Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature
Zhi-Xin Yang, Liang Wang, Yu-Mu Liu, Dong-Yang Wang, Cheng-Hua Bai, Shou Zhang, Hong-Fu Wang
Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature
We propose to realize the ground state cooling of magnomechanical resonator in a parity–time (PT)-symmetric cavity magnomechanical system composed of a loss ferromagnetic sphere and a gain microwave cavity. In the scheme, the magnomechanical resonator can be cooled close to its ground state via the magnomechanical interaction, and it is found that the cooling effect in PT-symmetric system is much higher than that in non-PT-symmetric system. Resorting to the magnetic force noise spectrum, we investigate the final mean phonon number with experimentally feasible parameters and find surprisingly that the ground state cooling of magnomechanical resonator can be directly achieved at room temperature. Furthermore, we also illustrate that the ground state cooling can be flexibly controlled via the external magnetic field.
ground state cooling / magnomechanical resonator / PT-symmetry
[1] |
G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Vacuum Rabi splitting in semiconductors, Nat. Phys. 2(2), 81 (2006)
CrossRef
ADS
Google scholar
|
[2] |
P. Pei, F. Y. Zhang, C. Li, and H. S. Song, All-optical quantum computing with a hybrid solid-state processing unit, Phys. Rev. A 84(4), 042339 (2011)
CrossRef
ADS
Google scholar
|
[3] |
O. O. Soykal and M. E. Flatté, Size dependence of strong coupling between nanomagnets and photonic cavities, Phys. Rev. B 82(10), 104413 (2010)
CrossRef
ADS
Google scholar
|
[4] |
A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Cavity optomagnonics with spin-orbit coupled photons, Phys. Rev. Lett. 116(22), 223601 (2016)
CrossRef
ADS
Google scholar
|
[5] |
X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett. 113(15), 156401 (2014)
CrossRef
ADS
Google scholar
|
[6] |
J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Triple-resonant Brillouin light scattering in magneto-optical cavities, Phys. Rev. Lett. 117(13), 133602 (2016)
CrossRef
ADS
Google scholar
|
[7] |
A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, Brillouin light scattering by magnetic quasivortices in cavity optomagnonics, Phys. Rev. Lett. 120(13), 133602 (2018)
CrossRef
ADS
Google scholar
|
[8] |
S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Optical cooling of magnons, Phys. Rev. Lett. 121(8), 087205 (2018)
CrossRef
ADS
Google scholar
|
[9] |
O. O. Soykal and M. E. Flatté, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 104(7), 077202 (2010)
CrossRef
ADS
Google scholar
|
[10] |
Y. P. Wang, G. Q. Zhang, D. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, Magnon Kerr effect in a strongly coupled cavity-magnon system, Phys. Rev. B 94(22), 224410 (2016)
CrossRef
ADS
Google scholar
|
[11] |
H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett. 111(12), 127003 (2013)
CrossRef
ADS
Google scholar
|
[12] |
J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere, Phys. Rev. B 93(14), 144420 (2016)
CrossRef
ADS
Google scholar
|
[13] |
L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, Spin pumping in electrodynamically coupled magnon-photon systems, Phys. Rev. Lett. 114(22), 227201 (2015)
CrossRef
ADS
Google scholar
|
[14] |
Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett. 113(8), 083603 (2014)
CrossRef
ADS
Google scholar
|
[15] |
C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev. 73(2), 155 (1948)
CrossRef
ADS
Google scholar
|
[16] |
C. Kittel, Interaction of spin waves and ultrasonic waves in ferromagnetic crystals, Phys. Rev. 110(4), 836 (1958)
CrossRef
ADS
Google scholar
|
[17] |
D. Zhang, X. M. Wang, T. F. Li, X.Q. Luo, W. Wu, F. Nori, and J. Q. You, Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-irongarnet sphere, npj Quantum Inf. 1, 15014 (2015)
CrossRef
ADS
Google scholar
|
[18] |
Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, Bistability of cavity magnon polaritons, Phys. Rev. Lett. 120(5), 057202 (2018)
CrossRef
ADS
Google scholar
|
[19] |
G. Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99(5), 054404 (2019)
CrossRef
ADS
Google scholar
|
[20] |
B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)
CrossRef
ADS
Google scholar
|
[21] |
C. Kong, B. Wang, Z. X. Liu, H. Xiong, and Y. Wu, Magnetically controllable slow light based on magnetostrictive forces, Opt. Express 27(4), 5544 (2019)
CrossRef
ADS
Google scholar
|
[22] |
M. Goryachev, S. Watt, J. Bourhill, M. Kostylev, and M. E. Tobar, Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures, Phys. Rev. B 97(15), 155129 (2018)
CrossRef
ADS
Google scholar
|
[23] |
M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl. 2(5), 054002 (2014)
CrossRef
ADS
Google scholar
|
[24] |
S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system, Phys. Rev. A 99(4), 043803 (2019)
CrossRef
ADS
Google scholar
|
[25] |
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431(7005), 162 (2004)
CrossRef
ADS
Google scholar
|
[26] |
C. Roy, and S. Hughes, Phonon-dressed mollow triplet in the regime of cavity quantum electrodynamics: Excitation-induced dephasing and nonperturbative cavity feeding effects, Phys. Rev. Lett. 106(24), 247403 (2011)
CrossRef
ADS
Google scholar
|
[27] |
E. H. Turner, Interaction of phonons and spin waves in yttrium iron garnet, Phys. Rev. Lett. 5(3), 100 (1960)
CrossRef
ADS
Google scholar
|
[28] |
Y. L. Liu and Y. X. Liu, Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity, Phys. Rev. A 96(2), 023812 (2017)
CrossRef
ADS
Google scholar
|
[29] |
Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Spontaneous PT-symmetry breaking in non-Hermitian coupled-cavity array, Phys. Rev. A 96(4), 043810 (2017)
CrossRef
ADS
Google scholar
|
[30] |
Y. Y. Fu, Y. Fei, D. X. Dong, and Y. W. Liu, Photonic spin Hall effect in PT symmetric metamaterials, Front. Phys. 14(6), 62601 (2019)
CrossRef
ADS
Google scholar
|
[31] |
Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
CrossRef
ADS
Google scholar
|
[32] |
H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)
CrossRef
ADS
Google scholar
|
[33] |
L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, Magnon blockade in a PT-symmetric-like cavity magnomechanical system, Ann. Phys. 532(7), 2000028 (2020)
CrossRef
ADS
Google scholar
|
[34] |
B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)
CrossRef
ADS
Google scholar
|
[35] |
K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
CrossRef
ADS
Google scholar
|
[36] |
Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, Experimental demonstration of a coherent perfect absorber with PT-phase transition, Phys. Rev. Lett. 112(14), 143903 (2014)
CrossRef
ADS
Google scholar
|
[37] |
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
CrossRef
ADS
Google scholar
|
[38] |
Z. P. Liu, J. Zhang, S. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)
CrossRef
ADS
Google scholar
|
[39] |
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
CrossRef
ADS
Google scholar
|
[40] |
J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)
CrossRef
ADS
Google scholar
|
[41] |
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
CrossRef
ADS
Google scholar
|
[42] |
Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)
CrossRef
ADS
Google scholar
|
[43] |
K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6, 237250 (2011)
CrossRef
ADS
Google scholar
|
[44] |
B. Y. Zhou and G. X. Li, Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot–cavity system, Phys. Rev. A 94(3), 033809 (2016)
CrossRef
ADS
Google scholar
|
[45] |
M. S. Ding, L. Zheng, and C. Li, Ground-state cooling of a magnomechanical resonator induced by magnetic damping, J. Opt. Soc. Am. B 37, 627 (2020)
CrossRef
ADS
Google scholar
|
[46] |
X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Cavity magnomechanics, Sci. Adv. 2(3), e1501286 (2016)
CrossRef
ADS
Google scholar
|
[47] |
J. Li, S. Y. Zhu, and G. S. Agarwal, Magnon-photonphonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121(20), 203601 (2018)
CrossRef
ADS
Google scholar
|
[48] |
T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58(12), 1098 (1940)
CrossRef
ADS
Google scholar
|
[49] |
R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84(12), 2726 (2000)
CrossRef
ADS
Google scholar
|
[50] |
B. He, S. B. Yan, J. Wang, and M. Xiao, Quantum noise effects with Kerr-nonlinearity enhancement in coupled gainloss waveguides, Phys. Rev. A 91(5), 053832 (2015)
CrossRef
ADS
Google scholar
|
[51] |
B. He, L. Yang, Z. Zhang, and M. Xiao, Cyclic permutation-time symmetric structure with coupled gainloss microcavities, Phys. Rev. A 91(3), 033830 (2015)
CrossRef
ADS
Google scholar
|
[52] |
G. S. Agarwal and K. Qu, Spontaneous generation of photons in transmission of quantum fields in PT-symmetric optical systems, Phys. Rev. A 85, 031802(R) (2012)
CrossRef
ADS
Google scholar
|
[53] |
B. He, L. Yang, and M. Xiao, Dynamical phonon laser in coupled active-passive microresonators, Phys. Rev. A 94, 031802(R) (2016)
CrossRef
ADS
Google scholar
|
[54] |
K. V. Kepesidis, T. J. Milburn, J. Huber, K. G. Makris, S. Rotter, and P. Rabl, PT-symmetry breaking in the steady state of microscopic gain–loss systems, New J. Phys. 18(9), 095003 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |