Research progress of rubrene as an excellent multifunctional organic semiconductor

Si Liu, Hongnan Wu, Xiaotao Zhang, Wenping Hu

PDF(2216 KB)
PDF(2216 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 13304. DOI: 10.1007/s11467-020-0993-1
TOPICAL REVIEW
TOPICAL REVIEW

Research progress of rubrene as an excellent multifunctional organic semiconductor

Author information +
History +

Abstract

Rubrene, a superstar in organic semiconductors, has achieved unprecedented achievements in the application of electronic devices, and research based on its various photoelectric properties is still in progress. In this review, we introduced the preparation of rubrene crystal, summarized the applications in organic optoelectronic devices with the latest research achievements based on rubrene semiconductors. An outlook of future research directions and challenges of rubrene semiconductor for applications is also provided.

Keywords

rubrene / organic semiconductor / optoelectronic devices

Cite this article

Download citation ▾
Si Liu, Hongnan Wu, Xiaotao Zhang, Wenping Hu. Research progress of rubrene as an excellent multifunctional organic semiconductor. Front. Phys., 2021, 16(1): 13304 https://doi.org/10.1007/s11467-020-0993-1

References

[1]
C. L. Wang, H. L. Dong, L. Jiang, and W. P. Hu, Organic semiconductor crystals, Chem. Soc. Rev. 47(2), 422 (2018)
CrossRef ADS Google scholar
[2]
B. H. Lee, G. C. Bazan, and A. J. Heeger, Doping-induced carrier density modulation in polymer field-effect transistors, Adv. Mater. 28(1), 57 (2016)
CrossRef ADS Google scholar
[3]
X. T. Zhang, H. L. Dong, and W. P. Hu, Organic semiconductor single crystals for electronics and photonics, Adv. Mater. 30(44), 1801048 (2018)
CrossRef ADS Google scholar
[4]
H. L. Dong, X. L. Fu, J. Liu, Z. R. Wang, and W. P. Hu, 25th Anniversary article: Key points for high-mobility organic field-effect transistors, Adv. Mater. 25(43), 6158 (2013)
CrossRef ADS Google scholar
[5]
C. Wang, X. C. Ren, C. H. Xu, B. B. Fu, R. H. Wang, X. T. Zhang, R. J. Li, H. X. Li, H. L. Dong, Y. G. Zhen, S. B. Lei, L. Jiang, and W. P. Hu, N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors, Adv. Mater. 30(16), 1706260 (2018)
CrossRef ADS Google scholar
[6]
L. G. Kaake, Y. M. Sun, G. C. Bazan, and A. J. Heeger, Fullerene concentration dependent bimolecular recombination in organic photovoltaic films, Appl. Phys. Lett. 102(13), 133302 (2013)
CrossRef ADS Google scholar
[7]
F. Y. Lin, W. Huang, H. T. Sun, J. M. Xin, H. Zeng, T. B. Yang, M. L. Li, X. Zhang, W. Ma, and Y. Y. Liang, Thieno 3, 4-c pyrrole-4, 6(5H)-dione Polymers with optimized energy level alignments for fused-ring electron acceptor based polymer solar cells, Chem. Mater. 29(13), 5636 (2017)
CrossRef ADS Google scholar
[8]
C. Deng, L. W. Zhang, D. Wang, T. Tsuboi, and Q. S. Zhang, Exciton and polaron-induced reversible dipole reorientation in amorphous organic semiconductor films, Adv. Opt. Mater. 7(8), 1801644 (2019)
CrossRef ADS Google scholar
[9]
F. T. Liu, H. Liu, X. Y. Tang, S. H. Ren, X. He, J. Y. Li, C. Y. Du, Z. J. Feng, and P. Lu, Novel blue fluorescent materials for high-performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index, Nano Energy 68, 104325 (2020)
CrossRef ADS Google scholar
[10]
V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Intrinsic charge transport on the surface of organic semiconductors, Phys. Rev. Lett. 93(8), 086602 (2004)
CrossRef ADS Google scholar
[11]
S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37(4), 814 (1962)
CrossRef ADS Google scholar
[12]
