Paradigm, Astrophys. J. Suppl. 155, 623 (2004)
CrossRef ADS Google scholar
[12]
B. Schuetrumpf, G. Martínez-Pinedo, M. Afibuzzaman, and H. M. Aktulga, Survey of nuclear pasta in the intermediate-density regime: Shapes and energies, Phys. Rev. C 100(4), 045806 (2019)
CrossRef ADS Google scholar
[13]
B. Schuetrumpf, G. Martínez-Pinedo, and P. G. Reinhard, Survey of nuclear pasta in the intermediate-density regime: Structure functions for neutrino scattering, Phys. Rev. C 101(5), 055804 (2020)
CrossRef ADS Google scholar
[14]
G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Microscopic study of slablike and rodlike nuclei: Quantum molecular dynamics approach, Phys. Rev. C 66(1), 012801 (2002)
CrossRef ADS Google scholar
[15]
C. J. Horowitz, M. A. Perez-García, and J. Piekarewicz, Neutrino-“pasta” scattering: The opacity of nonuniform neutron-rich matter, Phys. Rev. C 69(4), 045804 (2004)
CrossRef ADS Google scholar
[16]
B. Schuetrumpf and W. Nazarewicz, Twist-averaged boundary conditions for nuclear pasta Hartree–Fock calculations, Phys. Rev. C 92(4), 045806 (2015)
CrossRef ADS Google scholar
[17]
F. J. Fattoyev, C. J. Horowitz, and B. Schuetrumpf, Quantum nuclear pasta and nuclear symmetry energy, Phys. Rev. C 95(5), 055804 (2017)
CrossRef ADS Google scholar
[18]
C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, in: “Neutron Star Crust”, Eds. C. A. Bertulani and J. Piekarewicz, Nova Science Publishers, ISBN 978-1620819029 (2012)
[19]
P. N. Alcain, P. A. Giménez Molinelli, and C. O. Dorso, Beyond nuclear “pasta”: Phase transitions and neutrino opacity of new “pasta” phases, Phys. Rev. C 90(6), 065803 (2014)
CrossRef ADS Google scholar
[20]
C. J. Horowitz, M. A. Pérez-García, J. Carriere, D. K. Berry, and J. Piekarewicz, Nonuniform neutron-rich matter and coherent neutrino scattering, Phys. Rev. C 70(6), 065806 (2004)
CrossRef ADS Google scholar
[21]
C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, Topological characterization of neutron star crusts, Phys. Rev. C 86(5), 055805 (2012)
CrossRef ADS Google scholar
[22]
I. Tanihata, Preprint RIKEN-AF-NP-229, 1996; P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010); M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)
CrossRef ADS Google scholar
[23]
S. Kumar and Y. G. Ma, Investigation of compressibilities using neutron-rich projectiles fragmentation at intermediate energy, Nucl. Phys. A 898, 59 (2013)
CrossRef ADS Google scholar
[24]
P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)
CrossRef ADS Google scholar
[25]
W. D. Myers and W. J. Swiatecki, The nuclear Thomas–Fermi model, Acta Phys. Pol. B 26, 111 (1995)
[26]
A. Barrañón, J. Escamilla Roa, and J. A. López, Entropy in the nuclear caloric curve, Phys. Rev. C 69(1), 014601 (2004)
CrossRef ADS Google scholar
[27]
P. J. Siemens, Liquid–gas phase transition in nuclear matter, Nature 305(5933), 410 (1983); P. J. Siemens, Macroscopic behaviour of nuclear matter, Nature 336(6195), 110 (1988)
CrossRef ADS Google scholar
[28]
J. A. López and C. O. Dorso, Lecture Notes on Phase Transitions in Nuclear Matter, World Scientific, 2000
CrossRef ADS Google scholar
[29]
H. Müller and B. Serot, Phase transitions in warm, asymmetric nuclear matter, Phys. Rev. C 52(4), 2072 (1995)
CrossRef ADS Google scholar
[30]
