Research progress of rubrene as an excellent multifunctional organic semiconductor
Si Liu, Hongnan Wu, Xiaotao Zhang, Wenping Hu
Research progress of rubrene as an excellent multifunctional organic semiconductor
Rubrene, a superstar in organic semiconductors, has achieved unprecedented achievements in the application of electronic devices, and research based on its various photoelectric properties is still in progress. In this review, we introduced the preparation of rubrene crystal, summarized the applications in organic optoelectronic devices with the latest research achievements based on rubrene semiconductors. An outlook of future research directions and challenges of rubrene semiconductor for applications is also provided.
rubrene / organic semiconductor / optoelectronic devices
[1] |
C. L. Wang, H. L. Dong, L. Jiang, and W. P. Hu, Organic semiconductor crystals, Chem. Soc. Rev. 47(2), 422 (2018)
CrossRef
ADS
Google scholar
|
[2] |
B. H. Lee, G. C. Bazan, and A. J. Heeger, Doping-induced carrier density modulation in polymer field-effect transistors, Adv. Mater. 28(1), 57 (2016)
CrossRef
ADS
Google scholar
|
[3] |
X. T. Zhang, H. L. Dong, and W. P. Hu, Organic semiconductor single crystals for electronics and photonics, Adv. Mater. 30(44), 1801048 (2018)
CrossRef
ADS
Google scholar
|
[4] |
H. L. Dong, X. L. Fu, J. Liu, Z. R. Wang, and W. P. Hu, 25th Anniversary article: Key points for high-mobility organic field-effect transistors, Adv. Mater. 25(43), 6158 (2013)
CrossRef
ADS
Google scholar
|
[5] |
C. Wang, X. C. Ren, C. H. Xu, B. B. Fu, R. H. Wang, X. T. Zhang, R. J. Li, H. X. Li, H. L. Dong, Y. G. Zhen, S. B. Lei, L. Jiang, and W. P. Hu, N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors, Adv. Mater. 30(16), 1706260 (2018)
CrossRef
ADS
Google scholar
|
[6] |
L. G. Kaake, Y. M. Sun, G. C. Bazan, and A. J. Heeger, Fullerene concentration dependent bimolecular recombination in organic photovoltaic films, Appl. Phys. Lett. 102(13), 133302 (2013)
CrossRef
ADS
Google scholar
|
[7] |
F. Y. Lin, W. Huang, H. T. Sun, J. M. Xin, H. Zeng, T. B. Yang, M. L. Li, X. Zhang, W. Ma, and Y. Y. Liang, Thieno 3, 4-c pyrrole-4, 6(5H)-dione Polymers with optimized energy level alignments for fused-ring electron acceptor based polymer solar cells, Chem. Mater. 29(13), 5636 (2017)
CrossRef
ADS
Google scholar
|
[8] |
C. Deng, L. W. Zhang, D. Wang, T. Tsuboi, and Q. S. Zhang, Exciton and polaron-induced reversible dipole reorientation in amorphous organic semiconductor films, Adv. Opt. Mater. 7(8), 1801644 (2019)
CrossRef
ADS
Google scholar
|
[9] |
F. T. Liu, H. Liu, X. Y. Tang, S. H. Ren, X. He, J. Y. Li, C. Y. Du, Z. J. Feng, and P. Lu, Novel blue fluorescent materials for high-performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index, Nano Energy 68, 104325 (2020)
CrossRef
ADS
Google scholar
|
[10] |
V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Intrinsic charge transport on the surface of organic semiconductors, Phys. Rev. Lett. 93(8), 086602 (2004)
CrossRef
ADS
Google scholar
|
[11] |
S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37(4), 814 (1962)
CrossRef
ADS
Google scholar
|
[12] |
L. W. Huang, Q. Liao, Q. Shi, H. B. Fu, J. S. Ma, and J. N. Yao, Rubrene micro-crystals from solution routes: their crystallography, morphology and optical properties, J. Mater. Chem. 20(1), 159 (2010)
CrossRef
ADS
Google scholar
|
[13] |
T. R. Fielitz and R. J. Holmes, Crystal morphology and growth in annealed rubrene thin films, Cryst. Growth Des. 16(8), 4720 (2016)
CrossRef
ADS
Google scholar
|
[14] |