L. W. Huang, Q. Liao, Q. Shi, H. B. Fu, J. S. Ma, and J. N. Yao, Rubrene micro-crystals from solution routes: their crystallography, morphology and optical properties, J. Mater. Chem. 20(1), 159 (2010)
CrossRef ADS Google scholar
[13]
T. R. Fielitz and R. J. Holmes, Crystal morphology and growth in annealed rubrene thin films, Cryst. Growth Des. 16(8), 4720 (2016)
CrossRef ADS Google scholar
[14]
C. L. Wang, H. L. Dong, W. P. Hu, Y. Q. Liu, and D. B. Zhu, Semiconducting π-conjugated systems in fieldeffect transistors: A material odyssey of organic electronics, Chem. Rev. 112(4), 2208 (2012)
CrossRef ADS Google scholar
[15]
W. Y. Jia, Q. S. Chen, L. X. Chen, D. Yuan, J. Xiang, Y. B. Chen, and Z. H. Xiong, Molecular spacing modulated conversion of singlet fission to triplet fusion in rubrenebased organic light-emitting diodes at ambient temperature, J. Phys. Chem. C 120(15), 8380 (2016)
CrossRef ADS Google scholar
[16]
X. T. Tang, Y. Q. Hu, W. Y. Jia, R. H. Pan, J. Q. Deng, J. Q. Deng, Z. H. He, and Z. H. Xiong, Intersystem crossing and triplet fusion in singlet-fission-dominated rubrenebased OLEDs under high bias current, ACS Appl. Mater. Interfaces 10(2), 1948 (2018)
CrossRef ADS Google scholar
[17]
R. Nagata, H. Nakanotani, W. J. Jr Potscavage, and C. Adachi, Exploiting singlet fission in organic light-emitting diodes, Adv. Mater. 30(33), 1801484 (2018)
CrossRef ADS Google scholar
[18]
W. C. Su, C. C. Lee, Y. Z. Li, and S. W. Liu, The influence of singlet and charge-transfer excitons on the opencircuit voltage of rubrene/fullerene organic photovoltaic device, ACS Appl. Mater. Interfaces 8(42), 28757 (2016)
CrossRef ADS Google scholar
[19]
G. O. N. Ndjawa, K. R. Graham, S. Mollinger, D. M. Wu, D. Hanifi, R. Prasanna, B. D. Rose, S. Dey, L. Y. Yu, J. L. Bredas, M. D. McGehee, A. Salleo, and A. Amassian, Open-circuit voltage in organic solar cells: The impacts of donor semicrystallinity and coexistence of multiple interfacial charge-transfer bands, Adv. Energy Mater. 7(12), 1601995 (2017)
CrossRef ADS Google scholar
[20]
M. Kikuchi, S. Makmuang, S. Izawa, K. Wongravee, and M. Hiramoto, Doped organic single-crystal photovoltaic cells, Org. Electron. 64, 92 (2019)
CrossRef ADS Google scholar
[21]
J. H. Shim, K. V. Raman, Y. J. Park, T. S. Santos, G. X. Miao, B. Satpati, and J. S. Moodera, Large spin diffusion length in an amorphous organic semiconductor, Phys. Rev. Lett. 100(22), 226603 (2008)
CrossRef ADS Google scholar
[22]
K. M. Alam, S. C. Bodepudi, R. Starko-Bowes, and S. Pramanik, Suppression of spin relaxation in rubrene nanowire spin valves, Appl. Phys. Lett. 101(19), 192403 (2012)
CrossRef ADS Google scholar
[23]
K. Yano, H. Katsuki, and H. Yanagi, Mode selective excitation of terahertz vibrations in single crystalline rubrene, J. Chem. Phys. 150(5), 054503 (2019)
CrossRef ADS Google scholar
[24]
J. J. Kim, S. Bachevillier, D. L. G. Arellano, B. P. Cherniawski, E. K. Burnett, N. Stingelin, C. Ayela, Ö. Usluer, S. C. B. Mannsfeld, G. Wantz, and A. L. Briseno, Correlating crystal thickness, surface morphology, and charge transport in pristine and doped rubrene single crystals, ACS Appl. Mater. Interfaces 10(31), 26745 (2018)
CrossRef ADS Google scholar
[25]
O. D. Jurchescu, A. Meetsma, and T. T. M. Palstra, Lowtemperature structure of rubrene single crystals grown by vapor transport, Acta Crystallogr. B 62(2), 330 (2006)
CrossRef ADS Google scholar
[26]
J. W. Lee, K. Kim, J. S. Jung, S. G. Jo, H. M. Kim, H. S. Lee, J. Kim, and J. Joo, Luminescence, charge mobility, and optical waveguiding of two-dimensional organic rubrene nanosheets: Comparison with one-dimensional nanorods, Org. Electron. 13(10), 2047 (2012)
