Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy

Ming-Xiu Sui, Zi-Bo Zhang, Xiao-Dan Chi, Jia-Yu Zhang, Yong Hu

PDF(2532 KB)
PDF(2532 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 23501. DOI: 10.1007/s11467-020-1000-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy

Author information +
History +

Abstract

A Monte Carlo simulated-annealing algorithm was used to study the magnetic state in an in-plane helimagnet layer on triangular lattice that exchange couples to an underlayer with strong out-of-plane anisotropy. In the single helimagnet layer with in-plane anisotropy (K), the formation of labyrinthlike domains with local spin spirals, instead of parallel stripes, is favored, and these domains rapidly transform into dense skyrmion crystals with increasing interfacial exchange coupling (J′), equivalent to a virtual magnetic field, and finally evolve to an out-of-plane uniform state at large enough J′. Moreover, with increasing K, the skyrmion crystal state can vary from regular 6-nearest-neighboring circular skyrmion arrangement to irregular squeezed skyrmions with less than 6 nearest neighbors when the in-plane anisotropy energy is higher than the interfacial exchange energy as the skyrmion number is maximized. Finally, we demonstrated that the antiferromagnetic underlayer cannot induce skyrmions while the chirality inversion can be achieved on top of an out-of-plane magnetization underlayer with 180◦ domain walls, supporting the experimental findings in FeGe thin film. This compelling advantage offers a fertile playground for exploring emergent phenomena that arise from interfacing magnetic skyrmions with additional functionalities.

Keywords

skyrmion / thin-film / interfacial exchange coupling / in-plane anisotropy / Monte Carlo

Cite this article

Download citation ▾
Ming-Xiu Sui, Zi-Bo Zhang, Xiao-Dan Chi, Jia-Yu Zhang, Yong Hu. Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy. Front. Phys., 2021, 16(2): 23501 https://doi.org/10.1007/s11467-020-1000-6