J. A. López, A. Gaytán Terrazas, and S. Terrazas Porras, Isospin-dependent phase diagram of nuclear matter, Nucl. Phys. A 994, 121664 (2020)
CrossRef ADS Google scholar
[31]
See, e.g., https://www.ks.uiuc.edu/Research/vmd/current/ug/node73.html, retrieved Sep. 2, 2019
[32]
J. A. López, E. Ramírez-Homs, R. González, and R. Ravelo, Isospin-asymmetric nuclear matter, Phys. Rev. C 89(2), 024611 (2014)
CrossRef ADS Google scholar
[33]
J. A. López and S. Terrazas Porras, Symmetry energy in the liquid–gas mixture, Nucl. Phys. A 957, 312 (2017)
CrossRef ADS Google scholar
[34]
K. Hagel, J. B. Natowitz, and G. Röpke, The equation of state and symmetry energy of low-density nuclear matter, Eur. Phys. J. A 50(2), 39 (2014)
CrossRef ADS Google scholar
[35]
S. Kowalski, J. B. Natowitz, S. Shlomo, R. Wada, K. Hagel, J. Wang, T. Materna, Z. Chen, Y. G. Ma, L. Qin, A. S. Botvina, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. E. Masri, Z. Majka, and A. Ono, Experimental determination of the symmetry energy of a low density nuclear gas, Phys. Rev. C 75(1), 014601 (2007)
CrossRef ADS Google scholar
[36]
R. Wada, K. Hagel, L. Qin, J. B. Natowitz, Y. G. Ma, G. Röpke, S. Shlomo, A. Bonasera, S. Typel, Z. Chen, M. Huang, J. Wang, H. Zheng, S. Kowalski, C. Bottosso, M. Barbui, M. R. D. Rodrigues, K. Schmidt, D. Fabris, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, V. Rizzi, G. Viesti, M. Cinausero, G. Prete, T. Keutgen, Y. El Masri, and Z. Majka, Nuclear matter symmetry energy at 0.03≤ρ/ρ0≤0.2, Phys. Rev. C 85(6), 064618 (2012)
CrossRef ADS Google scholar
[37]
L. W. Chen, C. M. Ko, and B. A. Li, Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models, Phys. Rev. C 76(5), 054316 (2007)
CrossRef ADS Google scholar
[38]
E. L. Medeiros and J. Randrup, Thermostatic properties of Seyler–Blanchard nuclei, Phys. Rev. C 45(1), 372 (1992)
CrossRef ADS Google scholar
[39]
C. J. Horowitz and A. Schwenk, Cluster formation and the virial equation of state of low-density nuclear matter, Nucl. Phys. A 776(1–2), 55 (2006)
CrossRef ADS Google scholar
[40]
J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction, Phys. Rev. C 75(1), 014607 (2007)
CrossRef ADS Google scholar
[41]
P. A. Giménez Molinelli, J. I. Nichols, J. A. López, and C. O. Dorso, Simulations of cold nuclear matter at subsaturation densities, Nucl. Phys. A 923, 31 (2014)
CrossRef ADS Google scholar
[42]
A. Vicentini, G. Jacucci, and V. R. Pandharipande, Fragmentation of hot classical drops, Phys. Rev. C 31(5), 1783 (1985); R. J. Lenk and V. R. Pandharipande, Disassembly of hot classical charged drops, Phys. Rev. C 34(1), 177 (1986); R. J. Lenk, T. J. Schlagel, and V. R. Pandharipande, Accuracy of the Vlasov–Nordheim approximation in the classical limit, Phys. Rev. C 42(1), 372 (1990)
CrossRef ADS Google scholar
[43]
G. Raciti, R. Bassini, M. Begemann-Blaich, S. Fritz, S. J. Gaff, N. Giudice, C. Gross, G. Immé, I. Iori, U. Kleinevoss, G. J. Kunde, W. D. Kunze, U. Lynen, M. Mahi, T. Möhlenkamp, W. F. J. Müller, B. Ocker, T. Odeh, J. Pochodzalla, G. Riccobene, F. P. Romano, A. Sajia, M. Schnittker, A. Schüttauf, C. Schwarz, W. Seidel, V. Serfling, C. Sfienti, W. Trautmann, A. Trzcinski, G. Verde, A. Wörner, H. Xi, and B. Zwieglinski, A systematic study of the nuclear caloric curve, Nuovo Cim. 111(8-9), 987 (1998)
CrossRef ADS Google scholar
[44]
H. Sonoda, G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Phase diagram of nuclear “pasta” and its uncertainties in supernova cores, Phys. Rev. C 77(3), 035806 (2008)
CrossRef ADS Google scholar
[45]
C. O. Dorso, G. Frank, and J. A. López, Phase transitions and symmetry energy in nuclear pasta, Nucl. Phys. A 978, 35 (2018)
CrossRef ADS Google scholar
[46]
C. J. Horowitz, Links between heavy ion and astrophysics, Eur. Phys. J. A 30(1), 303 (2006)
CrossRef ADS Google scholar
[47]
G. Watanabe and K. Iida, Electron screening in the liquid– gas mixed phases of nuclear matter, Phys. Rev. C 68(4), 045801 (2003)
CrossRef ADS Google scholar
[48]
T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, and S. Chiba, Nuclear “pasta” structures and the charge screening effect, Phys. Rev. C 72(1), 015802 (2005)
CrossRef ADS Google scholar
[49]
C. J. Horowitz, M. A. Perez-Garcia, D. K. Berry, and J. Piekarewicz, Dynamical response of the nuclear “pasta” in neutron star crusts, Phys. Rev. C 72(3), 035801 (2005)
CrossRef ADS Google scholar
[50]
J. Piekarewicz and G. T. Sánchez, Proton fraction in the inner neutron-star crust, Phys. Rev. C 85(1), 015807 (2012)
CrossRef ADS Google scholar
[51]
J.A. López and E. Ramírez-Homs, Effect of an electron gas on a neutron-rich nuclear pasta, Nuc. Sci. Tech. 26, S20502 (2015)
[52]
A. S. Schneider, C. J. Horowitz, J. Hughto, and D. K. Berry, Nuclear “pasta” formation, Phys. Rev. C 88(6), 065807 (2013)
CrossRef ADS Google scholar
[53]
K. Binder, B. J. Block, P. Virnau, and A. Tröster, Beyond the van der Waals loop: What can be learned from simulating Lennard–Jones fluids inside the region of phase coexistence, Am. J. Phys. 80(12), 1099 (2012)
CrossRef ADS Google scholar
[54]
C. J. Horowitz, D. K. Berry, C. M. Briggs, M. E. Caplan, A. Cumming, and A. S. Schneider, Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars, Phys. Rev. Lett. 114(3), 031102 (2015)
CrossRef ADS Google scholar
[55]
C. Dorso, G. Frank, and J. A. López, Symmetry energy in neutron star matter, Nucl. Phys. A 984, 77 (2019)
CrossRef ADS Google scholar
[56]
J. A. López, J. A. Muñoz, C. O. Dorso, and G. Frank, Machine learning Minkoswki functionals of neutron star crusts, J. Phys. Conf. Ser. (2019); J. A. López and J. A. Muñoz, Analytical expression and neural network study of the symmetry energy, CERN Proc. 1, 29 (2019)
[57]
P. N. Alcain, Dependencia en el isospín de la ecuación de estado de la materia nuclear, Ph.D. Thesis, Universidad de Buenos Aires, 2019
[58]
D. Frenkel yB. Smit, Understanding Molecular Simulations, 2nd Ed., Academic Press, 2002
CrossRef ADS Google scholar
[59]
A. Deibel, A. Cumming, E. F. Brown, and S. Reddy, Latetime cooling of neutron star transients and the physics of the inner crust, Astrophys. J. 839(2), 95 (2017)
CrossRef ADS Google scholar
[60]
E. F. Brown, A. Cumming, F. J. Fattoyev, C. J. Horowitz, D. Page, and S. Reddy, Rapid neutrino cooling in the neutron star MXB 1659-29, Phys. Rev. Lett. 120(18), 182701 (2018)
CrossRef ADS Google scholar
[61]
A. S. Schneider, D. K. Berry, M. E. Caplan, C. J. Horowitz, and Z. Lin, Effect of topological defects on “nuclear pasta” observables,Phys. Rev. C 93(6), 065806 (2016)
CrossRef ADS Google scholar
[62]
R. Nandi and S. Schramm, Transport properties of the nuclear pasta phase with quantum molecular dynamics, Astrophys. J. 852(2), 135 (2018)