CrossRef ADS Google scholar
[27]
X. H. Zeng, D. Q. Zhang, L. A. Duan, L. D. Wang, G. F. Dong, and Y. Qiu, Morphology and fluorescence spectra of rubrene single crystals grown by physical vapor transport, Appl. Surf. Sci. 253(14), 6047 (2007)
CrossRef ADS Google scholar
[28]
K. Y. Lin, Y. J. Wang, K. L. Chen, C. C. Yang, C. Y. Ho, K. R. Lee, J. L. Shen, and K. C. Chiu, Rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures, J. Cryst. Growth 439, 54 (2016)
CrossRef ADS Google scholar
[29]
L. J. Wang, C. Yan, L. Zhang, Y. Sun, L. Yin, L. J. Sun, H. Du, X. F. Song, J. D. Zhang, and J. L. Yang, Mechanism of rubrene thin film growth using alphaquaterthiophene inducing layer at low temperature, Thin Solid Films 621, 131 (2017)
CrossRef ADS Google scholar
[30]
T. Matsukawa, M. Yoshimura, M. Uchiyama, M. Yamagishi, A. Nakao, Y. Takahashi, J. Takeya, Y. Kitaoka, Y. Mori, and T. Sasaki, Polymorphs of rubrene crystal grown from solution, Jpn. J. Appl. Phys. 49(8), 085502 (2010)
CrossRef ADS Google scholar
[31]
P. S. Jo, D. T. Duong, J. Park, R. Sinclair, and A. Salleo, Control of rubrene polymorphs via polymer binders: Applications in organic field-effect transistors, Chem. Mater. 27(11), 3979 (2015)
CrossRef ADS Google scholar
[32]
L. Carman, H. P. Martinez, L. Voss, S. Hunter, P. Beck, N. Zaitseva, S. A. Payne, P. Irkhin, H. H. Choi, and V. Podzorov, Solution-grown rubrene crystals as radiation detecting devices, IEEE Trans. Nucl. Sci. 64(2), 781 (2017)
CrossRef ADS Google scholar
[33]
K. Sim, H. Na, J. Park, J. Lee, J. Do, and S. Pyo, High-performance organic transistors based on solutionprocessed rubrene crystals directly grown on a polymeric dielectric, Org. Electron. 56, 76 (2018)
CrossRef ADS Google scholar
[34]
T. Matsukawa, M. Yoshimura, K. Sasai, M. Uchiyama, M. Yamagishi, Y. Tominari, Y. Takahashi, J. Takeya, Y. Kitaoka, Y. Mori, and T. Sasaki, Growth of thin rubrene single crystals from 1-propanol solvent, J. Cryst. Growth 312(2), 310 (2010)
CrossRef ADS Google scholar
[35]
J. M. Gu, Y. H. Gao, J. X. Wu, Q. Li, A. X. Li, W. Zhang, H. Y. Dong, B. Wen, F. M. Gao, and Y. S. Zhao, Polymorph-dependent electrogenerated chemiluminescence of low-dimensional organic semiconductor structures for sensing, ACS Appl. Mater. Interfaces 9(10), 8891 (2017)
CrossRef ADS Google scholar
[36]
L. Raimondo, E. Fumagalli, M. Moret, M. Campione, A. Borghesi, and A. Sassella, Epitaxial Interfaces in rubrene thin film heterostructures, J. Phys. Chem. C 117(27), 13981 (2013)
CrossRef ADS Google scholar
[37]
Y. Nakayama, M. Iwashita, M. Kikuchi, R. Tsuruta, K. Yoshida, Y. Gunjo, Y. Yabara, T. Hosokai, T. Koganezawa, S. Izawa, and M. Hiramoto, Electronic and crystallographic examinations of the homoepitaxially grown rubrene single, Materials (Basel) 13(8), 1978 (2020)
CrossRef ADS Google scholar
[38]
X. Ye, Y. Liu, Q. X. Han, C. Ge, S. Y. Cui, L. L. Zhang, X. X. Zheng, G. F. Liu, J. Liu, D. Liu, and X. T. Tao, Microspacing in-air sublimation growth of organic crystals, Chem. Mater. 30(2), 412 (2018)
CrossRef ADS Google scholar
[39]
M. Haemori, J. Yamaguchi, S. Yaginuma, K. Itaka, and H. Koinuma, Fabrication of highly oriented rubrene thin films by the use of atomically finished substrate and pentacene buffer layer, Jpn. J. Appl. Phys. 44(6A), 3740 (2005)
CrossRef ADS Google scholar
[40]
M. A. Fusella, S. Yang, K. Abbasi, H. H. Choi, Z. Yao, V. Podzorov, A. Avishai, and B. P. Rand, Use of an underlayer for large area crystallization of rubrene thin films, Chem. Mater. 29(16), 6666 (2017)
CrossRef ADS Google scholar
[41]
