Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction
Qinye Li, Siyao Qiu, Baohua Jia
Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction
Water electrolysis is to split water into hydrogen and oxygen using electricity as the driving force. To obtain low-cost hydrogen in a large scale, it is critical to develop electrocatalysts based on earth abundant elements with a high efficiency. This computational work started with Cobalt on CoTa2O6 surface as the active site, CoTa2O6/Graphene heterojunctions have been explored as potential oxygen evolution reaction (OER) catalysts through density functional theory (DFT). We demonstrated that the electron transfer (δ) from CoTa2O6 to graphene substrate can be utilized to boost the reactivity of Co-site, leading to an OER overpotential as low as 0.30 V when N-doped graphene is employed. Our findings offer novel design of heterojunctions as high performance OER catalysts.
CoTa2O6 / OER / charge transfer / DFT / heterojunctions
[1] |
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)
CrossRef
ADS
Google scholar
|
[2] |
H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, and P. Strasser, The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis, Chem-CatChem 2(7), 724 (2010)
CrossRef
ADS
Google scholar
|
[3] |
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355(6321), eaad4998 (2017)
CrossRef
ADS
Google scholar
|
[4] |
T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal. 2(8), 1765 (2012)
CrossRef
ADS
Google scholar
|
[5] |
X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, and W. Hu, Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution, Adv. Mater. 31(49), 1905622 (2019)
CrossRef
ADS
Google scholar
|
[6] |
S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du, and Z. J. Xu, Shifting oxygen charge towards octahedral metal: A way to promote water oxidation on cobalt spinel oxides, Angew. Chem. Int. Ed. 58(18), 6042 (2019)
CrossRef
ADS
Google scholar
|
[7] |
Y. Duan, Z. Y. Yu, S. J. Hu, X. S. Zheng, C. T. Zhang, H. H. Ding, B. C. Hu, Q. Q. Fu, Z. L. Yu, X. Zheng, J. F. Zhu, M. R. Gao, and S. H. Yu, Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis, Angew. Chem. Int. Ed. 58(44), 15772 (2019)
CrossRef
ADS
Google scholar
|
[8] |
Y. Shao, X. Xiao, Y. P. Zhu, and T. Y. Ma, Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes, Angew. Chem. Int. Ed. 58(41), 14599 (2019)
CrossRef
ADS
Google scholar
|
[9] |
R. Chen, S. F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen, and B. Liu, Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction, Adv. Mater. 31(41), 1903909 (2019)
CrossRef
ADS
Google scholar
|
[10] |
Y. Zhang, Y. Guo, T. Liu, F. Feng, C. Wang, H. Hu, M. Wu, M. Ni, and Z. Shao, The synergistic effect accelerates the oxygen reduction/evolution reaction in a Zn-Air battery, Front. Chem. 7, 524 (2019)
CrossRef
ADS
Google scholar
|
[11] |
Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions, Chem. Soc. Rev. 44(8), 2060 (2015)
CrossRef
ADS
Google scholar
|
[12] |
Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, and S. Z. Qiao, Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction, J. Am. Chem. Soc. 133(50), 20116 (2011)
CrossRef
ADS
Google scholar
|
[13] |
Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, and S. Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst, Nat. Commun. 5(1), 3783 (2014)
CrossRef
ADS
Google scholar
|
[14] |
C. Meng, M. Lin, X. Sun, X. Chen, X. Chen, X. Du, and Y. Zhou, Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution, Chem. Commun. 55(20), 2904 (2019)
CrossRef
ADS
Google scholar
|
[15] |
Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng, X. Han, and W. Hu, Spontaneous synthesis of silver-nanoparticledecorated transition-metal hydroxides for enhanced oxygen evolution reaction, Angew. Chem. Int. Ed. 59(18), 7245 (2020)
CrossRef
ADS
Google scholar
|
[16] |
Y. Xu, F. Zhang, T. Sheng, T. Ye, D. Yi, Y. Yang, S. Liu, X. Wang, and J. Yao, Clarifying the controversial catalytic active sites of Co3O4 for the oxygen evolution reaction, J. Mater. Chem. A 7(40), 23191 (2019)
CrossRef
ADS
Google scholar
|
[17] |
R. Wei, X. Bu, W. Gao, R A B. Villaos, G. Macam, Z. Q. Huang, C. Lan, F. C. Chuang, Y. Qu, and J. C. Ho, Engineering surface structure of spinel oxides via high-valent vanadium doping for remarkably enhanced electrocatalytic oxygen evolution reaction, ACS Appl. Mater. Interfaces 11(36), 33012 (2019)
CrossRef
ADS
Google scholar
|
[18] |
W. Zhang, Y. Wang, H. Zheng, R. Li, Y. Tang, B. Li, C. Zhu, L. You, M. R. Gao, Z. Liu, S. H. Yu, and K. Zhou, Embedding ultrafine metal oxide nanoparticles in monolayered metal–organic framework nanosheets enables efficient electrocatalytic oxygen evolution, ACS Nano 14(2), 1971 (2020)
CrossRef
ADS
Google scholar
|
[19] |
L. Wen, X. Zhang, J. Liu, X. Li, C. Xing, X. Lyu, W. Cai, W. Wang, and Y. Li, Cr-dopant induced breaking of scaling relations in CoFe layered double hydroxides for improvement of oxygen evolution reaction, Small 15(35), 1902373 (2019)
CrossRef
ADS
Google scholar
|
[20] |
L. J. Enman, A. E. Vise, M. Burke Stevens, and S. W. Boettcher, Effects of metal electrode support on the catalytic activity of Fe(oxy)hydroxide for the oxygen evolution reaction in alkaline media, ChemPhysChem 20(22), 3089 (2019)
CrossRef
ADS
Google scholar
|
[21] |
F. Bizzotto, H. Ouhbi, Y. Fu, G. K. H. Wiberg, U. Aschauer, and M. Arenz, Examining the structure sensitivity of the oxygen evolution reaction on Pt single-crystal electrodes: A combined experimental and theoretical study, ChemPhysChem 20(22), 3154 (2019)
CrossRef
ADS
Google scholar
|
[22] |
S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L. M. Schoop, F. Pielnhofer, C. Scheurer, K. Müller, U. Starke, K. Reuter, and B. V. Lotsch, Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium, Adv. Energy Mater. 9(15), 1803795 (2019)
CrossRef
ADS
Google scholar
|
[23] |
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie- Cryst. Mater. 220(5–6), 567 (2005)
CrossRef
ADS
Google scholar
|
[24] |
E. R. McNellis, J. Meyer, and K. Reuter, Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions, Phys. Rev. B 80(20), 205414 (2009)
CrossRef
ADS
Google scholar
|
[25] |
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
CrossRef
ADS
Google scholar
|
[26] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[27] |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys Rev B 13(12), 5188 (1976)
CrossRef
ADS
Google scholar
|
[28] |
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate abinitioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)
CrossRef
ADS
Google scholar
|
[29] |
V. D. Mello, L. I. Zawislak, J. B. Marimon da Cunha, E. J. Kinast, J. B. Soares, and C. A. dos Santos, Structure and magnetic properties of layered (FexCo1−x)Ta2O6 compounds, J. Magn. Magn. Mater. 196–197, 846 (1999)
CrossRef
ADS
Google scholar
|
[30] |
I. S. Mulla, N. Natarajan, A. B. Gaikwad, V. Samuel, U. N. Guptha, and V. Ravi, A coprecipitation technique to prepare CoTa2O6 and CoNb2O6, Mater. Lett. 61(11–12), 2127 (2007)
CrossRef
ADS
Google scholar
|
[31] |
J. N. Reimers, J. E. Greedan, C. V. Stager, and R. Kremer, Crystal structure and magnetism in CoSb2O6 and CoTa2O6, J. Solid State Chem. 83(1), 20 (1989)
CrossRef
ADS
Google scholar
|
[32] |
R. K. Kremer, J. E. Greedan, E. Gmelin, W. Dai, M. A. White, S. M. Eicher, and K. J. Lushington, Specific heat of MTa2O6 (M= Co, Ni, Fe, Mg) evidence for low dimensional magnetism, J. Phys. Colloques 49(C8), C8-1495 (1988)
CrossRef
ADS
Google scholar
|
[33] |
J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108(46), 17886 (2004)
CrossRef
ADS
Google scholar
|
[34] |
X. Cui, P. Ren, D. Deng, J. Deng, and X. Bao, Single layer graphene encapsulating non-precious metals as highperformance electrocatalysts for water oxidation, Energy Environ. Sci. 9(1), 123 (2016)
CrossRef
ADS
Google scholar
|
[35] |
T. Zhang, J. Du, P. Xi, and C. Xu, Hybrids of cobalt/iron phosphides derived from bimetal–organic frameworks as highly efficient electrocatalysts for oxygen evolution reaction, ACS Appl. Mater. Interfaces 9(1), 362 (2017)
CrossRef
ADS
Google scholar
|
[36] |
M. Asnavandi, Y. Yin, Y. Li, C. Sun, and C. Zhao, Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts, ACS Energy Lett. 3(7), 1515 (2018)
CrossRef
ADS
Google scholar
|
[37] |
W. Zhou, D. D. Huang, Y. P. Wu, J. Zhao, T. Wu, J. Zhang, D. S. Li, C. Sun, P. Feng, and X. Bu, Stable hierarchical bimetal–organic nanostructures as high perfor mance electrocatalysts for the oxygen evolution reaction, Angew. Chem. Int. Ed. 58(13), 4227 (2019)
CrossRef
ADS
Google scholar
|
[38] |
Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(4), 1790 (2010)
CrossRef
ADS
Google scholar
|
[39] |
Z. Wang, Z. X. Low, X. Zeng, B. Su, Y. Yin, C. Sun, T. Williams, H. Wang, and X. Zhang, Verticallyheterostructured TiO2–Ag-rGO ternary nanocomposite constructed with 001 facetted TiO2 nanosheets for enhanced Pt-free hydrogen production, Int. J. Hydrogen Energy 43(3), 1508 (2018)
CrossRef
ADS
Google scholar
|
[40] |
T. Liao, Z. Sun, C. Sun, S. X. Dou, and D. J. Searles, Electronic coupling and catalytic effect on H2 evolution of MoS2/graphene nanocatalyst, Sci. Rep. 4(1), 6256 (2015)
CrossRef
ADS
Google scholar
|
[41] |
B. Fei, Z. Chen, Y. Ha, R. Wang, H. Yang, H. Xu, and R. Wu, Anion-cation Co-substitution activation of spinel Co- MoO4 for efficient oxygen evolution reaction, Chem. Eng. J. 394, 124926 (2020)
CrossRef
ADS
Google scholar
|
[42] |
M. Hu, S. Li, S. Zheng, X. Liang, J. Zheng, and F. Pan, Tuning single-atom catalysts of nitrogen-coordinated transition metals for optimizing oxygen evolution and reduction reactions, J. Phys. Chem. C 124(24), 13168 (2020)
CrossRef
ADS
Google scholar
|
[43] |
J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
CrossRef
ADS
Google scholar
|
[44] |
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of twodimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef
ADS
Google scholar
|
[45] |
Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |