Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses
Lin Ju, Mei Bie, Xiwei Zhang, Xiangming Chen, Liangzhi Kou
Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses
Two-dimensional Janus van der Waals (vdW) heterojunctions, referring to the junction containing at least one Janus material, are found to exhibit tuneable electronic structures, wide light adsorption spectra, controllable contact resistance, and sufficient redox potential due to the intrinsic polarization and unique interlayer coupling. These novel structures and properties are promising for the potential applications in electronics and energy conversion devices. To provide a comprehensive picture about the research progress and guide the following investigations, here we summarize their fundamental properties of different types of two-dimensional Janus vdW heterostructures including electronic structure, interface contact and optical properties, and discuss the potential applications in electronics and energy conversion devices. The further challenges and possible research directions of the novel heterojunctions are discussed at the end of this review.
Janus materials / van der Waals heterojunctions / energy conversion devices
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6(9), 652 (2007)
CrossRef
ADS
Google scholar
|
[3] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1), 76 (2009)
CrossRef
ADS
Google scholar
|
[4] |
X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc. 131(5), 1680 (2009)
CrossRef
ADS
Google scholar
|
[5] |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef
ADS
Google scholar
|
[6] |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef
ADS
Google scholar
|
[7] |
M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, 2D black phosphorus saturable absorbers for ultrafast photonics, Adv. Opt. Mater. 7(1), 1800224 (2019)
CrossRef
ADS
Google scholar
|
[8] |
S. Guo, Y. Zhang, Y. Ge, S. Zhang, H. Zeng, and H. Zhang, 2D V-V binary materials: Status and challenges, Adv. Mater. 31(39), 1902352 (2019)
CrossRef
ADS
Google scholar
|
[9] |
X. Jiang, A. V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, and P. N. Prasad, Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications, Phys. Rep. 848, 1 (2020)
CrossRef
ADS
Google scholar
|
[10] |
Y. Zhang, C. K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities, Phys. Rep. 795, 1 (2019)
CrossRef
ADS
Google scholar
|
[11] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29(20), 1601694 (2017)
CrossRef
ADS
Google scholar
|
[12] |
Y. Boyjoo, H. Sun, J. Liu, V. K. Pareek, and S. Wang, A review on photocatalysis for air treatment: From catalyst development to reactor design, Chem. Eng. J. 310, 537 (2017)
CrossRef
ADS
Google scholar
|
[13] |
J. Zhang, G. Xiao, F. X. Xiao, and B. Liu, Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: A critical review, Mater. Chem. Front. 1(2), 231 (2017)
CrossRef
ADS
Google scholar
|
[14] |
S. Chen, and L. W. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution, Chem. Mater. 24(18), 3659 (2012)
CrossRef
ADS
Google scholar
|
[15] |
F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang, and E. Kan, Visible-light-absorption in graphitic C3N4 bilayer: Enhanced by interlayer coupling, J. Phys. Chem. Lett. 3(22), 3330 (2012)
CrossRef
ADS
Google scholar
|
[16] |