C. L. Wang, H. L. Dong, W. P. Hu, Y. Q. Liu, and D. B. Zhu, Semiconducting π-conjugated systems in fieldeffect transistors: A material odyssey of organic electronics, Chem. Rev. 112(4), 2208 (2012)
CrossRef
ADS
Google scholar
|
[15] |
W. Y. Jia, Q. S. Chen, L. X. Chen, D. Yuan, J. Xiang, Y. B. Chen, and Z. H. Xiong, Molecular spacing modulated conversion of singlet fission to triplet fusion in rubrenebased organic light-emitting diodes at ambient temperature, J. Phys. Chem. C 120(15), 8380 (2016)
CrossRef
ADS
Google scholar
|
[16] |
X. T. Tang, Y. Q. Hu, W. Y. Jia, R. H. Pan, J. Q. Deng, J. Q. Deng, Z. H. He, and Z. H. Xiong, Intersystem crossing and triplet fusion in singlet-fission-dominated rubrenebased OLEDs under high bias current, ACS Appl. Mater. Interfaces 10(2), 1948 (2018)
CrossRef
ADS
Google scholar
|
[17] |
R. Nagata, H. Nakanotani, W. J. Jr Potscavage, and C. Adachi, Exploiting singlet fission in organic light-emitting diodes, Adv. Mater. 30(33), 1801484 (2018)
CrossRef
ADS
Google scholar
|
[18] |
W. C. Su, C. C. Lee, Y. Z. Li, and S. W. Liu, The influence of singlet and charge-transfer excitons on the opencircuit voltage of rubrene/fullerene organic photovoltaic device, ACS Appl. Mater. Interfaces 8(42), 28757 (2016)
CrossRef
ADS
Google scholar
|
[19] |
G. O. N. Ndjawa, K. R. Graham, S. Mollinger, D. M. Wu, D. Hanifi, R. Prasanna, B. D. Rose, S. Dey, L. Y. Yu, J. L. Bredas, M. D. McGehee, A. Salleo, and A. Amassian, Open-circuit voltage in organic solar cells: The impacts of donor semicrystallinity and coexistence of multiple interfacial charge-transfer bands, Adv. Energy Mater. 7(12), 1601995 (2017)
CrossRef
ADS
Google scholar
|
[20] |
M. Kikuchi, S. Makmuang, S. Izawa, K. Wongravee, and M. Hiramoto, Doped organic single-crystal photovoltaic cells, Org. Electron. 64, 92 (2019)
CrossRef
ADS
Google scholar
|
[21] |
J. H. Shim, K. V. Raman, Y. J. Park, T. S. Santos, G. X. Miao, B. Satpati, and J. S. Moodera, Large spin diffusion length in an amorphous organic semiconductor, Phys. Rev. Lett. 100(22), 226603 (2008)
CrossRef
ADS
Google scholar
|
[22] |
K. M. Alam, S. C. Bodepudi, R. Starko-Bowes, and S. Pramanik, Suppression of spin relaxation in rubrene nanowire spin valves, Appl. Phys. Lett. 101(19), 192403 (2012)
CrossRef
ADS
Google scholar
|
[23] |
K. Yano, H. Katsuki, and H. Yanagi, Mode selective excitation of terahertz vibrations in single crystalline rubrene, J. Chem. Phys. 150(5), 054503 (2019)
CrossRef
ADS
Google scholar
|
[24] |
J. J. Kim, S. Bachevillier, D. L. G. Arellano, B. P. Cherniawski, E. K. Burnett, N. Stingelin, C. Ayela, Ö. Usluer, S. C. B. Mannsfeld, G. Wantz, and A. L. Briseno, Correlating crystal thickness, surface morphology, and charge transport in pristine and doped rubrene single crystals, ACS Appl. Mater. Interfaces 10(31), 26745 (2018)
CrossRef
ADS
Google scholar
|
[25] |
O. D. Jurchescu, A. Meetsma, and T. T. M. Palstra, Lowtemperature structure of rubrene single crystals grown by vapor transport, Acta Crystallogr. B 62(2), 330 (2006)
CrossRef
ADS
Google scholar
|
[26] |
J. W. Lee, K. Kim, J. S. Jung, S. G. Jo, H. M. Kim, H. S. Lee, J. Kim, and J. Joo, Luminescence, charge mobility, and optical waveguiding of two-dimensional organic rubrene nanosheets: Comparison with one-dimensional nanorods, Org. Electron. 13(10), 2047 (2012)
CrossRef
ADS
Google scholar
|
[27] |
X. H. Zeng, D. Q. Zhang, L. A. Duan, L. D. Wang, G. F. Dong, and Y. Qiu, Morphology and fluorescence spectra of rubrene single crystals grown by physical vapor transport, Appl. Surf. Sci. 253(14), 6047 (2007)
CrossRef
ADS
Google scholar
|
[28] |
K. Y. Lin, Y. J. Wang, K. L. Chen, C. C. Yang, C. Y. Ho, K. R. Lee, J. L. Shen, and K. C. Chiu, Rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures, J. Cryst. Growth 439, 54 (2016)
CrossRef
ADS
Google scholar
|
[29] |
L. J. Wang, C. Yan, L. Zhang, Y. Sun, L. Yin, L. J. Sun, H. Du, X. F. Song, J. D. Zhang, and J. L. Yang, Mechanism of rubrene thin film growth using alphaquaterthiophene inducing layer at low temperature, Thin Solid Films 621, 131 (2017)
CrossRef
ADS
Google scholar
|
[30] |
T. Matsukawa, M. Yoshimura, M. Uchiyama, M. Yamagishi, A. Nakao, Y. Takahashi, J. Takeya, Y. Kitaoka, Y. Mori, and T. Sasaki, Polymorphs of rubrene crystal grown from solution, Jpn. J. Appl. Phys. 49(8), 085502 (2010)
CrossRef
ADS
Google scholar
|
[31] |
P. S. Jo, D. T. Duong, J. Park, R. Sinclair, and A. Salleo, Control of rubrene polymorphs via polymer binders: Applications in organic field-effect transistors, Chem. Mater. 27(11), 3979 (2015)
CrossRef
ADS
Google scholar
|
[32] |
L. Carman, H. P. Martinez, L. Voss, S. Hunter, P. Beck, N. Zaitseva, S. A. Payne, P. Irkhin, H. H. Choi, and V. Podzorov, Solution-grown rubrene crystals as radiation detecting devices, IEEE Trans. Nucl. Sci. 64(2), 781 (2017)
CrossRef
ADS
Google scholar
|
[33] |
K. Sim, H. Na, J. Park, J. Lee, J. Do, and S. Pyo, High-performance organic transistors based on solutionprocessed rubrene crystals directly grown on a polymeric dielectric, Org. Electron. 56, 76 (2018)
CrossRef
ADS
Google scholar
|
[34] |
T. Matsukawa, M. Yoshimura, K. Sasai, M. Uchiyama, M. Yamagishi, Y. Tominari, Y. Takahashi, J. Takeya, Y. Kitaoka, Y. Mori, and T. Sasaki, Growth of thin rubrene single crystals from 1-propanol solvent, J. Cryst. Growth 312(2), 310 (2010)
CrossRef
ADS
Google scholar
|
[35] |
J. M. Gu, Y. H. Gao, J. X. Wu, Q. Li, A. X. Li, W. Zhang, H. Y. Dong, B. Wen, F. M. Gao, and Y. S. Zhao, Polymorph-dependent electrogenerated chemiluminescence of low-dimensional organic semiconductor structures for sensing, ACS Appl. Mater. Interfaces 9(10), 8891 (2017)
CrossRef
ADS
Google scholar
|
[36] |
L. Raimondo, E. Fumagalli, M. Moret, M. Campione, A. Borghesi, and A. Sassella, Epitaxial Interfaces in rubrene thin film heterostructures, J. Phys. Chem. C 117(27), 13981 (2013)
CrossRef
ADS
Google scholar
|
[37] |
Y. Nakayama, M. Iwashita, M. Kikuchi, R. Tsuruta, K. Yoshida, Y. Gunjo, Y. Yabara, T. Hosokai, T. Koganezawa, S. Izawa, and M. Hiramoto, Electronic and crystallographic examinations of the homoepitaxially grown rubrene single, Materials (Basel) 13(8), 1978 (2020)
CrossRef
ADS
Google scholar
|
[38] |
X. Ye, Y. Liu, Q. X. Han, C. Ge, S. Y. Cui, L. L. Zhang, X. X. Zheng, G. F. Liu, J. Liu, D. Liu, and X. T. Tao, Microspacing in-air sublimation growth of organic crystals, Chem. Mater. 30(2), 412 (2018)
CrossRef
ADS
Google scholar
|
[39] |
M. Haemori, J. Yamaguchi, S. Yaginuma, K. Itaka, and H. Koinuma, Fabrication of highly oriented rubrene thin films by the use of atomically finished substrate and pentacene buffer layer, Jpn. J. Appl. Phys. 44(6A), 3740 (2005)
CrossRef
ADS
Google scholar
|
[40] |
M. A. Fusella, S. Yang, K. Abbasi, H. H. Choi, Z. Yao, V. Podzorov, A. Avishai, and B. P. Rand, Use of an underlayer for large area crystallization of rubrene thin films, Chem. Mater. 29(16), 6666 (2017)
CrossRef
ADS
Google scholar
|
[41] |
Y. Sun, C. Yan, Q. Xie, C. Shi, L. Zhang, L. J. Wang, and L. J. Sun, Effect of heterogeneous inducing bilayer on the properties of rubrene thin film transistors, Chem. J. Chin. Univ. 39(6), 1221 (2018)
|
[42] |
C. Du, W. C. Wang, L. Q. Li, H. Fuchs, and L. F. Chi, Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer, Org. Electron. 14(10), 2534 (2013)