CrossRef ADS Google scholar
[63]
C. J. Horowitz, and D. K. Berry, Shear viscosity and thermal conductivity of nuclear “pasta”, Phys. Rev. C 78(3), 035806 (2008)
CrossRef ADS Google scholar
[64]
J. M. Dunn, Nanoscale phonon thermal conductivity via molecular dynamics, Ph.D. Thesis, Purdue University, 2016
[65]
F. Müller–Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106(14), 6082 (1997)
CrossRef ADS Google scholar
[66]
A. Barrañón, C. O. Dorso, J. A. López, and J. Morales, LATINO: A semi-classical model to study nuclear fragmentation, Rev. Mex. Fis. 45(suppl. 2), 110 (1999)
[67]
A. Chernomoretz, L. Gingras, Y. Larochelle, L. Beaulieu, R. Roy, C. St-Pierre, and C. O. Dorso, Quasiclassical model of intermediate velocity particle production in asymmetric heavy ion reactions, Phys. Rev. C 65(5), 054613 (2002)
CrossRef ADS Google scholar
[68]
A. Barrañón, C. O. Dorso, and J. A. López, Searching for criticality in nuclear fragmentation, Rev. Mex. Fís. 47(sup. 2), 93 (2001)
[69]
A. Barrañón, C. O. Dorso, and J. A. López, Time dependence of isotopic temperatures, Nucl. Phys. A 791(1–2), 222 (2007)
CrossRef ADS Google scholar
[70]
A. Barrañón, R. Cárdenas, C. O. Dorso, and J.A. López, The critical exponent of nuclear fragmentation, Acta Physica Hungarica A: Heavy Ion Phys. 17(1), 59 (2003)
CrossRef ADS Google scholar
[71]
C. O. Dorso and J. A. López, Selection of critical events in nuclear fragmentation, Phys. Rev. C 64(2), 027602 (2001)
CrossRef ADS Google scholar
[72]
A. Barrañón, J. Escamilla Roa, and J. A. López, The transition temperature of the nuclear caloric curve, Braz. J. Phys. 34(3A), 904 (2004)
CrossRef ADS Google scholar
[73]
C. O. Dorso, C. R. Escudero, M. Ison, and J. A. López, Dynamical aspects of isoscaling, Phys. Rev. C 73(4), 044601 (2006)
CrossRef ADS Google scholar
[74]
C. A. Dorso, P. A. G. Molinelli, and J. A. López, Isoscaling and the nuclear EoS, J. Phys. G 38(11), 115101 (2011); C. O. Dorso, P. A. G. Molinelli, and J. A. López, Searching for the origin of isoscaling: Confinement and expansion, Rev. Mex. Phys. S57 (1), 14 (2011)
CrossRef ADS Google scholar
[75]
T. M. Nymand and P. Linse, Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities, J. Chem. Phys. 112, 6152 (2000)
CrossRef ADS Google scholar
[76]
P. N. Alcain, P. A. Giménez Molinelli, J. I. Nichols, and C. O. Dorso, Effect of Coulomb screening length on nuclear “pasta” simulations, Phys. Rev. C 89(5), 055801 (2014)
CrossRef ADS Google scholar
[77]
B. L. Holian, A. F. Voter, and R. Ravelo, Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nosé–Hoover dynamics, Phys. Rev. E 52(3), 2338 (1995)
CrossRef ADS Google scholar
[78]
H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72(4), 2384 (1980)
CrossRef ADS Google scholar
[79]
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1), 511 (1984)
CrossRef ADS Google scholar
[80]
J. A. López, S. Terrazas Porras, and A. Rodríguez Gutiérrez, Thermodynamics of neutron-rich nuclear matter, AIP Conf. Proc. 1753, 050001 (2016)
CrossRef ADS Google scholar
[81]
B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464(4–6), 113 (2008)
CrossRef ADS Google scholar
[82]
B. A. Li, A. Ramos, G. Verde, and I. Vidana, Topical issue on Nuclear Symmetry Energy, Eur. Phys. J. A 50(2), 9 (2014)