A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. Zhu, R. Amal, and S. C. Smith, Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response, J. Am. Chem. Soc. 134(9), 4393 (2012)
CrossRef
ADS
Google scholar
|
[17] |
C. F. Fu, Q. Luo, X. Li, and J. Yang, Two-dimensional van der Waals nanocomposites as Z-scheme type photocatalysts for hydrogen production from overall water splitting, J. Mater. Chem. A 4(48), 18892 (2016)
CrossRef
ADS
Google scholar
|
[18] |
L. Ju, Y. Dai, W. Wei, M. Li, and B. Huang, DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting, Appl. Surf. Sci. 434, 365 (2018)
CrossRef
ADS
Google scholar
|
[19] |
W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
CrossRef
ADS
Google scholar
|
[20] |
R. Moriya, T. Yamaguchi, Y. Inoue, S. Morikawa, Y. Sata, S. Masubuchi, and T. Machida, Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures, Appl. Phys. Lett. 105(8), 083119 (2014)
CrossRef
ADS
Google scholar
|
[21] |
S. Wi, H. Kim, M. Chen, H. Nam, L. J. Guo, E. Meyhofer, and X. Liang, Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping, ACS Nano 8(5), 5270 (2014)
CrossRef
ADS
Google scholar
|
[22] |
Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, Vertical and in-plane heterostructures from WS2/MoS2 monolayers, Nat. Mater. 13(12), 1135 (2014)
CrossRef
ADS
Google scholar
|
[23] |
F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures, Nat. Mater. 14(3), 301 (2015)
CrossRef
ADS
Google scholar
|
[24] |
K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Graphene- MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol. 8(11), 826 (2013)
CrossRef
ADS
Google scholar
|
[25] |
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light–matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
CrossRef
ADS
Google scholar
|
[26] |
Y. C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A. A. Puretzky, L. Liang, X. Kong, Y. Gu, A. Strasser, M. III Meyer, M. F. Lorenz, I. N. Chisholm, C. M. Ivanov, G. Rouleau, K. Duscher, Xiao, and D. B. Geohegan, Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures, ACS Nano 14(4), 3896 (2020)
CrossRef
ADS
Google scholar
|
[27] |
A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
CrossRef
ADS
Google scholar
|
[28] |
J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, Janus monolayer transition-metal dichalcogenides, ACS Nano 11(8), 8192 (2017)
CrossRef
ADS
Google scholar
|
[29] |
K. Ray, A. E. Yore, T. Mou, S. Jha, K. K. H. Smithe, B. Wang, E. Pop, and A. K. M. Newaz, Photoresponse of natural van der Waals heterostructures, ACS Nano 11(6), 6024 (2017)
CrossRef
ADS
Google scholar
|
[30] |
A. J. Molina-Mendoza, E. Giovanelli, W. S. Paz, M. A. Nino, J. O. Island, C. Evangeli, L. Aballe, M. Foerster, H. S. van der Zant, G. Rubio-Bollinger, N. Agrait, J. J. Palacios, E. M. Perez, and A. Castellanos-Gomez, Franckeite as a naturally occurring van der Waals heterostructure, Nat. Commun. 8(1), 14409 (2017)
CrossRef
ADS
Google scholar
|
[31] |
M. Velický, P. S. Toth, A. M. Rakowski, A. P. Rooney, A. Kozikov, C. R. Woods, A. Mishchenko, L. Fumagalli, J. Yin, V. Zolyomi, T. Georgiou, S. J. Haigh, K. S. Novoselov, and R. A. Dryfe, Exfoliation of natural van der Waals heterostructures to a single unit cell thickness, Nat. Commun. 8(1), 14410 (2017)
CrossRef
ADS
Google scholar
|
[32] |
T. Zhang, B. Jiang, Z. Xu, R. G. Mendes, Y. Xiao, L. Chen, L. Fang, T. Gemming, S. Chen, M. H. Rummeli, and L. Fu, Twinned growth behaviour of two-dimensional materials, Nat. Commun. 7(1), 13911 (2016)