CrossRef
ADS
Google scholar
|
[43] |
G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Organic transistors in optical displays and microelectronic applications, Adv. Mater. 22(34), 3778 (2010)
CrossRef
ADS
Google scholar
|
[44] |
M. A. Reyes-Martinez, A. J. Crosby, and A. L. Briseno, Rubrene crystal field-effect mobility modulation via conducting channel wrinkling, Nat. Commun. 6(1), 6948 (2015)
CrossRef
ADS
Google scholar
|
[45] |
J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors, Phys. Rev. Lett. 98(19), 196804 (2007)
CrossRef
ADS
Google scholar
|
[46] |
H. T. Yi, Y. Chen, K. Czelen, and V. Podzorov, Vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors, Adv. Mater. 23(48), 5807 (2011)
CrossRef
ADS
Google scholar
|
[47] |
G. F. Jones, R. M. Pinto, A. De Sanctis, V. K. Nagareddy, C. D. Wright, H. Alves, M. F. Craciun, and S. Russo, Highly efficient rubrene-graphene charge-transfer interfaces as phototransistors in the visible regime, Adv. Mater. 29(41), 1702993 (2017)
CrossRef
ADS
Google scholar
|
[48] |
V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals, Science 303(5664), 1644 (2004)
CrossRef
ADS
Google scholar
|
[49] |
J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Very high-mobility organic single-crystal transistors with in-crystal conduction channels, Appl. Phys. Lett. 90(10), 102120 (2007)
CrossRef
ADS
Google scholar
|
[50] |
M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, M. Uno, T. Nishikawa, and T. Kawase, High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators, Appl. Phys. Lett. 90(18), 182117 (2007)
CrossRef
ADS
Google scholar
|
[51] |
Y. J. Zhang, H. L. Dong, Q. X. Tang, Y. D. He, and W. P. Hu, Mobility dependence on the conducting channel dimension of organic field-effect transistors based on single-crystalline nanoribbons, J. Mater. Chem. 20(33), 7029 (2010)
CrossRef
ADS
Google scholar
|
[52] |
J. M. Adhikari, M. R. Gadinski, Q. Li, K. G. Sun, M. A. Reyes-Martinez, E. Iagodkine, A. L. Briseno, T. N. Jackson, Q. Wang, and E. D. Gomez, Controlling chain conformations of high-k fluoropolymer dielectrics to enhance charge mobilities in rubrene single-crystal fieldeffect transistors, Adv. Mater. 28(45), 10095 (2016)
CrossRef
ADS
Google scholar
|
[53] |
T. Takahashi, T. Takenobu, J. Takeya, and Y. Iwasa, Ambipolar organic field-effect transistors based on rubrene single crystals, Appl. Phys. Lett. 88(3), 033505 (2006)
CrossRef
ADS
Google scholar
|
[54] |
T. Takenobu, T. Takahashi, J. Takeya, and Y. Iwasa, Effect of metal electrodes on rubrene single-crystal transistors, Appl. Phys. Lett. 90(1), 013507 (2007)
CrossRef
ADS
Google scholar
|
[55] |
S. Z. Bisri, T. Takenobu, T. Takahashi, and Y. Iwasa, Electron transport in rubrene single-crystal transistors, Appl. Phys. Lett. 96(18), 183304 (2010)
CrossRef
ADS
Google scholar
|
[56] |
Y. Yomogida, J. Pu, H. Shimotani, S. Ono, S. Hotta, Y. Iwasa, and T. Takenobu, Ambipolar organic singlecrystal transistors based on ion gels, Adv. Mater. 24(32), 4392 (2012)
CrossRef
ADS
Google scholar
|
[57] |
T. Uemura, M. Yamagishi, Y. Okada, K. Nakayama, M. Yoshizumi, M. Uno, and J. Takeya, Monolithic complementary inverters based on organic single crystals, Adv. Mater. 22(35), 3938 (2010)
CrossRef
ADS
Google scholar
|
[58] |
T. Kanagasekaran, H. Shimotani, R. Shimizu, T. Hitosugi, and K. Tanigaki, A new electrode design for ambipolar injection in organic semiconductors, Nat. Commun. 8(1), 999 (2017)
CrossRef
ADS
Google scholar
|
[59] |
C. J. Park, H. J. Park, J. Y. Lee, J. Kim, C. H. Lee, and J. Joo, Photovoltaic field-effect transistors using a MoS2 and organic rubrene van der Waals hybrid, ACS Appl. Mater. Interfaces 10(35), 29848 (2018)
CrossRef
ADS
Google scholar
|
[60] |
G. H. Lee, C. H. Lee, A. M. van der Zande, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Hone, and P. Kim, Heterostructures based on inorganic and organic van der Waals systems, APL Mater. 2(9), 092511 (2014)
CrossRef
ADS
Google scholar
|
[61] |
X. X. He, W. Chow, F. C. Liu, B. Tay, and Z. Liu, MoS2/rubrene van der Waals heterostructure: Toward ambipolar field-effect transistors and inverter circuits, Small 13(2), 1602558 (2017)
CrossRef
ADS
Google scholar
|
[62] |
M. Y. Lee, J. Park, and J. H. Oh, High-performance ambipolar organic phototransistors based on core-shell pn junction organic single crystals, ACS Appl. Electron. Mater. 2(1), 9 (2020)
CrossRef
ADS
Google scholar
|
[63] |
Z. Li, J. Du, Q. Tang, F. Wang, J. B. Xu, J. C. Yu, and Q. Miao, Induced crystallization of rubrene in thin-film transistors, Adv. Mater. 22(30), 3242 (2010)
CrossRef
ADS
Google scholar
|
[64] |
H. M. Lee, J. J. Kim, J. H. Choi, and S. O. Cho, In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors, ACS Nano 5(10), 8352 (2011)
CrossRef
ADS
Google scholar
|
[65] |
C. H. Lee, T. Schiros, E. J. G. Santos, B. Kim, K. G. Yager, S. J. Kang, S. Lee, J. Yu, K. Watanabe, T. Taniguchi, J. Hone, E. Kaxiras, C. Nuckolls, and P. Kim, Epitaxial growth of molecular crystals on van der Waals substrates for high-performance organic electronics, Adv. Mater. 26(18), 2812 (2014)
CrossRef
ADS
Google scholar
|
[66] |
H. Chang, W. L. Li, H. K. Tian, Y. H. Geng, H. B. Wang, D. H. Yan, and T. Wang, High performance of rubrene thin film transistor by weak epitaxy growth method, Org. Electron. 20, 43 (2015)
CrossRef
ADS
Google scholar
|
[67] |
X. R. Hu, Z. Wang, X. F. Zhu, T. Zhu, X. D. Zhang, B. Dong, L. Z. Huang, and L. F. Chi, Foreign particle promoted crystalline nucleation for growing high-quality ultrathin rubrene films, Small 12(30), 4086 (2016)
CrossRef
ADS
Google scholar
|
[68] |
L. N. Zhao, X. Jiang, J. H. Lang, W. L. Jiang, G. Zhang, C. Xue, L. M. H. Zheng, and S. Zhao, The influence of the Rubrene thickness on the performance of white organic light-emitting devices, Mater. Express 10(3), 384 (2020)
CrossRef
ADS
Google scholar
|
[69] |
G. Zhang, G. L. Xing, J. H. Lang, C. X. Li, X. Y. Wang, and D. D. Wang, Active emitting layer thickness dependence and interfaces engineering studies on the performance of DOPPP white organic light emitting diodes, Opt. Commun. 459, 124921 (2020)
CrossRef
ADS
Google scholar
|
[70] |
B. Zhao, Y. Q. Miao, Z. Q. Wang, W. H. Chen, K. X. Wang, H. Wang, Y. Y. Hao, B. S. Xu, and W. L. Li, Highly efficient orange fluorescent OLEDs based on the energy transfer from bilayer interface exciplex, Org. Electron. 37, 1 (2016)
CrossRef
ADS
Google scholar
|
[71] |
T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, and C. Adachi, Lateral organic light-emitting diode with field-effect transistor characteristics, J. Appl. Phys. 98(7), 074506 (2005)
CrossRef
ADS
Google scholar
|
[72] |
S. M. Li, X. Li, L. Z. Wang, and H. B. Liu, Study on the fabrication of white organic light-emitting devices using the doping characteristics of rubrene and programmed test circuit, J. Nanosci. Nanotechnol. 18(12), 8409 (2018)
CrossRef
ADS
Google scholar
|
[73] |
W. Y. Hung, P. Y. Chiang, S. W. Lin, W. C. Tang, Y. T. Chen, S. H. Liu, P. T. Chou, Y. T. Hung, and K. T. Wong, Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor, ACS Appl. Mater. Interfaces 8(7), 4811 (2016)
CrossRef
ADS
Google scholar
|
[74] |
X. T. Tang, R. H. Pan, X. Zhao, H. Q. Zhu, and Z. H. Xiong, Achievement of high-level reverse intersystem crossing in rubrene-doped organic light emitting diodes, J. Phys. Chem. Lett. 11(8), 2804 (2020)
CrossRef
ADS
Google scholar
|
[75] |
Y. Q. Zheng, J. L. Yu, C. Wang, F. Yang, B. Wei, J. H. Zhang, C. H. Zeng, and Y. Yang, Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS, J. Phys. D Appl. Phys. 51(22), 225302 (2018)
CrossRef
ADS
Google scholar
|
[76] |
D. Saikia, and R. Sarma, Characterization of organic light-emitting diode using a rubrene interlayer between electrode and hole transport layer, Bull. Mater. Sci. 43(1), 35 (2020)
CrossRef
ADS
Google scholar
|
[77] |
Y. Liu, X. M. Wu, Z. H. Xiao, J. A. Gao, J. Zhang, H. S. Rui, X. Lin, N. Zhang, Y. L. Hua, and S. G. Yin, Highly efficient tandem OLED based on C60/rubrene: MoO3 as charge generation layer and LiF/Al as electron injection layer, Appl. Surf. Sci. 413(15), 302 (2017)
CrossRef
ADS
Google scholar
|
[78] |
S. Engmann, A. J. Barito, E. G. Bittle, N. C. Giebink, L. J. Richter, and D. J. Gundlach, Higher order effects in organic LEDs with sub-bandgap turn-on, Nat. Commun. 10(1), 227 (2019)
CrossRef
ADS
Google scholar
|
[79] |
D. B. Wang, B. Liu, H. M. Zhang, H. Zhao, T. Tao, Z. L. Xie, R. Zhang, and Y. D. Zheng, Electrically injected hybrid organic/inorganicIII-nitride white light-emitting diodes based on rubrene/(InGaN/GaN) multiple-quantum-wells P-N junction, IEEE Photonics J. 11(4), 8200808 (2019)
CrossRef
ADS
Google scholar
|
[80] |
M. Ullah, S. D. Yambem, E. G. Moore, E. B. Namdas, and A. K. Pandey, Singlet fission and triplet exciton dynamics in rubrene/fullerene heterojunctions: implications for electroluminescence, Adv. Electron. Mater. 1(12), 1500229 (2015)
CrossRef
ADS
Google scholar
|
[81] |
Q. S. Chen, W. Y. Jia, L. X. Chen, D. Yuan, Y. Zou, and Z. H. Xiong, Determining the origin of half-bandgapvoltage electroluminescence in bifunctional rubrene/C60 Devices, Sci. Rep. 6(1), 25331 (2016)
CrossRef
ADS
Google scholar
|
[82] |
Y. H. Lou, Z. K. Wang, S. Naka, and H. Okada, Bi-functional electroluminescent and photovoltaic devices based on rubrene-doped poly(3-hexylthiophene): 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends, Synth. Met. 162(3–4), 281 (2012)
CrossRef
ADS
Google scholar
|
[83] |
Z. Q. Guan, R. F. Wu, Y. Zang, and J. S. Yu, Small molecule dye rubrene doped organic bulk heterojunction solar cells, Thin Solid Films 539(31), 278 (2013)
CrossRef
ADS
Google scholar
|
[84] |
L. L. Yang, J. H. Chen, K. P. Ge, J. X. Guo, Q. C. Duan, F. Li, Y. Xu, and Y. H. Mai, Polymer/Si heterojunction hybrid solar cells with rubrene:DMSO organic semiconductor film as an electron-selective contact, J. Phys. Chem. C 122(41), 23371 (2018)
CrossRef
ADS
Google scholar
|
[85] |
T. Zhang and R. J. Holmes, Overcoming the trade-off between exciton dissociation and charge recombination in organic photovoltaic cells, Appl. Phys. Lett. 113(14), 143302 (2018)
CrossRef
ADS
Google scholar
|
[86] |
J. A. Huang, J. S. Yu, W. Wang, and Y. D. Jiang, Organic solar cells with a multicharge separation structure consisting of a thin rubrene fluorescent dye for open circuit voltage enhancement, Appl. Phys. Lett. 98(2), 023301 (2011)
CrossRef
ADS
Google scholar
|
[87] |
C. M. Pelicano and H. Yanagi, Effect of rubrene:P3HT bilayer on photovoltaic performance of perovskite solar cells with electrodeposited ZnO nanorods, J. Energy. Chem 27(2), 455 (2018)
CrossRef
ADS
Google scholar
|
[88] |
S. Cong, H. Yang, Y. H. Lou, L. Han, Q. H. Yi, H. B. Wang, Y. H. Sun, and G. F. Zou, Organic small molecule as the underlayer toward high performance planar perovskite solar cells, ACS Appl. Mater. Interfaces 9(3), 2295 (2017)