CrossRef ADS Google scholar
[83]
J. B. Natowitz, G. Röpke, S. Typel, D. Blaschke, A. Bonasera, K. Hagel, T. Klähn, S. Kowalski, L. Qin, S. Shlomo, R. Wada, and H. H. Wolter, Symmetry energy of dilute warm nuclear matter, Phys. Rev. Lett. 104(20), 202501 (2010)
CrossRef ADS Google scholar
[84]
S. Typel, H. H. Wolter, G. Röpke, and D. Blaschke, Effects of the liquid–gas phase transition and cluster formation on the symmetry energy, Eur. Phys. J. A 50(2), 17 (2014)
CrossRef ADS Google scholar
[85]
M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)
CrossRef ADS Google scholar
[86]
M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A. Delfino, D. P. Menezes, C. Providência, S. Typel, and J. R. Stone, Relativistic mean-field hadronic models under nuclear matter constraints, Phys. Rev. C 90(5), 055203 (2014)
CrossRef ADS Google scholar
[87]
M. Colonna, V. Baran, M. D. Toro, and H. H. Wolter, Isospin distillation with radial flow: A test of the nuclear symmetry energy, Phys. Rev. C 78(6), 064618 (2008)
CrossRef ADS Google scholar
[88]
Y. Zhou, B. Anglin, and A. Strachan, Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics, J. Chem. Phys. 127(18), 184702 (2007)
CrossRef ADS Google scholar
[89]
J. Dunn, E. Antillon, J. Maassen, M. Lundstrom, and A. Strachan, Role of energy distribution in contacts on thermal transport in Si: A molecular dynamics study, J. Appl. Phys. 120(22), 225112 (2016)
CrossRef ADS Google scholar
[90]
K. H. Lin and A. Strachan, Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths, Phys. Rev. B 87(11), 115302 (2013)
CrossRef ADS Google scholar
[91]
F. A. Lindemann, The calculation of molecular vibration frequencies, Phys. Z. 11, 609 (1910)
[92]
Z. W. Birnbaum, Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size, J. Am. Stat. Assoc. 47(259), 425 (1952)
CrossRef ADS Google scholar
[93]
E. Gosset, A three-dimensional extended Kolmogorov– Smirnov test as a useful tool in astronomy, Astron. Astrophys. 188, 258 (1987)
[94]
G. Fasano and A. Franceschini, A multidimensional version of the Kolmogorov–Smirnov test, Mon. Not. R. Astron. Soc. 225(1), 155 (1987)
CrossRef ADS Google scholar
[95]
G. J. Babu and E. D. Feigelson, Astronomical Data Anal ysis Software and Systems XV, Eds. C. Gabriel, et al., ASP Conference Series, 351, 127 (2006)
[96]
K. Michielsen and H. De Raedt, Integral-geometry morphological image analysis, Phys. Rep. 347(6), 461 (2001)
CrossRef ADS Google scholar
[97]
B. Schuetrumpf, M. A. Klatt, K. Iida, J. A. Maruhn, K. Mecke, and P. G. Reinhard, Time-dependent Hartree–Fock approach to nuclear “pasta” at finite temperature, Phys. Rev. C 87(5), 055805 (2013)
CrossRef ADS Google scholar
[98]
A. Strachan and C. O. Dorso, Time scales in fragmentation, Phys. Rev. C 55(2), 775 (1997); A. Strachan and C. O. Dorso, Fragment recognition in molecular dynamics, Phys. Rev. C 56(2), 995 (1997)
CrossRef ADS Google scholar
[99]
C. O. Dorso and J. Randrup, Early recognition of clusters in molecular dynamics, Phys. Lett. B 301(4), 328 (1993)
CrossRef ADS Google scholar
[100]
P. N. Alcain and C. O. Dorso, Dynamics of fragment formation in neutron-rich matter, Phys. Rev. C 97(1), 015803 (2018)
CrossRef ADS Google scholar
[101]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(12009 KB)

Accesses

Citations

Detail

Sections
Recommended

/