Mechanical properties of lateral transition metal dichalcogenide heterostructures

Sadegh Imani Yengejeh, William Wen, Yun Wang

PDF(1210 KB)
PDF(1210 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 13502. DOI: 10.1007/s11467-020-1001-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Mechanical properties of lateral transition metal dichalcogenide heterostructures

Author information +
History +

Abstract

Transition metal dichalcogenide (TMD) monolayers attract great attention due to their specific structural, electronic and mechanical properties. The formation of their lateral heterostructures allows a new degree of flexibility in engineering electronic and optoelectronic dervices. However, the mechanical properties of the lateral heterostructures are rarely investigated. In this study, a comparative investigation on the mechanical characteristics of 1H, 1T′ and 1H/1T′ heterostructure phases of different TMD monolayers including molybdenum disulfide (MoS2) molybdenum diselenide (MoSe2), Tungsten disulfide (WS2), and Tungsten diselenide (WSe2) was conducted by means of density functional theory (DFT) calculations. Our results indicate that the impact of the lateral heterostructures has a relatively weak mechanical strength for all the TMD monolayers. The significant correlation between the mechanical properties of the TMD monolayers and their structural phases can be used to tune their stiffness of the materials. Our findings, therefore, suggest a novel strategy to manipulate the mechanical characteristics of TMDs by engineering their structural phases for their practical applications.

Keywords

transition metal dichalcogenide / lateral heterostructures / mechanical properties / in-plane stiffness tensor / density functional theory

Cite this article

Download citation ▾
Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys., 2021, 16(1): 13502 https://doi.org/10.1007/s11467-020-1001-5

References

[1]
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
CrossRef ADS Google scholar
[2]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[3]
S. A. Kazemi and Y. Wang, Super strong 2D titanium carbide MXene-based materials: A theoretical prediction, J. Phys.: Condens. Matter 32(11), 11LT01 (2020)
CrossRef ADS Google scholar
[4]
Y. Kim, Y. Jhon, J. Park, C. Kim, S. Lee, and Y. Jhon, Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2, Sci. Rep. 6(1), 21405 (2016)
CrossRef ADS Google scholar
[5]
W. Wei, Y. Dai, C. Niu, and B. Huang, Controlling the electronic structures and properties of in-plane transitionmetal dichalcogenides quantum wells, Sci. Rep. 5(1), 17578 (2015)
CrossRef ADS Google scholar
[6]
K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
CrossRef ADS Google scholar
[7]
L. Oakes, R. Carter, T. Hanken, A. P. Cohn, K. Share, B. Schmidt, and C. L. Pint, Interface strain in vertically stacked two-dimensional heterostructured carbon- MoS2 nanosheets controls electrochemical reactivity, Nat. Commun. 7(1), 11796 (2016)
CrossRef ADS Google scholar
[8]
X. Zhang, J. Grajal, J. L. Vazquez-Roy, U. Radhakrishna, X. Wang, W. Chern, L. Zhou, Y. Lin, P. C. Shen, X. Ji, X. Ling, A. Zubair, Y. Zhang, H. Wang, M. Dubey, J. Kong, M. Dresselhaus, and T. Palacios, Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting, Nature 566(7744), 368 (2019)
CrossRef ADS Google scholar
[9]
J. Wan, Y. Hao, Y. Shi, Y. X. Song, H. J. Yan, J. Zheng, R. Wen, and L. J. Wan, Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries, Nat. Commun. 10(1), 3265 (2019)
CrossRef ADS Google scholar
[10]
L. Li, J. Chen, K. Wu, C. Cao, S. Shi, and J. Cui, The stability of metallic MoS2 nanosheets and their property change by annealing, Nanomaterials (Basel) 9(10), 1366 (2019)
CrossRef ADS Google scholar
[11]
M. Kan, J. Wang, X. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C 118(3), 1515 (2014)
CrossRef ADS Google scholar
[12]
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef ADS Google scholar
[13]
W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
CrossRef ADS Google scholar
[14]
W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol. 8(12), 952 (2013)
CrossRef ADS Google scholar
[15]
L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y. J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
CrossRef ADS Google scholar
[16]
S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers, Nano Lett. 14(6), 3185 (2014)
CrossRef ADS Google scholar
[17]
G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2, ACS Nano 6(8), 7311 (2012)
CrossRef ADS Google scholar
[18]
Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-tometallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9(5), 391 (2014)
CrossRef ADS Google scholar
[19]
C. H. Naylor, W. M. Parkin, Z. L. Gao, J. Berry, S. S. Zhou, Q. C. Zhang, J. B. McClimon, L. Z. Tan, C. E. Kehayias, M. Q. Zhao, R. S. Gona, R. W. Carpick, A. M. Rappe, D. J. Srolovitz, M. Drndic, and A. T. C. Johnson, Synthesis and physical properties of phaseengineered transition metal dichalcogenide monolayer heterostructures, ACS Nano 11(9), 8619 (2017)
CrossRef ADS Google scholar
[20]
S. Imani Yengejeh, J. Liu, S. A. Kazemi, W. Wen, and Y. Wang, Effect of structural phases on mechanical properties of molybdenum disulfide, ACS Omega 5(11), 5994 (2020)
CrossRef ADS Google scholar
[21]
J. W. Jiang and Y. P. Zhou, Parameterization of Stillinger–Weber potential for two-dimensional atomic crystals, IntechOpen, 2017
CrossRef ADS Google scholar
[22]
J. W. Jiang, Misfit strain-induced buckling for transitionmetal dichalcogenide lateral heterostructures: A molecular dynamics study, Acta Mechanica Solida Sinica 32(1), 17 (2019)
CrossRef ADS Google scholar
[23]
G. Kresse and J. Hafner, Ab initiomolecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
CrossRef ADS Google scholar
[24]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[25]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[26]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[27]
J. Klimeš and A. Michaelides, Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, J. Chem. Phys. 137(12), 120901 (2012)
CrossRef ADS Google scholar
[28]
Y. Cho, W. J. Cho, I. S. Youn, G. Lee, N. J. Singh, and K. S. Kim, Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems, Acc. Chem. Res. 47(11), 3321 (2014)
CrossRef ADS Google scholar
[29]
V. Wang and W. T. Geng, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C 121(18), 10224 (2017)
CrossRef ADS Google scholar
[30]
W. Cui, S. Xu, B. Yan, Z. Guo, Q. Xu, B. G. Sumpter, J. Huang, S. Yin, H. Zhao, and Y. Wang, Triphasic 2D materials by vertically stacking laterally heterostructured 2H‐/1T′‐MoS2 on graphene for enhanced photoresponse, Adv. Electron. Mater. 3(7), 1700024 (2017)
CrossRef ADS Google scholar
[31]
N. Wakabayashi, H. Smith, and R. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B 12(2), 659 (1975)
CrossRef ADS Google scholar
[32]
J. Pei, J. Yang, T. Yildirim, H. Zhang, and Y. Lu, Many‐body complexes in 2D semiconductors, Adv. Mater. 31(2), 1706945 (2019)
CrossRef ADS Google scholar
[33]
A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)
CrossRef ADS Google scholar
[34]
B. Schönfeld, J. Huang, and S. Moss, Anisotropic meansquare displacements (MSD) in single-crystals of 2H- and 3R-MoS2, Acta Crystallogr. B 39(4), 404 (1983)
CrossRef ADS Google scholar
[35]
R. G. Dickinson and L. Pauling, The crystal structure of molybdenite, J. Am. Chem. Soc. 45(6), 1466 (1923)
CrossRef ADS Google scholar
[36]
F. P. Novais Antunes, V. S. Vaiss, S. R. Tavares, R. B. Capaz, and A. A. Leitão, Van der Waals interactions and the properties of graphite and 2H-, 3R- and 1T-MoS2: A comparative study, Comput. Mater. Sci. 152, 146 (2018)
CrossRef ADS Google scholar
[37]
Q. Tang and D. E. Jiang, Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization, Chem. Mater. 27(10), 3743 (2015)
CrossRef ADS Google scholar
[38]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010)
CrossRef ADS Google scholar
[39]
Y. Wang, H. M. Zhang, P. R. Liu, X. D. Yao, and H. J. Zhao, Engineering the band gap of bare titanium dioxide materials for visible-light activity: A theoretical prediction, RSC Advances 3(23), 8777 (2013)
CrossRef ADS Google scholar
[40]
P. Johari and V. B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains, ACS Nano 6(6), 5449 (2012)
CrossRef ADS Google scholar
[41]
Y. Liu, V. Wang, M. Xia, and S. Zhang, First-principles study on structural, thermal, mechanical and dynamic stability of T′-MoS2, J. Phys.: Condens. Matter 29(9), 095702 (2017)
CrossRef ADS Google scholar
[42]
B. Pal, A. Singh, S. G, P. Mahale, A. Kumar, S. Thirupathaiah, H. Sezen, M. Amati, L. Gregoratti, U. V. Waghmare, and D. D. Sarma, Chemically exfoliated MoS2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase, Phys. Rev. B 96(19), 195426 (2017)
CrossRef ADS Google scholar
[43]
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, 1954
[44]
K. A. N. Duerloo, M. T. Ong, and E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1210 KB)

Accesses

Citations

Detail

Sections
Recommended

/