Y. Sun, C. Yan, Q. Xie, C. Shi, L. Zhang, L. J. Wang, and L. J. Sun, Effect of heterogeneous inducing bilayer on the properties of rubrene thin film transistors, Chem. J. Chin. Univ. 39(6), 1221 (2018)
[42]
C. Du, W. C. Wang, L. Q. Li, H. Fuchs, and L. F. Chi, Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer, Org. Electron. 14(10), 2534 (2013)
CrossRef ADS Google scholar
[43]
G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Organic transistors in optical displays and microelectronic applications, Adv. Mater. 22(34), 3778 (2010)
CrossRef ADS Google scholar
[44]
M. A. Reyes-Martinez, A. J. Crosby, and A. L. Briseno, Rubrene crystal field-effect mobility modulation via conducting channel wrinkling, Nat. Commun. 6(1), 6948 (2015)
CrossRef ADS Google scholar
[45]
J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors, Phys. Rev. Lett. 98(19), 196804 (2007)
CrossRef ADS Google scholar
[46]
H. T. Yi, Y. Chen, K. Czelen, and V. Podzorov, Vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors, Adv. Mater. 23(48), 5807 (2011)
CrossRef ADS Google scholar
[47]
G. F. Jones, R. M. Pinto, A. De Sanctis, V. K. Nagareddy, C. D. Wright, H. Alves, M. F. Craciun, and S. Russo, Highly efficient rubrene-graphene charge-transfer interfaces as phototransistors in the visible regime, Adv. Mater. 29(41), 1702993 (2017)
CrossRef ADS Google scholar
[48]
V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals, Science 303(5664), 1644 (2004)
CrossRef ADS Google scholar
[49]
J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Very high-mobility organic single-crystal transistors with in-crystal conduction channels, Appl. Phys. Lett. 90(10), 102120 (2007)
CrossRef ADS Google scholar
[50]
M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, M. Uno, T. Nishikawa, and T. Kawase, High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators, Appl. Phys. Lett. 90(18), 182117 (2007)
CrossRef ADS Google scholar
[51]
Y. J. Zhang, H. L. Dong, Q. X. Tang, Y. D. He, and W. P. Hu, Mobility dependence on the conducting channel dimension of organic field-effect transistors based on single-crystalline nanoribbons, J. Mater. Chem. 20(33), 7029 (2010)
CrossRef ADS Google scholar
[52]
J. M. Adhikari, M. R. Gadinski, Q. Li, K. G. Sun, M. A. Reyes-Martinez, E. Iagodkine, A. L. Briseno, T. N. Jackson, Q. Wang, and E. D. Gomez, Controlling chain conformations of high-k fluoropolymer dielectrics to enhance charge mobilities in rubrene single-crystal fieldeffect transistors, Adv. Mater. 28(45), 10095 (2016)
CrossRef ADS Google scholar
[53]
T. Takahashi, T. Takenobu, J. Takeya, and Y. Iwasa, Ambipolar organic field-effect transistors based on rubrene single crystals, Appl. Phys. Lett. 88(3), 033505 (2006)
CrossRef ADS Google scholar
[54]
T. Takenobu, T. Takahashi, J. Takeya, and Y. Iwasa, Effect of metal electrodes on rubrene single-crystal transistors, Appl. Phys. Lett. 90(1), 013507 (2007)
CrossRef ADS Google scholar
[55]
S. Z. Bisri, T. Takenobu, T. Takahashi, and Y. Iwasa, Electron transport in rubrene single-crystal transistors, Appl. Phys. Lett. 96(18), 183304 (2010)
CrossRef ADS Google scholar
[56]
Y. Yomogida, J. Pu, H. Shimotani, S. Ono, S. Hotta, Y. Iwasa, and T. Takenobu, Ambipolar organic singlecrystal transistors based on ion gels, Adv. Mater. 24(32), 4392 (2012)
CrossRef ADS Google scholar
[57]
T. Uemura, M. Yamagishi, Y. Okada, K. Nakayama, M. Yoshizumi, M. Uno, and J. Takeya, Monolithic complementary inverters based on organic single crystals, Adv. Mater. 22(35), 3938 (2010)
CrossRef ADS Google scholar
[58]
T. Kanagasekaran, H. Shimotani, R. Shimizu, T. Hitosugi, and K. Tanigaki, A new electrode design for ambipolar injection in organic semiconductors, Nat. Commun. 8(1), 999 (2017)
CrossRef ADS Google scholar
[59]
C. J. Park, H. J. Park, J. Y. Lee, J. Kim, C. H. Lee, and J. Joo, Photovoltaic field-effect transistors using a MoS2 and organic rubrene van der Waals hybrid, ACS Appl. Mater. Interfaces 10(35), 29848 (2018)
CrossRef ADS Google scholar
[60]
G. H. Lee, C. H. Lee, A. M. van der Zande, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Hone, and P. Kim, Heterostructures based on inorganic and organic van der Waals systems, APL Mater. 2(9), 092511 (2014)
CrossRef ADS Google scholar
[61]
X. X. He, W. Chow, F. C. Liu, B. Tay, and Z. Liu, MoS2/rubrene van der Waals heterostructure: Toward ambipolar field-effect transistors and inverter circuits, Small 13(2), 1602558 (2017)
CrossRef ADS Google scholar
[62]
M. Y. Lee, J. Park, and J. H. Oh, High-performance ambipolar organic phototransistors based on core-shell pn junction organic single crystals, ACS Appl. Electron. Mater. 2(1), 9 (2020)
CrossRef ADS Google scholar
[63]
Z. Li, J. Du, Q. Tang, F. Wang, J. B. Xu, J. C. Yu, and Q. Miao, Induced crystallization of rubrene in thin-film transistors, Adv. Mater. 22(30), 3242 (2010)
CrossRef ADS Google scholar
[64]
H. M. Lee, J. J. Kim, J. H. Choi, and S. O. Cho, In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors, ACS Nano 5(10), 8352 (2011)
CrossRef ADS Google scholar
[65]
C. H. Lee, T. Schiros, E. J. G. Santos, B. Kim, K. G. Yager, S. J. Kang, S. Lee, J. Yu, K. Watanabe, T. Taniguchi, J. Hone, E. Kaxiras, C. Nuckolls, and P. Kim, Epitaxial growth of molecular crystals on van der Waals substrates for high-performance organic electronics, Adv. Mater. 26(18), 2812 (2014)
CrossRef ADS Google scholar
[66]
H. Chang, W. L. Li, H. K. Tian, Y. H. Geng, H. B. Wang, D. H. Yan, and T. Wang, High performance of rubrene thin film transistor by weak epitaxy growth method, Org. Electron. 20, 43 (2015)
CrossRef ADS Google scholar
[67]
X. R. Hu, Z. Wang, X. F. Zhu, T. Zhu, X. D. Zhang, B. Dong, L. Z. Huang, and L. F. Chi, Foreign particle promoted crystalline nucleation for growing high-quality ultrathin rubrene films, Small 12(30), 4086 (2016)
CrossRef ADS Google scholar
[68]
L. N. Zhao, X. Jiang, J. H. Lang, W. L. Jiang, G. Zhang, C. Xue, L. M. H. Zheng, and S. Zhao, The influence of the Rubrene thickness on the performance of white organic light-emitting devices, Mater. Express 10(3), 384 (2020)
CrossRef ADS Google scholar
[69]
G. Zhang, G. L. Xing, J. H. Lang, C. X. Li, X. Y. Wang, and D. D. Wang, Active emitting layer thickness dependence and interfaces engineering studies on the performance of DOPPP white organic light emitting diodes, Opt. Commun. 459, 124921 (2020)
CrossRef ADS Google scholar
[70]
B. Zhao, Y. Q. Miao, Z. Q. Wang, W. H. Chen, K. X. Wang, H. Wang, Y. Y. Hao, B. S. Xu, and W. L. Li, Highly efficient orange fluorescent OLEDs based on the energy transfer from bilayer interface exciplex, Org. Electron. 37, 1 (2016)
CrossRef ADS Google scholar
[71]
T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, and C. Adachi, Lateral organic light-emitting diode with field-effect transistor characteristics, J. Appl. Phys. 98(7), 074506 (2005)
CrossRef ADS Google scholar
[72]
S. M. Li, X. Li, L. Z. Wang, and H. B. Liu, Study on the fabrication of white organic light-emitting devices using the doping characteristics of rubrene and programmed test circuit, J. Nanosci. Nanotechnol. 18(12), 8409 (2018)
CrossRef ADS Google scholar
[73]
W. Y. Hung, P. Y. Chiang, S. W. Lin, W. C. Tang, Y. T. Chen, S. H. Liu, P. T. Chou, Y. T. Hung, and K. T. Wong, Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor, ACS Appl. Mater. Interfaces 8(7), 4811 (2016)
CrossRef ADS Google scholar
[74]
X. T. Tang, R. H. Pan, X. Zhao, H. Q. Zhu, and Z. H. Xiong, Achievement of high-level reverse intersystem crossing in rubrene-doped organic light emitting diodes, J. Phys. Chem. Lett. 11(8), 2804 (2020)
CrossRef ADS Google scholar
[75]
Y. Q. Zheng, J. L. Yu, C. Wang, F. Yang, B. Wei, J. H. Zhang, C. H. Zeng, and Y. Yang, Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS, J. Phys. D Appl. Phys. 51(22), 225302 (2018)
CrossRef ADS Google scholar
[76]
D. Saikia, and R. Sarma, Characterization of organic light-emitting diode using a rubrene interlayer between electrode and hole transport layer, Bull. Mater. Sci. 43(1), 35 (2020)
CrossRef ADS Google scholar
[77]
Y. Liu, X. M. Wu, Z. H. Xiao, J. A. Gao, J. Zhang, H. S. Rui, X. Lin, N. Zhang, Y. L. Hua, and S. G. Yin, Highly efficient tandem OLED based on C60/rubrene: MoO3 as charge generation layer and LiF/Al as electron injection layer, Appl. Surf. Sci. 413(15), 302 (2017)
CrossRef ADS Google scholar
[78]
S. Engmann, A. J. Barito, E. G. Bittle, N. C. Giebink, L. J. Richter, and D. J. Gundlach, Higher order effects in organic LEDs with sub-bandgap turn-on, Nat. Commun. 10(1), 227 (2019)
CrossRef ADS Google scholar
[79]
D. B. Wang, B. Liu, H. M. Zhang, H. Zhao, T. Tao, Z. L. Xie, R. Zhang, and Y. D. Zheng, Electrically injected hybrid organic/inorganicIII-nitride white light-emitting diodes based on rubrene/(InGaN/GaN) multiple-quantum-wells P-N junction, IEEE Photonics J. 11(4), 8200808 (2019)
CrossRef ADS Google scholar
[80]
M. Ullah, S. D. Yambem, E. G. Moore, E. B. Namdas, and A. K. Pandey, Singlet fission and triplet exciton dynamics in rubrene/fullerene heterojunctions: implications for electroluminescence, Adv. Electron. Mater. 1(12), 1500229 (2015)
CrossRef ADS Google scholar
[81]
Q. S. Chen, W. Y. Jia, L. X. Chen, D. Yuan, Y. Zou, and Z. H. Xiong, Determining the origin of half-bandgapvoltage electroluminescence in bifunctional rubrene/C60 Devices, Sci. Rep. 6(1), 25331 (2016)
CrossRef ADS Google scholar
[82]
Y. H. Lou, Z. K. Wang, S. Naka, and H. Okada, Bi-functional electroluminescent and photovoltaic devices based on rubrene-doped poly(3-hexylthiophene): 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends, Synth. Met. 162(3–4), 281 (2012)
CrossRef ADS Google scholar
[83]
Z. Q. Guan, R. F. Wu, Y. Zang, and J. S. Yu, Small molecule dye rubrene doped organic bulk heterojunction solar cells, Thin Solid Films 539(31), 278 (2013)
CrossRef ADS Google scholar
[84]
L. L. Yang, J. H. Chen, K. P. Ge, J. X. Guo, Q. C. Duan, F. Li, Y. Xu, and Y. H. Mai, Polymer/Si heterojunction hybrid solar cells with rubrene:DMSO organic semiconductor film as an electron-selective contact, J. Phys. Chem. C 122(41), 23371 (2018)
CrossRef ADS Google scholar
[85]
T. Zhang and R. J. Holmes, Overcoming the trade-off between exciton dissociation and charge recombination in organic photovoltaic cells, Appl. Phys. Lett. 113(14), 143302 (2018)
CrossRef ADS Google scholar
[86]
J. A. Huang, J. S. Yu, W. Wang, and Y. D. Jiang, Organic solar cells with a multicharge separation structure consisting of a thin rubrene fluorescent dye for open circuit voltage enhancement, Appl. Phys. Lett. 98(2), 023301 (2011)
CrossRef ADS Google scholar
[87]
C. M. Pelicano and H. Yanagi, Effect of rubrene:P3HT bilayer on photovoltaic performance of perovskite solar cells with electrodeposited ZnO nanorods, J. Energy. Chem 27(2), 455 (2018)
CrossRef ADS Google scholar
[88]
S. Cong, H. Yang, Y. H. Lou, L. Han, Q. H. Yi, H. B. Wang, Y. H. Sun, and G. F. Zou, Organic small molecule as the underlayer toward high performance planar perovskite solar cells, ACS Appl. Mater. Interfaces 9(3), 2295 (2017)
CrossRef ADS Google scholar
[89]
P. L. Qin, J. L. Zhang, G. Yang, X. L. Yu, and G. Li, Potassium-intercalated rubrene as a dual-functional passivation agent for high efficiency perovskite solar cells, J. Mater. Chem. A 7(4), 1824 (2019)
CrossRef ADS Google scholar
[90]
D. Wei, F. S. Ma, R. Wang, S. Y. Dou, P. Cui, H. Huang, J. Ji, E. D. Jia, X. J. Jia, S. Sajid, A. M. Eiseman, L. H. Chu, Y. F. Li, B. Jiang, J. Qiao, Y. B. Yuan, and M. C. Li, Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells, Adv. Mater. 30(31), 1707583 (2018)
CrossRef ADS Google scholar
[91]
Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Giant magnetoresistance in organic spin-valves, Nature 427(6977), 821 (2004)
CrossRef ADS Google scholar
[92]
S. Steil, N. Grossmann, M. Laux, A. Ruffing, D. Steil, M. Wiesenmayer, S. Mathias, O. L. A. Monti, M. Cinchetti, and M. Aeschlimann, Spin-dependent trapping of electrons at spinterfaces, Nat. Phys. 9(4), 242 (2013)
CrossRef ADS Google scholar
[93]
V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Spin routes in organic semiconductors, Nat. Mater. 8(9), 707 (2009)
CrossRef ADS Google scholar
[94]
H. J. Jang and C. A. Richter, Organic spin-valves and beyond: Spin injection and transport in organic semiconductors and the effect of interfacial engineering, Adv. Mater. 29(2), 1602739 (2017)
CrossRef ADS Google scholar
[95]
Z. G. Yu, Spin–orbit coupling and its effects in organic solids, Phys. Rev. B 85(11), 115201 (2012)
CrossRef ADS Google scholar
[96]
B. Li, C. Y. Kao, J. W. Yoo, V. N. Prigodin, and A. J. Epstein, Magnetoresistance in an all-organic-based spin valve,Adv. Mater. 23(30), 3382 (2011)
CrossRef ADS Google scholar
[97]
K. V. Raman, S. M. Watson, J. H. Shim, J. A. Borchers, J. Chang, and J. S. Moodera, Effect of molecular ordering on spin and charge injection in rubrene, Phys. Rev. B 80(19), 195212 (2009)
CrossRef ADS Google scholar
[98]
X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, H. Naganuma, M. Oogane, Y. Ando, and T. Miyazaki, Large change of perpendicular magnetic anisotropy in Cobalt ultrathin film induced by varying capping layers, J. Appl. Phys. 111(7), 07B320 (2012)
CrossRef ADS Google scholar
[99]
J. W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom, and A. J. Epstein, Giant magnetoresistance in ferromagnet/organic semiconductor/ferromagnet heterojunctions, Phys. Rev. B 80(20), 205207 (2009)
CrossRef ADS Google scholar
[100]
J. W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom, and A. J. Epstein, Tunneling vs. giant magnetoresistance in organic spin valve, Synth. Met. 160(3–4), 216 (2010)
CrossRef ADS Google scholar
[101]
J. W. Yoo, C. Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, and A. J. Epstein, Spin injection/detection using an organic-based magnetic semiconductor, Nat. Mater. 9(8), 638 (2010)
CrossRef ADS Google scholar
[102]
B. Li, C. Y. Kao, Y. Lu, J. W. Yoo, V. N. Prigodin, and A. J. Epstein, Room temperature organic-based spin polarizer, Appl. Phys. Lett. 99(15), 153503 (2011)
CrossRef ADS Google scholar
[103]
K. V. Raman, J. Chang, and J. S. Moodera, New method of spin injection into organic semiconductors using spin filtering tunnel barriers, Org. Electron. 12(7), 1275 (2011)
CrossRef ADS Google scholar
[104]
X. N. Yao, Q. Q. Duan, J. W. Tong, Y. F. Chang, L. Q. Zhou, G. W. Qin, and X. M. Zhang, Magnetoresistance effect and the applications for organic spin valves using molecular spacers, Materials (Basel) 11(5), 721 (2018)
CrossRef ADS Google scholar
[105]
J. Devkota, R. G. Geng, R. C. Subedi, and T. D. Nguyen, Organic spin valves: A review, Adv. Funct. Mater. 26(22), 3881 (2016)
CrossRef ADS Google scholar
[106]
V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y. Zhan, Room-temperature spintronic effects in Alq3-based hybrid devices, Phys. Rev. B 78(11), 115203 (2008)
CrossRef ADS Google scholar
[107]
X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, M. Oogane, H. Naganuma, Y. Ando, and T. Miyazaki, Observation of a large spin-dependent transport length in organic spin valves at room temperature, Nat. Commun. 4(1), 1392 (2013)
CrossRef ADS Google scholar
[108]
Y. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother, and D. H. Reich, Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures, Phys. Rev. B 79(7), 075312 (2009)
CrossRef ADS Google scholar
[109]
R. Lin, F. Wang, J. Rybicki, M. Wohlgenannt, and K. A. Hutchinson, Distinguishing between tunneling and injection regimes of ferromagnet/organic semiconductor/ferromagnet junctions, Phys. Rev. B 81(19), 195214 (2010)
CrossRef ADS Google scholar
[110]
X. M. Zhang, Q. L. Ma, K. Suzuki, A. Sugihara, G. W. Qin, T. Miyazaki, and S. Mizukami, Magnetoresistance effect in rubrene-based spin valves at room ternperature, ACS Appl. Mater. Interfaces 7(8), 4685 (2015)
CrossRef ADS Google scholar
[111]
Z. H. Li, T. Li, D. C. Qi, W. Tong, L. Q. Xu, J. Zhu, Z. T. Zhang, H. Xu, W. H. Zhang, Y. X. Guo, F. Chen, Y. Y. Han, L. Cao, F. P. Zhang, and Y. M. Xiong, Quantitative study of spin relaxation in rubrene thin films by inverse spin Hall effect, Appl. Phys. Lett. 115(5), 053301 (2019)
CrossRef ADS Google scholar
[112]
V. Podzorov, E. Menard, S. Pereversev, B. Yakshinsky, T. Madey, J. A. Rogers, and M. E. Gershenson, Interaction of organic surfaces with active species in the high-vacuum environment, Appl. Phys. Lett. 87(9), 093505 (2005)
CrossRef ADS Google scholar
[113]
E. Fumagalli, L. Raimondo, L. Silvestri, M. Moret, A. Sassella, and M. Campione, Oxidation dynamics of epitaxial rubrene ultrathin films, Chem. Mater. 23(13), 3246 (2011)
CrossRef ADS Google scholar
[114]
V. Nardello, M. J. Marti, C. Pierlot, and J. M. Aubry, Photochemistry without light: Oxidation of rubrene in a microemulsion with a chemical source of singlet molecular oxygen, J. Chem. Educ. 76(9), 1285 (1999)
CrossRef ADS Google scholar
[115]
J. Ly, K. Martin, S. Thomas, M. Yamashita, B. Yu, C. A. Pointer, H. Yamada, K. R. Carter, S. Parkin, L. Zhang, J. L. Bredas, E. R. Young, and A. L. Briseno, Short excited-state lifetimes enable photo-oxidatively stable rubrene derivatives, J. Phys. Chem. A 124(1), 255 (2020)
CrossRef ADS Google scholar
[116]
G. Z. Xie, S. Hahn, F. Rominger, J. Freudenberg, and U. H. F. Bunz, Synthesis and characterization of two different azarubrenes, Chem. Commun. 54(55), 7593 (2018)
CrossRef ADS Google scholar
[117]
W. Xie, P. L. Prabhumirashi, Y. Nakayama, K. A. Mc-Garry, M. L. Geier, Y. Uragami, K. Mase, C. J. Douglas, H. Ishii, M. C. Hersam, and C. D. Frisbie, Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors, ACS Nano 7(11), 10245 (2013)
CrossRef ADS Google scholar
[118]
J. F. Li, Z. J. Ni, X. T. Zhang, R. J. Li, H. L. Dong, and W. P. Hu, Enhanced stability of a rubrene analogue with a brickwork packing motif, J. Mater. Chem. C 5(33), 8376 (2017)
CrossRef ADS Google scholar
[119]
N. Stingelin-Stutzmann, E. Smits, H. Wondergem, C. Tanase, P. Blom, P. Smith, and D. de Leeuw, Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics, Nat. Mater. 4(8), 601 (2005)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2216 KB)

Accesses

Citations

Detail

Sections
Recommended

/