References

[1]
A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2(7), 17031 (2017)
CrossRef ADS Google scholar
[2]
X. Zhang, Y. Zhou, K. Mee Song, T. E. Park, J. Xia, M. Ezawa, X. Liu, W. Zhao, G. Zhao, and S. Woo, Skyrmionelectronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications, J. Phys.: Condens. Matter 32(14), 143001 (2020)
CrossRef ADS Google scholar
[3]
I. Dzyaloshinsky, A thermodynamic theory of “weak”ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4(4), 241 (1958)
CrossRef ADS Google scholar
[4]
T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120(1), 91 (1960)
CrossRef ADS Google scholar
[5]
A. N. Bogdanov and U. K. Rößler, Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett. 87(3), 037203 (2001)
CrossRef ADS Google scholar
[6]
A. Fert and P. M. Levy, Role of anisotropic exchange interactions in determining the properties of spin-glasses, Phys. Rev. Lett. 44(23), 1538 (1980)
CrossRef ADS Google scholar
[7]
A. Fert, Magnetic and transport properties of metallic multilayers, Mater. Sci. Forum 59–60, 439 (1991)
[8]
A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nanotechnol. 8(3), 152 (2013)
CrossRef ADS Google scholar
[9]
G. Chen, T. Ma, A. T. N’Diaye, H. Kwon, C. Won, Y. Wu, and A. K. Schmid, Tailoring the chirality of magnetic domain walls by interface engineering, Nat. Commun. 4(1), 2671 (2013)
CrossRef ADS Google scholar
[10]
G. Chen, A. T. N’Diaye, Y. Wu, and A. K. Schmid, Ternary superlattice boosting interface-stabilized magnetic chirality, Appl. Phys. Lett. 106(6), 062402 (2015)
CrossRef ADS Google scholar
[11]
G. Chen, A. T. N’Diaye, S. P. Kang, H. Y. Kwon, C. Won, Y. Wu, Z. Q. Qiu, and A. K. Schmid, Unlocking Blochtype chirality in ultrathin magnets through uniaxial strain, Nat. Commun. 6(1), 6598 (2015)
CrossRef ADS Google scholar
[12]
M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff, N. S. Kiselev, C. Melcher, and S. Blügel, Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interactions, Nat. Commun. 8(1), 308 (2017)
CrossRef ADS Google scholar
[13]
S. Banerjee, O. Erten, and M. Randeria, Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO3/SrTiOO3 interface, Nat. Phys. 9(10), 626 (2013)
[14]
D. Cortés-Ortuño, N. Romming, M. Beg, K. von Bergmann, A. Kubetzka, O. Hovorka, H. Fangohr, and R. Wiesendanger, Nanoscale magnetic skyrmions and target states in confined geometries, Phys. Rev. B 99(21), 214408 (2019)
CrossRef ADS Google scholar
[15]
L. Sun, R. X. Cao, B. F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, A. Hu, and H. F. Ding, Creating an artificial two-dimensional skyrmion crystal by nanopatterning, Phys. Rev. Lett. 110(16), 167201 (2013)
CrossRef ADS Google scholar
[16]
D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, Realization of ground-state artificial skyrmion lattices at room temperature, Nat. Commun. 6(1), 8462 (2015)
CrossRef ADS Google scholar
[17]
G. Chen, A. Mascaraque, A. T. N’Diaye, and A. K. Schmid, Room temperature skyrmion ground state stabilized through interlayer exchange coupling, Appl. Phys. Lett. 106(24), 242404 (2015)
CrossRef ADS Google scholar
[18]
A. K. Nandy, N. S. Kiselev, and S. Blügel, Interlayer exchange coupling: A general scheme turning chiral magnets into magnetic multilayers carrying atomic-scale skyrmions, Phys. Rev. Lett. 116(17), 177202 (2016)
CrossRef ADS Google scholar
[19]
M. N. Wilson, A. B. Butenko, A. N. Bogdanov, and T. L. Monchesky, Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy, Phys. Rev. B 89(9), 094411 (2014)
[20]
Y. Hu, X. Chi, X. Li, Y. Liu, and A. Du, Creation and annihilation of skyrmions in the frustrated magnets with competing exchange interactions, Sci. Rep. 7(1), 16079 (2017)
CrossRef ADS Google scholar
[21]
S. Z. Lin, A. Saxena, and C. D. Batista, Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy, Phys. Rev. B 91(22), 224407 (2015)
CrossRef ADS Google scholar
[22]
M. Vousden, M. Albert, M. Beg, M. A. Bisotti, R. Carey, D. Chernyshenko, D. Cortés-Ortuño, W. Wang, O. Hovorka, C. H. Marrows, and H. Fangohr, Skyrmions in thin films with easy-plane magnetocrystalline anisotropy, Appl. Phys. Lett. 108(13), 132406 (2016)
CrossRef ADS Google scholar
[23]
S. Huang and C. Chien, Extended skyrmion phase in epitaxial FeGe (111) thin films, Phys. Rev. Lett. 108(26), 267201 (2012)
CrossRef ADS Google scholar
[24]
Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi, Phys. Rev. Lett. 110(11), 117202 (2013)
CrossRef ADS Google scholar
[25]
P. Bruno, V. Dugaev, and M. Taillefumier, Topological Hall effect and Berry phase in magnetic nanostructures, Phys. Rev. Lett. 93(9), 096806 (2004)
CrossRef ADS Google scholar
[26]
Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, and Y. Tokura, A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nat. Commun. 6(1), 7638 (2015)
CrossRef ADS Google scholar
[27]
J. Rowland, S. Banerjee, and M. Randeria, Skyrmions in chiral magnets with Rashba and Dresselhaus spin–orbit coupling, Phys. Rev. B 93(2), 020404 (2016)
[28]
S. Rohart and A. Thiaville, Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii– Moriya interaction, Phys. Rev. B 88(18), 184422 (2013)
CrossRef ADS Google scholar
[29]
B. Bian, G. Chen, Q. Zheng, J. Du, H. Lu, J. P. Liu, Y. Hu, and Z. Zhang, Self-assembly of CoPt magnetic nanoparticle arrays and its underlying forces, Small 14(34), 1801184 (2018)
CrossRef ADS Google scholar
[30]
W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Blowing magnetic skyrmion bubbles, Science 349(6245), 283 (2015)
CrossRef ADS Google scholar
[31]
B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer, Quantum versus classical annealing of Ising spin glasses, Science 348(6231), 215 (2015)
CrossRef ADS Google scholar
[32]
R. Li, L. Yu, and Y. Hu, Spin‐glass irreversibility temperature and magnetic stabilization in ferromagnet/spin‐glass bilayers, Phys. Status Solidi Rapid Res. Lett. 13(6), 1900039 (2019)
CrossRef ADS Google scholar
[33]
X. Chi, R. Li, L. Yu, H. Kou, A. Du, Y. Liu, and Y. Hu, Spin glass properties mapped by coercivity in ferromagnet/ spin glass bilayers, Nanotechnology 30(12), 125702 (2019)
CrossRef ADS Google scholar
[34]
X. D. Chi and Y. Hu, Modulation of skyrmion diameter in centrosymmetric frustrated magnet, Acta Physica Sinica 67, 137502 (2018)
[35]
N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, Field-dependent size and shape of single magnetic skyrmions, Phys. Rev. Lett. 114(17), 177203 (2015)
CrossRef ADS Google scholar
[36]
S. von Malottki, B. Dupé, P. F. Bessarab, A. Delin, and S. Heinze, Enhanced skyrmion stability due to exchange frustration, Sci. Rep. 7(1), 12299 (2017)
CrossRef ADS Google scholar
[37]
N. C. Koon, Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces, Phys. Rev. Lett. 78(25), 4865 (1997)
[38]
H. Du, W. Ning, M. Tian, and Y. Zhang, Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk, Phys. Rev. B 87(1), 014401 (2013)
CrossRef ADS Google scholar
[39]
H. Du, R. Che, L. Kong, X. Zhao, C. Jin, C. Wang, J. Yang, W. Ning, R. Li, C. Jin, X. Chen, J. Zang, Y. Zhang, and M. Tian, Edge-mediated skyrmion chain and its collective dynamics in a confined geometry, Nat. Commun. 6(1), 8504 (2015)
CrossRef ADS Google scholar
[40]
X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Near roomtemperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nat. Mater. 10(2), 106 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2532 KB)

Accesses

Citations

Detail

Sections
Recommended

/