CrossRef
ADS
Google scholar
|
[89] |
P. L. Qin, J. L. Zhang, G. Yang, X. L. Yu, and G. Li, Potassium-intercalated rubrene as a dual-functional passivation agent for high efficiency perovskite solar cells, J. Mater. Chem. A 7(4), 1824 (2019)
CrossRef
ADS
Google scholar
|
[90] |
D. Wei, F. S. Ma, R. Wang, S. Y. Dou, P. Cui, H. Huang, J. Ji, E. D. Jia, X. J. Jia, S. Sajid, A. M. Eiseman, L. H. Chu, Y. F. Li, B. Jiang, J. Qiao, Y. B. Yuan, and M. C. Li, Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells, Adv. Mater. 30(31), 1707583 (2018)
CrossRef
ADS
Google scholar
|
[91] |
Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Giant magnetoresistance in organic spin-valves, Nature 427(6977), 821 (2004)
CrossRef
ADS
Google scholar
|
[92] |
S. Steil, N. Grossmann, M. Laux, A. Ruffing, D. Steil, M. Wiesenmayer, S. Mathias, O. L. A. Monti, M. Cinchetti, and M. Aeschlimann, Spin-dependent trapping of electrons at spinterfaces, Nat. Phys. 9(4), 242 (2013)
CrossRef
ADS
Google scholar
|
[93] |
V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Spin routes in organic semiconductors, Nat. Mater. 8(9), 707 (2009)
CrossRef
ADS
Google scholar
|
[94] |
H. J. Jang and C. A. Richter, Organic spin-valves and beyond: Spin injection and transport in organic semiconductors and the effect of interfacial engineering, Adv. Mater. 29(2), 1602739 (2017)
CrossRef
ADS
Google scholar
|
[95] |
Z. G. Yu, Spin–orbit coupling and its effects in organic solids, Phys. Rev. B 85(11), 115201 (2012)
CrossRef
ADS
Google scholar
|
[96] |
B. Li, C. Y. Kao, J. W. Yoo, V. N. Prigodin, and A. J. Epstein, Magnetoresistance in an all-organic-based spin valve,Adv. Mater. 23(30), 3382 (2011)
CrossRef
ADS
Google scholar
|
[97] |
K. V. Raman, S. M. Watson, J. H. Shim, J. A. Borchers, J. Chang, and J. S. Moodera, Effect of molecular ordering on spin and charge injection in rubrene, Phys. Rev. B 80(19), 195212 (2009)
CrossRef
ADS
Google scholar
|
[98] |
X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, H. Naganuma, M. Oogane, Y. Ando, and T. Miyazaki, Large change of perpendicular magnetic anisotropy in Cobalt ultrathin film induced by varying capping layers, J. Appl. Phys. 111(7), 07B320 (2012)
CrossRef
ADS
Google scholar
|
[99] |
J. W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom, and A. J. Epstein, Giant magnetoresistance in ferromagnet/organic semiconductor/ferromagnet heterojunctions, Phys. Rev. B 80(20), 205207 (2009)
CrossRef
ADS
Google scholar
|
[100] |
J. W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom, and A. J. Epstein, Tunneling vs. giant magnetoresistance in organic spin valve, Synth. Met. 160(3–4), 216 (2010)
CrossRef
ADS
Google scholar
|
[101] |
J. W. Yoo, C. Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, and A. J. Epstein, Spin injection/detection using an organic-based magnetic semiconductor, Nat. Mater. 9(8), 638 (2010)
CrossRef
ADS
Google scholar
|
[102] |
B. Li, C. Y. Kao, Y. Lu, J. W. Yoo, V. N. Prigodin, and A. J. Epstein, Room temperature organic-based spin polarizer, Appl. Phys. Lett. 99(15), 153503 (2011)
CrossRef
ADS
Google scholar
|
[103] |
K. V. Raman, J. Chang, and J. S. Moodera, New method of spin injection into organic semiconductors using spin filtering tunnel barriers, Org. Electron. 12(7), 1275 (2011)
CrossRef
ADS
Google scholar
|
[104] |
X. N. Yao, Q. Q. Duan, J. W. Tong, Y. F. Chang, L. Q. Zhou, G. W. Qin, and X. M. Zhang, Magnetoresistance effect and the applications for organic spin valves using molecular spacers, Materials (Basel) 11(5), 721 (2018)
CrossRef
ADS
Google scholar
|
[105] |
J. Devkota, R. G. Geng, R. C. Subedi, and T. D. Nguyen, Organic spin valves: A review, Adv. Funct. Mater. 26(22), 3881 (2016)
CrossRef
ADS
Google scholar
|
[106] |
V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y. Zhan, Room-temperature spintronic effects in Alq3-based hybrid devices, Phys. Rev. B 78(11), 115203 (2008)
CrossRef
ADS
Google scholar
|
[107] |
X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, M. Oogane, H. Naganuma, Y. Ando, and T. Miyazaki, Observation of a large spin-dependent transport length in organic spin valves at room temperature, Nat. Commun. 4(1), 1392 (2013)
CrossRef
ADS
Google scholar
|
[108] |
Y. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother, and D. H. Reich, Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures, Phys. Rev. B 79(7), 075312 (2009)
CrossRef
ADS
Google scholar
|
[109] |
R. Lin, F. Wang, J. Rybicki, M. Wohlgenannt, and K. A. Hutchinson, Distinguishing between tunneling and injection regimes of ferromagnet/organic semiconductor/ferromagnet junctions, Phys. Rev. B 81(19), 195214 (2010)
CrossRef
ADS
Google scholar
|
[110] |
X. M. Zhang, Q. L. Ma, K. Suzuki, A. Sugihara, G. W. Qin, T. Miyazaki, and S. Mizukami, Magnetoresistance effect in rubrene-based spin valves at room ternperature, ACS Appl. Mater. Interfaces 7(8), 4685 (2015)
CrossRef
ADS
Google scholar
|
[111] |
Z. H. Li, T. Li, D. C. Qi, W. Tong, L. Q. Xu, J. Zhu, Z. T. Zhang, H. Xu, W. H. Zhang, Y. X. Guo, F. Chen, Y. Y. Han, L. Cao, F. P. Zhang, and Y. M. Xiong, Quantitative study of spin relaxation in rubrene thin films by inverse spin Hall effect, Appl. Phys. Lett. 115(5), 053301 (2019)
CrossRef
ADS
Google scholar
|
[112] |
V. Podzorov, E. Menard, S. Pereversev, B. Yakshinsky, T. Madey, J. A. Rogers, and M. E. Gershenson, Interaction of organic surfaces with active species in the high-vacuum environment, Appl. Phys. Lett. 87(9), 093505 (2005)
CrossRef
ADS
Google scholar
|
[113] |
E. Fumagalli, L. Raimondo, L. Silvestri, M. Moret, A. Sassella, and M. Campione, Oxidation dynamics of epitaxial rubrene ultrathin films, Chem. Mater. 23(13), 3246 (2011)
CrossRef
ADS
Google scholar
|
[114] |
V. Nardello, M. J. Marti, C. Pierlot, and J. M. Aubry, Photochemistry without light: Oxidation of rubrene in a microemulsion with a chemical source of singlet molecular oxygen, J. Chem. Educ. 76(9), 1285 (1999)
CrossRef
ADS
Google scholar
|
[115] |
J. Ly, K. Martin, S. Thomas, M. Yamashita, B. Yu, C. A. Pointer, H. Yamada, K. R. Carter, S. Parkin, L. Zhang, J. L. Bredas, E. R. Young, and A. L. Briseno, Short excited-state lifetimes enable photo-oxidatively stable rubrene derivatives, J. Phys. Chem. A 124(1), 255 (2020)
CrossRef
ADS
Google scholar
|
[116] |
G. Z. Xie, S. Hahn, F. Rominger, J. Freudenberg, and U. H. F. Bunz, Synthesis and characterization of two different azarubrenes, Chem. Commun. 54(55), 7593 (2018)
CrossRef
ADS
Google scholar
|
[117] |
W. Xie, P. L. Prabhumirashi, Y. Nakayama, K. A. Mc-Garry, M. L. Geier, Y. Uragami, K. Mase, C. J. Douglas, H. Ishii, M. C. Hersam, and C. D. Frisbie, Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors, ACS Nano 7(11), 10245 (2013)
CrossRef
ADS
Google scholar
|
[118] |
J. F. Li, Z. J. Ni, X. T. Zhang, R. J. Li, H. L. Dong, and W. P. Hu, Enhanced stability of a rubrene analogue with a brickwork packing motif, J. Mater. Chem. C 5(33), 8376 (2017)
CrossRef
ADS
Google scholar
|
[119] |
N. Stingelin-Stutzmann, E. Smits, H. Wondergem, C. Tanase, P. Blom, P. Smith, and D. de Leeuw, Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics, Nat. Mater. 4(8), 601 (2005)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |