Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature

Zhi-Xin Yang, Liang Wang, Yu-Mu Liu, Dong-Yang Wang, Cheng-Hua Bai, Shou Zhang, Hong-Fu Wang

PDF(1826 KB)
PDF(1826 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52504. DOI: 10.1007/s11467-020-0996-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature

Author information +
History +

Abstract

We propose to realize the ground state cooling of magnomechanical resonator in a parity–time (PT)-symmetric cavity magnomechanical system composed of a loss ferromagnetic sphere and a gain microwave cavity. In the scheme, the magnomechanical resonator can be cooled close to its ground state via the magnomechanical interaction, and it is found that the cooling effect in PT-symmetric system is much higher than that in non-PT-symmetric system. Resorting to the magnetic force noise spectrum, we investigate the final mean phonon number with experimentally feasible parameters and find surprisingly that the ground state cooling of magnomechanical resonator can be directly achieved at room temperature. Furthermore, we also illustrate that the ground state cooling can be flexibly controlled via the external magnetic field.

Keywords

ground state cooling / magnomechanical resonator / PT-symmetry

Cite this article

Download citation ▾
Zhi-Xin Yang, Liang Wang, Yu-Mu Liu, Dong-Yang Wang, Cheng-Hua Bai, Shou Zhang, Hong-Fu Wang. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys., 2020, 15(5): 52504 https://doi.org/10.1007/s11467-020-0996-y

References

[1]
G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Vacuum Rabi splitting in semiconductors, Nat. Phys. 2(2), 81 (2006)
CrossRef ADS Google scholar
[2]
P. Pei, F. Y. Zhang, C. Li, and H. S. Song, All-optical quantum computing with a hybrid solid-state processing unit, Phys. Rev. A 84(4), 042339 (2011)
CrossRef ADS Google scholar
[3]
O. O. Soykal and M. E. Flatté, Size dependence of strong coupling between nanomagnets and photonic cavities, Phys. Rev. B 82(10), 104413 (2010)
CrossRef ADS Google scholar
[4]
A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Cavity optomagnonics with spin-orbit coupled photons, Phys. Rev. Lett. 116(22), 223601 (2016)
CrossRef ADS Google scholar
[5]
X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett. 113(15), 156401 (2014)
CrossRef ADS Google scholar
[6]
J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Triple-resonant Brillouin light scattering in magneto-optical cavities, Phys. Rev. Lett. 117(13), 133602 (2016)
CrossRef ADS Google scholar
[7]
A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, Brillouin light scattering by magnetic quasivortices in cavity optomagnonics, Phys. Rev. Lett. 120(13), 133602 (2018)
CrossRef ADS Google scholar
[8]
S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Optical cooling of magnons, Phys. Rev. Lett. 121(8), 087205 (2018)
CrossRef ADS Google scholar
[9]
O. O. Soykal and M. E. Flatté, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 104(7), 077202 (2010)
CrossRef ADS Google scholar
[10]
Y. P. Wang, G. Q. Zhang, D. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, Magnon Kerr effect in a strongly coupled cavity-magnon system, Phys. Rev. B 94(22), 224410 (2016)
CrossRef ADS Google scholar
[11]
H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett. 111(12), 127003 (2013)
CrossRef ADS Google scholar
[12]
J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere, Phys. Rev. B 93(14), 144420 (2016)
CrossRef ADS Google scholar
[13]
L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, Spin pumping in electrodynamically coupled magnon-photon systems, Phys. Rev. Lett. 114(22), 227201 (2015)
CrossRef ADS Google scholar
[14]
Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett. 113(8), 083603 (2014)
CrossRef ADS Google scholar
[15]
C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev. 73(2), 155 (1948)
CrossRef ADS Google scholar
[16]
C. Kittel, Interaction of spin waves and ultrasonic waves in ferromagnetic crystals, Phys. Rev. 110(4), 836 (1958)
CrossRef ADS Google scholar
[17]
D. Zhang, X. M. Wang, T. F. Li, X.Q. Luo, W. Wu, F. Nori, and J. Q. You, Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-irongarnet sphere, npj Quantum Inf. 1, 15014 (2015)
CrossRef ADS Google scholar
[18]
Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, Bistability of cavity magnon polaritons, Phys. Rev. Lett. 120(5), 057202 (2018)
CrossRef ADS Google scholar
[19]
G. Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99(5), 054404 (2019)
CrossRef ADS Google scholar
[20]
B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)
CrossRef ADS Google scholar
[21]
C. Kong, B. Wang, Z. X. Liu, H. Xiong, and Y. Wu, Magnetically controllable slow light based on magnetostrictive forces, Opt. Express 27(4), 5544 (2019)
CrossRef ADS Google scholar
[22]
M. Goryachev, S. Watt, J. Bourhill, M. Kostylev, and M. E. Tobar, Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures, Phys. Rev. B 97(15), 155129 (2018)
CrossRef ADS Google scholar
[23]
M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl. 2(5), 054002 (2014)
CrossRef ADS Google scholar
[24]
S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system, Phys. Rev. A 99(4), 043803 (2019)
CrossRef ADS Google scholar
[25]
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431(7005), 162 (2004)
CrossRef ADS Google scholar
[26]
C. Roy, and S. Hughes, Phonon-dressed mollow triplet in the regime of cavity quantum electrodynamics: Excitation-induced dephasing and nonperturbative cavity feeding effects, Phys. Rev. Lett. 106(24), 247403 (2011)
CrossRef ADS Google scholar
[27]
E. H. Turner, Interaction of phonons and spin waves in yttrium iron garnet, Phys. Rev. Lett. 5(3), 100 (1960)
CrossRef ADS Google scholar
[28]
Y. L. Liu and Y. X. Liu, Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity, Phys. Rev. A 96(2), 023812 (2017)
CrossRef ADS Google scholar
[29]
Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Spontaneous PT-symmetry breaking in non-Hermitian coupled-cavity array, Phys. Rev. A 96(4), 043810 (2017)
CrossRef ADS Google scholar
[30]
Y. Y. Fu, Y. Fei, D. X. Dong, and Y. W. Liu, Photonic spin Hall effect in PT symmetric metamaterials, Front. Phys. 14(6), 62601 (2019)
CrossRef ADS Google scholar
[31]
Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
CrossRef ADS Google scholar
[32]
H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)
CrossRef ADS Google scholar
[33]
L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, Magnon blockade in a PT-symmetric-like cavity magnomechanical system, Ann. Phys. 532(7), 2000028 (2020)
CrossRef ADS Google scholar
[34]
B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)
CrossRef ADS Google scholar
[35]
K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
CrossRef ADS Google scholar
[36]
Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, Experimental demonstration of a coherent perfect absorber with PT-phase transition, Phys. Rev. Lett. 112(14), 143903 (2014)
CrossRef ADS Google scholar
[37]
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
CrossRef ADS Google scholar
[38]
Z. P. Liu, J. Zhang, S. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)
CrossRef ADS Google scholar
[39]
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
CrossRef ADS Google scholar
[40]
J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)
CrossRef ADS Google scholar
[41]
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
CrossRef ADS Google scholar
[42]
Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)
CrossRef ADS Google scholar
[43]
K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6, 237250 (2011)
CrossRef ADS Google scholar
[44]
B. Y. Zhou and G. X. Li, Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot–cavity system, Phys. Rev. A 94(3), 033809 (2016)
CrossRef ADS Google scholar
[45]
M. S. Ding, L. Zheng, and C. Li, Ground-state cooling of a magnomechanical resonator induced by magnetic damping, J. Opt. Soc. Am. B 37, 627 (2020)
CrossRef ADS Google scholar
[46]
X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Cavity magnomechanics, Sci. Adv. 2(3), e1501286 (2016)
CrossRef ADS Google scholar
[47]
J. Li, S. Y. Zhu, and G. S. Agarwal, Magnon-photonphonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121(20), 203601 (2018)
CrossRef ADS Google scholar
[48]
T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58(12), 1098 (1940)
CrossRef ADS Google scholar
[49]
R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84(12), 2726 (2000)
CrossRef ADS Google scholar
[50]
B. He, S. B. Yan, J. Wang, and M. Xiao, Quantum noise effects with Kerr-nonlinearity enhancement in coupled gainloss waveguides, Phys. Rev. A 91(5), 053832 (2015)
CrossRef ADS Google scholar
[51]
B. He, L. Yang, Z. Zhang, and M. Xiao, Cyclic permutation-time symmetric structure with coupled gainloss microcavities, Phys. Rev. A 91(3), 033830 (2015)
CrossRef ADS Google scholar
[52]
G. S. Agarwal and K. Qu, Spontaneous generation of photons in transmission of quantum fields in PT-symmetric optical systems, Phys. Rev. A 85, 031802(R) (2012)
CrossRef ADS Google scholar
[53]
B. He, L. Yang, and M. Xiao, Dynamical phonon laser in coupled active-passive microresonators, Phys. Rev. A 94, 031802(R) (2016)
CrossRef ADS Google scholar
[54]
K. V. Kepesidis, T. J. Milburn, J. Huber, K. G. Makris, S. Rotter, and P. Rabl, PT-symmetry breaking in the steady state of microscopic gain–loss systems, New J. Phys. 18(9), 095003 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1826 KB)

Accesses

Citations

Detail

Sections
Recommended

/