CrossRef
ADS
Google scholar
|
[33] |
M. B. Alemayehu, M. Falmbigl, K. Ta, J. Ditto, D. L. Medlin, and D. C. Johnson, Designed synthesis of van der Waals heterostructures: The power of kinetic control, Angew. Chem. Int. Ed. Engl. 54(51), 15468 (2015)
CrossRef
ADS
Google scholar
|
[34] |
S. Wang, X. Wang, and J. H. Warner, All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures, ACS Nano 9(5), 5246 (2015)
CrossRef
ADS
Google scholar
|
[35] |
X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao, S. T. Gan, Y. Zhang, Y. Li, X. Song, Q. Xiong, S. Shi, Z. Li, W. Tao, H. Zhang, L. Mei, and J. Shi, A novel topdown synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy, Adv. Mater. 30(36), 1803031 (2018)
CrossRef
ADS
Google scholar
|
[36] |
Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability, 2D Mater. 4(4), 045010 (2017)
CrossRef
ADS
Google scholar
|
[37] |
B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber, Opt. Express 26(18), 22750 (2018)
CrossRef
ADS
Google scholar
|
[38] |
Z. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang, X. Qi, S. C. Dhanabalan, J. S. Ponraj, D. Zhang, J. Li, J. Zhao, J. Zhong, and H. Zhang, High-performance photoelectrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability, Adv. Funct. Mater. 28(16), 1705237 (2018)
CrossRef
ADS
Google scholar
|
[39] |
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)
CrossRef
ADS
Google scholar
|
[40] |
Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
CrossRef
ADS
Google scholar
|
[41] |
Y. Liang, J. Li, H. Jin, B. Huang, and Y. Dai, Photoexcitation dynamics in Janus-MoSSe/WSe2 heterobilayers: Ab initio time-domain study, J. Phys. Chem. Lett. 9(11), 2797 (2018)
CrossRef
ADS
Google scholar
|
[42] |
M. Idrees, H. U. Din, S. U. Rehman, M. Shafiq, Y. Saeed, H. D. Bui, C. V. Nguyen, and B. Amin, Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides, Phys. Chem. Chem. Phys. 22(18), 10351 (2020)
CrossRef
ADS
Google scholar
|
[43] |
W. Guo, X. Ge, S. Sun, Y. Xie, and X. Ye, The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: A first-principles study, Phys. Chem. Chem. Phys. 22(9), 4946 (2020)
CrossRef
ADS
Google scholar
|
[44] |
H. U. Din, M. Idrees, A. Albar, M. Shafiq, I. Ahmad, C. V. Nguyen, and B. Amin, Rashba spin splitting and photocatalytic properties of GeC MSSe (M=Mo, W) van der Waals heterostructures, Phys. Rev. B 100(16), 165425 (2019)
CrossRef
ADS
Google scholar
|
[45] |
M. Idrees, H. U. Din, R. Ali, G. Rehman, T. Hussain, C. V. Nguyen, I. Ahmad, and B. Amin, Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures, Phys. Chem. Chem. Phys. 21(34), 18612 (2019)
CrossRef
ADS
Google scholar
|
[46] |
K. Ren, S. Wang, Y. Luo, J. P. Chou, J. Yu, W. Tang, and M. Sun, High-efficiency photocatalyst for water splitting: a Janus MoSSe/XN (X= Ga, Al) van der Waals heterostructure, J. Phys. D Appl. Phys. 53(18), 185504 (2020)
CrossRef
ADS
Google scholar
|
[47] |
X. Li, X. Wang, W. Hao, C. Mi, and H. Zhou, Structural, electronic, and electromechanical properties of MoSSe/blue phosphorene heterobilayer, AIP Adv. 9(11), 115302 (2019)
CrossRef
ADS
Google scholar
|
[48] |
D. Chen, X. Lei, Y. Wang, S. Zhong, G. Liu, B. Xu, and C. Ouyang, Tunable electronic structures in BP/MoSSe van der Waals heterostructures by external electric field and strain, Appl. Surf. Sci. 497, 143809 (2019)
CrossRef
ADS
Google scholar
|
[49] |
Q. Peng, Z. Guo, B. Sa, J. Zhou, and Z. Sun, New gallium chalcogenides/arsenene van der Waals heterostructures promising for photocatalytic water splitting, Int. J. Hydrogen Energy 43(33), 15995 (2018)
CrossRef
ADS
Google scholar
|
[50] |
Z. H. Liu, Y. Lin, C. Cao, S. L. Zou, J. T. Xiao, J. Xiao, and L. N. Chen, First-principles study of electronic and sodium-ion transport properties of transition-metal dichalcogenides, Int. J. Mod. Phys. B 32(20), 1850215 (2018)
CrossRef
ADS
Google scholar
|
[51] |
H. Hu, Z. Zhang, and G. Ouyang, Transition from Schottky-to-Ohmic contacts in 1T VSe2-based van der Waals heterojunctions: Stacking and strain effects, Appl. Surf. Sci. 517, 146168 (2020)
CrossRef
ADS
Google scholar
|
[52] |
X. Li, B. Zhai, X. Song, Y. Yan, J. Li, and C. Xia, Twodimensional Janus-In2STe/InSe heterostructure with direct gap and staggered band alignment, Appl. Surf. Sci. 509, 145317 (2020)
CrossRef
ADS
Google scholar
|
[53] |
D. Xu, B. Zhai, Q. Gao, T. Wang, J. Li, and C. Xia, Interface-controlled band alignment transition and optical properties of Janus MoSSe/GaN vdW heterobilayers, J. Phys. D Appl. Phys. 53(5), 055104 (2020)
CrossRef
ADS
Google scholar
|
[54] |
Z. Cui, K. Bai, Y. Ding, X. Wang, E. Li, and J. Zheng, Janus XSSe/SiC (X= Mo, W) van der Waals heterostructures as promising water-splitting photocatalysts, Phys. E 123, 114207 (2020)
CrossRef
ADS
Google scholar
|
[55] |
C. Yu and Z. Wang, Strain engineering and electric field tunable electronic properties of Janus MoSSe/WX2 (X= S, Se) van der Waals heterostructures, Phys. Status Solidi B 256(11), 1900261 (2019)
CrossRef
ADS
Google scholar
|
[56] |
W. Yin, B. Wen, Q. Ge, D. Zou, Y. Xu, M. Liu, X. Wei, M. Chen, and X. Fan, Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study, Prog. Nat. Sci. 29(3), 335 (2019)
CrossRef
ADS
Google scholar
|
[57] |
Y. Ji, M. Yang, H. Lin, T. Hou, L. Wang, Y. Li, and S. T. Lee, Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting, J. Phys. Chem. C 122(5), 3123 (2018)
CrossRef
ADS
Google scholar
|
[58] |
L. Hu and D. Wei, Janus group-III chalcogenide monolayers and derivative type-II heterojunctions as watersplitting photocatalysts with strong visible-light absorbance, J. Phys. Chem. C 122(49), 27795 (2018)
CrossRef
ADS
Google scholar
|
[59] |
L. Ju, M. Bie, J. Shang, X. Tang, and L. Kou, Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting, J. Phys. Mater. 3(2), 022004 (2020)
CrossRef
ADS
Google scholar
|
[60] |
C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, and J. Li, Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides, Phys. Rev. B 98(16), 165424 (2018)
CrossRef
ADS
Google scholar
|
[61] |
Y. C. Cheng, Z. Y. Zhu, M. Tahir, and U. Schwingenschlögl, Spin–orbit-induced spin splittings in polar transition metal dichalcogenide monolayers, EPL 102(5), 57001 (2013)
CrossRef
ADS
Google scholar
|
[62] |
S. LaShell, B. A. McDougall, and E. Jensen, Spin splitting of an Au (111) surface state band observed with angle resolved photoelectron spectroscopy, Phys. Rev. Lett. 77(16), 3419 (1996)
CrossRef
ADS
Google scholar
|
[63] |
C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D. Pacilé, P. Bruno, K. Kern, and M. Grioni, Giant spin splitting through surface alloying, Phys. Rev. Lett. 98(18), 186807 (2007)
CrossRef
ADS
Google scholar
|
[64] |
K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Giant Rashba-type spin splitting in bulk BiTeI, Nat. Mater. 10(7), 521 (2011)
CrossRef
ADS
Google scholar
|
[65] |
W. Zhou, J. Chen, Z. Yang, J. Liu, and F. Ouyang, Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe, Phys. Rev. B 99(7), 075160 (2019)
CrossRef
ADS
Google scholar
|
[66] |
F. Li, W. Wei, H. Wang, B. Huang, Y. Dai, and T. Jacob, Intrinsic electric field-induced properties in Janus MoSSe van der Waals structures, J. Phys. Chem. Lett. 10(3), 559 (2019)
CrossRef
ADS
Google scholar
|
[67] |
C. Yu, X. Cheng, C. Wang, and Z. Wang, Tuning the ntype contact of graphene on Janus MoSSe monolayer by strain and electric field, Physica E 110, 148 (2019)
CrossRef
ADS
Google scholar
|
[68] |
T. V. Vu, N. V. Hieu, H. V. Phuc, N. N. Hieu, H. D. Bui, M. Idrees, B. Amin, and C. V. Nguyen, Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field, Appl. Surf. Sci. 507, 145036 (2020)
CrossRef
ADS
Google scholar
|
[69] |
Y. Wang, W. Wei, B. Huang, and Y. Dai, Functionalized MXenes as ideal electrodes for Janus MoSSe, Phys. Chem. Chem. Phys. 21(1), 70 (2019)
CrossRef
ADS
Google scholar
|
[70] |
T. Jing, D. Liang, J. Hao, M. Deng, and S. Cai, Interface Schottky barrier in Hf2NT2/MSSe (T= F, O, OH; M= Mo, W) heterostructures, Phys. Chem. Chem. Phys. 21(10), 5394 (2019)
CrossRef
ADS
Google scholar
|
[71] |
N. Zhao and U. Schwingenschlogl, Transition from Schottky to Ohmic contacts in Janus MoSSe/germanene heterostructures, Nanoscale 12(21), 11448 (2020)
CrossRef
ADS
Google scholar
|
[72] |
L. Cao, Y. S. Ang, Q. Wu, and L. K. Ang, Janus PtSSe and graphene heterostructure with tunable Schottky barrier, Appl. Phys. Lett. 115(24), 241601 (2019)
CrossRef
ADS
Google scholar
|
[73] |
Y. Li, J. Wang, B. Zhou, F. Wang, Y. Miao, J. Wei, B. Zhang, and K. Zhang, Tunable interlayer coupling and Schottky barrier in graphene and Janus MoSSe heterostructures by applying an external field, Phys. Chem. Chem. Phys. 20(37), 24109 (2018)
CrossRef
ADS
Google scholar
|
[74] |
L. Ju, C. Liu, L. Shi, and L. Sun, The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst, Mater. Res. Express 6(11), 115545 (2019)
CrossRef
ADS
Google scholar
|
[75] |
S. Deng, L. Li, and P. Rees, Graphene/MoXY heterostructures adjusted by interlayer distance, external electric field, and strain for tunable devices, ACS Appl. Nano Mater. 2(6), 3977 (2019)
CrossRef
ADS
Google scholar
|
[76] |
Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)
CrossRef
ADS
Google scholar
|
[77] |
Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015)
CrossRef
ADS
Google scholar
|
[78] |
S. Liu, Z. Li, Y. Ge, H. Wang, R. Yue, X. Jiang, J. Li, Q. Wen, and H. Zhang, Graphene/phosphorene nanoheterojunction: Facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance, Photon. Res. 5(6), 662 (2017)
CrossRef
ADS
Google scholar
|
[79] |
Z. Cui, K. Bai, Y. Ding, X. Wang, E. Li, J. Zheng, and S. Wang, Electronic and optical properties of Janus MoSSe and ZnO vdWs heterostructures, Superlattices Microstruct. 140, 106445 (2020)
CrossRef
ADS
Google scholar
|
[80] |
F. Wang, Z. Wang, K. Xu, F. Wang, Q. Wang, Y. Huang, L. Yin, and J. He, Tunable GaTe–MoS2 van der Waals pn junctions with novel optoelectronic performance, Nano Lett. 15(11), 7558 (2015)
CrossRef
ADS
Google scholar
|
[81] |
J. Chen, Y. Hu, and H. Guo, First-principles analysis of photocurrent in graphene PN junctions, Phys. Rev. B 85(15), 155441 (2012)
CrossRef
ADS
Google scholar
|
[82] |
L. E. Henrickson, Nonequilibrium photocurrent modeling in resonant tunneling photodetectors, J. Appl. Phys. 91(10), 6273 (2002)
CrossRef
ADS
Google scholar
|
[83] |
L. Ju, Y. Dai, W. Wei, Y. Liang, and B. Huang, Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst, J. Mater. Chem. A 6(42), 21087 (2018)
CrossRef
ADS
Google scholar
|
[84] |
H. Jin, J. Li, B. Wang, Y. Yu, L. Wan, F. Xu, Y. Dai, Y. Wei, and H. Guo, Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides, J. Mater. Chem. C 4(47), 11253 (2016)
CrossRef
ADS
Google scholar
|
[85] |
M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdorfer, and T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett. 14(8), 4785 (2014)
CrossRef
ADS
Google scholar
|
[86] |
C. Long, Z. R. Gong, H. Jin, and Y. Dai, Observation of intrinsic dark exciton in Janus-MoSSe heterosturcture induced by intrinsic electric field, J. Phys.: Condens. Matter 30(39), 395001 (2018)
CrossRef
ADS
Google scholar
|
[87] |
S. Arra, R. Babar, and M. Kabir, Van der Waals heterostructure for photocatalysis: Graphitic carbon nitride and Janus transition-metal dichalcogenides, Phys. Rev. Mater. 3(9), 095402 (2019)
CrossRef
ADS
Google scholar
|
[88] |
L. Ju, J. Shang, X. Tang, and L. Kou, Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer, J. Am. Chem. Soc. 142(3), 1492 (2020)
CrossRef
ADS
Google scholar
|
[89] |
L. Ju, M. Bie, X. Tang, J. Shang, L. Kou, and W. S. Janus, Se monolayer: An excellent photocatalyst for overall water splitting, ACS Appl. Mater. Interfaces 12(26), 29335 (2020)
|
[90] |
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
CrossRef
ADS
Google scholar
|
[91] |
T. Y. Park, Y. S. Choi, S. M. Kim, G. Y. Jung, S. J. Park, B. J. Kwon, and Y. H. Cho, Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN, Appl. Phys. Lett. 98(25), 251111 (2011)
CrossRef
ADS
Google scholar
|
[92] |
M. Cardona, Optical properties and band structure of SrTiO3 and BaTiO3, Phys. Rev. 140(2A), A651 (1965)
CrossRef
ADS
Google scholar
|
[93] |
T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, Photocatalytic water splitting-the untamed dream: A review of recent advances, Molecules 21(7), 900 (2016)
CrossRef
ADS
Google scholar
|
[94] |
K. Maeda and K. Domen, Photocatalytic water splitting: Recent progress and future challenges, J. Phys. Chem. Lett. 1(18), 2655 (2010)
CrossRef
ADS
Google scholar
|
[95] |
E. Liu, C. Jin, C. Xu, J. Fan, and X. Hu, Facile strategy to fabricate Ni2P/g-C3N4 heterojunction with excellent photocatalytic hydrogen evolution activity, Int. J. Hydrogen Energy 43(46), 21355 (2018)
CrossRef
ADS
Google scholar
|
[96] |
E. Liu, J. Chen, Y. Ma, J. Feng, J. Jia, J. Fan, and X. Hu, Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting, J. Colloid Interface Sci. 524, 313 (2018)
CrossRef
ADS
Google scholar
|
[97] |
Z. Zhou, X. Niu, Y. Zhang, and J. Wang, Janus MoSSe/WSeTe heterostructures: A direct Z-scheme photocatalyst for hydrogen evolution, J. Mater. Chem. A 7(38), 21835 (2019)
CrossRef
ADS
Google scholar
|
[98] |
M. Palsgaard, T. Gunst, T. Markussen, K. S. Thygesen, and M. Brandbyge, Stacked Janus device concepts: Abrupt pn-junctions and cross-plane channels, Nano Lett. 18(11), 7275 (2018)
CrossRef
ADS
Google scholar
|
[99] |
S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations, Chem. Soc. Rev. 44(10), 2893 (2015)
CrossRef
ADS
Google scholar
|
[100] |
P. Zhou, J. G. Yu, and M. Jaroniec, All-solid-state Zscheme photocatalytic systems, Adv. Mater. 26(29), 4920 (2014)
CrossRef
ADS
Google scholar
|
[101] |
K. Maeda, M. Higashi, D. Lu, R. Abe, and K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, J. Am. Chem. Soc. 132(16), 5858 (2010)
CrossRef
ADS
Google scholar
|
[102] |
D. J. Martin, P. J. T. Reardon, S. J. A. Moniz, and J. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system, J. Am. Chem. Soc. 136(36), 12568 (2014)
CrossRef
ADS
Google scholar
|
[103] |
H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, and K. Tanaka, All-solid-state Z-scheme in CdS–Au–TiO2 threecomponent nanojunction system, Nat. Mater. 5(10), 782 (2006)
CrossRef
ADS
Google scholar
|
[104] |
A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo, and R. Amal, Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light, J. Am. Chem. Soc. 133(29), 11054 (2011)
CrossRef
ADS
Google scholar
|
[105] |
J. Low, C. Jiang, B. Cheng, S. Wageh, A. A. Al-Ghamdi, and J. Yu, A review of direct Z-scheme photocatalysts, Small Methods 1(5), 1700080 (2017)
CrossRef
ADS
Google scholar
|
[106] |
W. J. Yu, Q. A. Vu, H. Oh, H. G. Nam, H. Zhou, S. Cha, J. Y. Kim, A. Carvalho, M. Jeong, H. Choi, A. H. Castro Neto, Y. H. Lee, and X. Duan, Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers, Nat. Commun. 7(1), 13278 (2016)
CrossRef
ADS
Google scholar
|
[107] |
S. Deng, L. Li, O. J. Guy, and Y. Zhang, Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons, Phys. Chem. Chem. Phys. 21(33), 18161 (2019)
CrossRef
ADS
Google scholar
|
[108] |
S. H. Zhou, J. Zhang, Z. Z. Ren, J. F. Gu, Y. R. Ren, S. Huang, W. Lin, Y. Li, Y. F. Zhang, and W. K. Chen, First-principles study of MoSSe–graphene heterostructures as anode for Li-ion batteries, Chem. Phys. 529, 110583 (2020)
CrossRef
ADS
Google scholar
|
[109] |
X. Liu, P. Gao, W. Hu, and J. Yang, Photogeneratedcarrier separation and transfer in two-dimensional janus transition metal dichalcogenides and graphene van der Waals sandwich heterojunction photovoltaic cells, J. Phys. Chem. Lett. 11(10), 4070 (2020)
CrossRef
ADS
Google scholar
|
[110] |
F. Li, W. Wei, P. Zhao, B. Huang, and Y. Dai, Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe, J. Phys. Chem. Lett. 8(23), 5959 (2017)
CrossRef
ADS
Google scholar
|
[111] |
L. S. R. Cavalcante, M. N. Gjerding, A. Chaves, and K. S. Thygesen, Enhancing and controlling plasmons in Janus MoSSe–graphene based van der Waals heterostructures, J. Phys. Chem. C 123(26), 16373 (2019)
CrossRef
ADS
Google scholar
|
[112] |
T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites, Energy Environ. Sci. 7(1), 209 (2014)
CrossRef
ADS
Google scholar
|
[113] |
C. Shang, X. Lei, B. Hou, M. Wu, B. Xu, G. Liu, and C. Ouyang, Theoretical prediction of Janus MoSSe as a potential anode material for lithium-ion batteries, J. Phys. Chem. C 122(42), 23899 (2018)
CrossRef
ADS
Google scholar
|
[114] |
H. Yang, Y. Ma, S. Zhang, H. Jin, B. Huang, and Y. Dai, GeSe@SnS: Stacked Janus structures for overall water splitting, J. Mater. Chem. A 7(19), 12060 (2019)
CrossRef
ADS
Google scholar
|
[115] |
Y. Fan, J. Wang, and M. Zhao, Spontaneous full photocatalytic water splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 vdW heterostructures, Nanoscale 11(31), 14836 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |