Theory, preparation, properties and catalysis application in 2D graphynes-based materials

Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu

PDF(8909 KB)
PDF(8909 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 23201. DOI: 10.1007/s11467-020-0992-2
REVIEW ARTICLE
REVIEW ARTICLE

Theory, preparation, properties and catalysis application in 2D graphynes-based materials

Author information +
History +

Abstract

Carbon has three hybridization forms of sp, sp2− and sp3−, and the combination of different forms can obtain different kinds of carbon allotropes, such as diamond, carbon nanotubes, fullerene, graphynes (GYs) and graphdiyne (GDY). Among them, the GDY molecule is a single-layer two-dimensional (2D) planar structure material with highly π-conjugation formed by sp and sp2− hybridization. GDY has a carbon atom ring composed of benzene ring and acetylene, which makes GDY have a uniformly distributed pore structure. In addition, GDY planar material have some slight wrinkles, which makes GDY have better self-stability than other 2D planar materials. The excellent properties of GDY make it attract the attention of researchers. Therefore, GDY is widely used in chemical catalysis, electronics, communications, clean energy and composite materials. This paper summarizes the recent progress of GDY research, including structure, preparation, properties and application of GDY in the field of catalysts.

Keywords

2D materials / catalysis application / graphyne / property

Cite this article

Download citation ▾
Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys., 2021, 16(2): 23201 https://doi.org/10.1007/s11467-020-0992-2

References

[1]
Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, and X. F. Yu, TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer, 13(11), 1602896 (2017)
CrossRef ADS Google scholar
[2]
F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, and Z. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)
CrossRef ADS Google scholar
[3]
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, and Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. USA 115(3), 501 (2018)
CrossRef ADS Google scholar
[4]
Y. L. Ding, B. M. Goh, H. Zhang, K. P. Loh, and L. Lu, Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for highrate lithium ion batteries, J. Power Sources 236, 1 (2013)
CrossRef ADS Google scholar
[5]
H. Huang, H. Wang, B. Li, X. Mo, H. Long, Y. Li, H. Zhang, D. L. Carroll, and G. Fang, Seedless synthesis of layered ZnO nanowall networks on Al substrate for white light electroluminescence, Nanotechnology 24(31), 315203 (2013)
CrossRef ADS Google scholar
[6]
J. Lu, K. Zhang, X. Feng Liu, H. Zhang, T. Chien Sum, A. H. Castro Neto, and K. P. Loh, Order–disorder transition in a two-dimensional boron–carbon–nitride alloy, Nat. Commun. 4(1), 2681 (2013)
CrossRef ADS Google scholar
[7]
J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, PLLA nanofibrous paperbased plasmonic substrate with tailored hydrophilicity for focusing SERS detection, ACS Appl. Mater. Interfaces 7(9), 5391 (2015)
CrossRef ADS Google scholar
[8]
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, On-nanowire axial heterojunction design for high-performance photodetectors, ACS Nano 10(9), 8474 (2016)
CrossRef ADS Google scholar
[9]
Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, and H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes, Nanoscale 8(27), 13273 (2016)
CrossRef ADS Google scholar
[10]
Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction, Angew. Chem. 128(44), 14053 (2016)
CrossRef ADS Google scholar
[11]
S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, and G. S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas, Sens. Actuators B Chem. 226, 478 (2016)
CrossRef ADS Google scholar
[12]
Z. Zhang, Y. Liu, L. Ren, H. Zhang, Z. Huang, X. Qi, X. Wei, and J. Zhong, Three-dimensional-networked Ni-Co- Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution, Electrochim. Acta 200, 142 (2016)
CrossRef ADS Google scholar
[13]
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)
CrossRef ADS Google scholar
[14]
X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, and H. Zhang, Few‐layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction, Adv. Energy Mater. 7(19), 1700396 (2017)
CrossRef ADS Google scholar
[15]
Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horiz. 4(6), 997 (2017)
CrossRef ADS Google scholar
[16]
S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect, Adv. Opt. Mater. 3(12), 1769 (2015)
CrossRef ADS Google scholar
[17]
K. Wang, R. Liang, and P. Qiu, Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy, IEEE Photonics J. 7(6), 1 (2015)
CrossRef ADS Google scholar
[18]
M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device, Opt. Lett. 40(20), 4767 (2015)
CrossRef ADS Google scholar
[19]
Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, Large energy, wavelength widely tunable, topological insulator Q-switched erbiumdoped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20(5), 315 (2014)
CrossRef ADS Google scholar
[20]
P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser, IEEE Photonics Technol. Lett. 27(3), 264 (2015)
CrossRef ADS Google scholar
[21]
X. Jiang, S, Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, Broadband nonlinear photonics in fewlayer MXene Ti3C2Tx (T= F, O, or OH), Laser Photonics Rev. 12 (2018)
CrossRef ADS Google scholar
[22]
D. Wang, M. Zhang, Z. Li, and Y. Cui, Flexible optical cross-connect structures supporting WDM multicast with multiple pumps for multiple channels, IEEE Photonics J. 6(6), 1 (2014)
CrossRef ADS Google scholar
[23]
P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber, IEEE Photonics Technol. Lett. 26(19), 1912 (2014)
CrossRef ADS Google scholar
[24]
H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, Vector dissipative solitons in graphene mode locked fiber lasers, Opt. Commun. 283(17), 3334 (2010)
CrossRef ADS Google scholar
[25]
Y. Song, H. Zhang, D. Tang, and D. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser, Opt. Express 20(24), 27283 (2012)
CrossRef ADS Google scholar
[26]
Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Qswitched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)
CrossRef ADS Google scholar
[27]
G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, Improved transfer quality of CVDgrown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics, ACS Appl. Mater. Interfaces 5(20), 10288 (2013)
CrossRef ADS Google scholar
[28]
R. Zhou, P. Tang, Y. Chen, S. Chen, C. Zhao, H. Zhang, and S. Wen, Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber, Appl. Opt. 53(2), 254 (2014)
CrossRef ADS Google scholar
[29]
Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)
CrossRef ADS Google scholar
[30]
L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime, Photon. Res. 3(5), 214 (2015)
CrossRef ADS Google scholar
[31]
H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation, ACS Photonics 2(7), 832 (2015)
CrossRef ADS Google scholar
[32]
Y. F. Song, H. Zhang, L. M. Zhao, D. Y. Shen, and D. Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene, Opt. Express 24(2), 1814 (2016)
CrossRef ADS Google scholar
[33]
M. Liu, A. Luo, X. Zheng, N. Zhao, H. Liu, Z. Luo, W. Xu, Y. Chen, C. Zhao, and H. Zhang, Microfiber-based highly nonlinear topological insulator photonic device for the formation of versatile multi-soliton patterns in a fiber laser, J. Lightwave Technol. 33(10), 2056 (2015)
CrossRef ADS Google scholar
[34]
R. Baughman, H. Eckhardt, and M. Kertesz, Structure‐ property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)
CrossRef ADS Google scholar
[35]
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
CrossRef ADS Google scholar
[36]
J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, Photonics and optoelectronics of two-dimensional materials beyond graphene, Nanotechnology 27(46), 462001 (2016)
CrossRef ADS Google scholar
[37]
H. Bao, L. Wang, C. Li, and J. Luo, Structural characterization and identification of graphdiyne and graphdiynebased materials, ACS Appl. Mater. Interfaces 11(3), 2717 (2019)
CrossRef ADS Google scholar
[38]
Q. Bao, H. Zhang, and C. Pan, Electric-field-induced microstructural transformation of carbon nanotubes, Appl. Phys. Lett. 89(6), 063124 (2006)
CrossRef ADS Google scholar
[39]
Q. Bao, H. Zhang, and C. Pan, Simulation for growth of multi-walled carbon nanotubes in electric field, Comput. Mater. Sci. 39(3), 616 (2007)
CrossRef ADS Google scholar
[40]
S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, Healable, transparent, room‐temperature electronic sensors based on carbon nanotube network‐coated polyelectrolyte multilayers, Small 11(43), 5807 (2015)
CrossRef ADS Google scholar
[41]
P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high‐performance gas sensing, Small 11(40), 5409 (2015)
CrossRef ADS Google scholar
[42]
H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter, Appl. Phys. Express 7(2), 024301 (2014)
CrossRef ADS Google scholar
[43]
Z. Huang, W. Han, H, Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015)
CrossRef ADS Google scholar
[44]
R. Wang, X. Li, Z. Wang, and H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive, Nano Energy 34, 131 (2017)
CrossRef ADS Google scholar
[45]
Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)
CrossRef ADS Google scholar
[46]
S. W. Cranford, and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)
CrossRef ADS Google scholar
[47]
H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, and D. Wang, Two-dimensional carbon leading to new photoconversion processes, Chem. Soc. Rev. 43(13), 4281 (2014)
CrossRef ADS Google scholar
[48]
P. Wu, P. Du, H. Zhang, and C. Cai, Graphdiyne as a metal-free catalyst for low-temperature CO oxidation, Phys. Chem. Chem. Phys. 16(12), 5640 (2014)
CrossRef ADS Google scholar
[49]
H. Ren, H. Shao, L. Zhang, D. Guo, Q. Jin, R. Yu, L. Wang, Y. Li, Y. Wang, H. Zhao, and D. Wang, A new graphdiyne nanosheet/Pt nanoparticle‐based counter electrode material with enhanced catalytic activity for dye‐sensitized solar cells, Adv. Energy Mater. 5(12), 1500296 (2015)
CrossRef ADS Google scholar
[50]
K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)
CrossRef ADS Google scholar
[51]
H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)
CrossRef ADS Google scholar
[52]
Z. Chen, C. Molina‐Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nanotechnological applications, Ann. Phys. 529(11), 1700056 (2017)
CrossRef ADS Google scholar
[53]
Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang, and Y. Li, Synthesis and properties of 2D carbon graphdiyne, Acc. Chem. Res. 50(10), 2470 (2017)
CrossRef ADS Google scholar
[54]
Z. Jia, Z. Zuo, Y. Yi, H. Liu, D. Li, Y. Li, and Y. Li, Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage, Nano Energy 33, 343 (2017)
CrossRef ADS Google scholar
[55]
J. He, N. Wang, Z. Yang, X. Shen, K. Wang, C. Huang, Y. Yi, Z. Tu, and Y. Li, Fluoride graphdiyne as a freestanding electrode displaying ultra-stable and extraordinary high Li storage performance, Energy Environ. Sci. 11(10), 2893 (2018)
CrossRef ADS Google scholar
[56]
C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev. 118(16), 7744 (2018)
CrossRef ADS Google scholar
[57]
M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)
CrossRef ADS Google scholar
[58]
N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)
CrossRef ADS Google scholar
[59]
M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)
CrossRef ADS Google scholar
[60]
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(19), 3256 (2010)
CrossRef ADS Google scholar
[61]
M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)
CrossRef ADS Google scholar
[62]
K. Wang, N. Wang, J. He, Z. Yang, X. Shen, and C. Huang, Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors, ACS Appl. Mater. Interfaces 9(46), 40604 (2017)
CrossRef ADS Google scholar
[63]
C. Xie, N. Wang, X. Li, G. Xu, and C. Huang, Research on the preparation of graphdiyne and its derivatives, Chemistry 26(3), 569 (2020)
CrossRef ADS Google scholar
[64]
N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, and D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment, ACS Nano 7(2), 1504 (2013)
CrossRef ADS Google scholar
[65]
R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)
CrossRef ADS Google scholar
[66]
S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)
CrossRef ADS Google scholar
[67]
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Robust superhydrophobic foam: A graphdiyne‐based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)
CrossRef ADS Google scholar
[68]
N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li, and D. Wang, Few‐layer graphdiyne nanosheets applied for multiplexed real‐time DNA detection, Adv. Mater. 29(18), 1606755 (2017)
CrossRef ADS Google scholar
[69]
N. Yang, in: The Preparation of Nano Composites and Their Applications in Solar Energy Conversion93–110, Springer, 2017
CrossRef ADS Google scholar
[70]
C. Lu, Y. Yang, J. Wang, R. Fu, X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Lin, X. Tao, Y. Li, and W. Chen, Highperformance graphdiyne-based electrochemical actuators, Nat. Commun. 9(1), 752 (2018)
CrossRef ADS Google scholar
[71]
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)
CrossRef ADS Google scholar
[72]
Z. Shi, X. Li, Y. Zhang, H. Li, Y. Zhao, P. Guo, and Y. Guo, Graphdiyne for ultrashort pulse generation in an erbium-doped hybrid mode-locked fiber laser, Front. Phys. 7, 150 (2019)
CrossRef ADS Google scholar
[73]
W. Ma, Y. Xue, S. Guo, Y. Jiang, F. Wu, P. Yu, and L. Mao, Graphdiyne oxide: A new carbon nanozyme, Chem. Commun. 56(38), 5115 (2020)
CrossRef ADS Google scholar
[74]
T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, A flexible transparent colorimetric wrist strap sensor, Nanoscale 9(2), 869 (2017)
CrossRef ADS Google scholar
[75]
Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2, 035011 (2015)
CrossRef ADS Google scholar
[76]
J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers, Opt. Express 23(17), 22643 (2015)
CrossRef ADS Google scholar
[77]
Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)
CrossRef ADS Google scholar
[78]
B. X. Wang and G. Z. Wang, Quad-band terahertz absorber based on a simple design of metamaterial resonator, IEEE Photonics J. 8(6), 1 (2016)
CrossRef ADS Google scholar
[79]
J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, Black phosphorus based all-optical-signalprocessing toward high performances and enhanced stability, ACS Photonics 4(6), 1466 (2017)
CrossRef ADS Google scholar
[80]
J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)
CrossRef ADS Google scholar
[81]
Y. Xu, X. F. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)
CrossRef ADS Google scholar
[82]
Z. Chu, J. Liu, Z. Guo, and H. Zhang, 2 m passively Q-switched laser based on black phosphorus, Opt. Mater. Express 6(7), 2374 (2016)
CrossRef ADS Google scholar
[83]
J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)
CrossRef ADS Google scholar
[84]
X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector, Adv. Funct. Mater. 27(18), 1606834 (2017)
CrossRef ADS Google scholar
[85]
J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and modelocked fiber lasers, Sci. Rep. 6(1), 30361 (2016)
CrossRef ADS Google scholar
[86]
C. Ge, J. Chen, S. Tang, Y. Du, and N. Tang, Review of the electronic, optical, and magnetic properties of graphdiyne: From theories to experiments, ACS Appl. Mater. Interfaces 11(3), 2707 (2019)
CrossRef ADS Google scholar
[87]
R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, Carbon nanotubes – the route toward applications, Science 297(5582), 787 (2002)
CrossRef ADS Google scholar
[88]
Q. Li, Y. Li, Y. Chen, L. Wu, C. Yang, and X. Cui, Synthesis of γ-graphyne by mechanochemistry and its electronic structure, Carbon 136, 248 (2018)
CrossRef ADS Google scholar
[89]
C. Yang, Y. Li, Y. Chen, Q. Li, L. Wu, and X. Cui, Mechanochemical synthesis of ‐graphyne with enhanced lithium storage performance, Small 15(8), 1804710 (2019)
CrossRef ADS Google scholar
[90]
S. W. Cranford, D. B. Brommer, and M. Buehler, Extended graphynes: Simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)
CrossRef ADS Google scholar
[91]
J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet, J. Phys. Chem. C 115(42), 20466 (2011)
CrossRef ADS Google scholar
[92]
J. Zhou, K. Lv, Q. Wang, X. S. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)
CrossRef ADS Google scholar
[93]
Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)
CrossRef ADS Google scholar
[94]
T. Dinadayalane and J. Leszczynski, Remarkable diversity of carbon–carbon bonds: Structures and properties of fullerenes, carbon nanotubes, and graphene, Struct. Chem. 21(6), 1155 (2010)
CrossRef ADS Google scholar
[95]
A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)
CrossRef ADS Google scholar
[96]
J. Carper, Vol. 124192-+ (Bowker magazine group cahners magazine division 249 W 17TH ST, New York, 1999
[97]
Y. Yang and X. Xu, Mechanical properties of graphyne and its family–A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)
CrossRef ADS Google scholar
[98]
S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)
CrossRef ADS Google scholar
[99]
H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Adv. 1(5), 768 (2011)
CrossRef ADS Google scholar
[100]
M. Mirnezhad, R. Ansari, H. Rouhi, M. Seifi, and M. Faghihnasiri, Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption, Solid State Commun. 152(20), 1885 (2012)
CrossRef ADS Google scholar
[101]
Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: A first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)
CrossRef ADS Google scholar
[102]
Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)
CrossRef ADS Google scholar
[103]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme, Nature 438, 197 (2005)
CrossRef ADS Google scholar
[104]
D. Malko, C. Neiss, F. Viñes, and A. Görling, Competition for graphene: Graphynes with direction-dependent Dirac cones, Phys. Rev. Lett. 108(8), 086804 (2012)
CrossRef ADS Google scholar
[105]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef ADS Google scholar
[106]
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
CrossRef ADS Google scholar
[107]
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
CrossRef ADS Google scholar
[108]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[109]
J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross, M. Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang, A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, and A. Görling, Understanding band gaps of solids in generalized Kohn–Sham theory, Proc. Natl. Acad. Sci. USA 114(11), 2801 (2017)
CrossRef ADS Google scholar
[110]
E. N. Economou, Green’s Functions in Quantum Physics, Vol. 7, Springer Science & Business Media, 2006
CrossRef ADS Google scholar
[111]
L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem, Phys. Rev. 139(3A), A796 (1965)
CrossRef ADS Google scholar
[112]
M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)
CrossRef ADS Google scholar
[113]
F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Z. Phys. 52(7–8), 555 (1929)
CrossRef ADS Google scholar
[114]
J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94(6), 1498 (1954)
CrossRef ADS Google scholar
[115]
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65(16), 165401 (2002)
CrossRef ADS Google scholar
[116]
J. S. Wang, J. Wang, and J. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
CrossRef ADS Google scholar
[117]
Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phononphonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B 78(22), 224303 (2008)
CrossRef ADS Google scholar
[118]
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef ADS Google scholar
[119]
X. Qian, H. Liu, C. Huang, S. Chen, L. Zhang, Y. Li, J. Wang, and Y. Li, Self-catalyzed growth of large-area nanofilms of two-dimensional carbon, Sci. Rep. 5(1), 7756 (2015)
CrossRef ADS Google scholar
[120]
R. Liu, X. Gao, J. Zhou, H. Xu, Z. Li, and S. Zhang, Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil, Adv. Mater. 29(18), 1604665 (2017)
CrossRef ADS Google scholar
[121]
J. Zhou, Z. Xie, R. Liu, X. Gao, J. Li, Y. Xiong, L. Tong, J. Zhang, and Z. Liu, Synthesis of ultrathin graphdiyne film using a surface template, ACS Appl. Mater. Interfaces 11(3), 2632 (2019)
CrossRef ADS Google scholar
[122]
F. Zhao, In situ growth of graphdiyne on arbitrary substrates with a controlled-release method, Chem. Commun. 54, 6004 (2018)
CrossRef ADS Google scholar
[123]
Z. Yang, X. Shen, N. Wang, J. He, X. Li, X. Wang, Z. Hou, K. Wang, J. Gao, T. Jiu, and C. Huang, Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion, ACS Appl. Mater. Interfaces 11(3), 2608 (2019)
CrossRef ADS Google scholar
[124]
G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, and Y. Li, Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission, J. Phys. Chem. C 115(6), 2611 (2011)
CrossRef ADS Google scholar
[125]
X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, and Y. Li, Construction of graphdiyne nanowires with highconductivity and mobility, Dalton Transactions 41, 730 (2012)
CrossRef ADS Google scholar
[126]
B. G. Shohany, M. R. Roknabadi, and A. Kompany, Computational study of edge configuration and the diameter effects on the electrical transport of graphdiyne nanotubes, Physica E 84, 146 (2016)
CrossRef ADS Google scholar
[127]
L. D. Pan, L. Z. Zhang, B. Q. Song, S. X. Du, and H. J. Gao, Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures, Appl. Phys. Lett. 98(17), 173102 (2011)
CrossRef ADS Google scholar
[128]
X. Gao, H. Ren, J. Zhou, R. Du, C. Yin, R. Liu, H. Peng, L. Tong, Z. Liu, and J. Zhang, Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation, Chem. Mater. 29(14), 5777 (2017)
CrossRef ADS Google scholar
[129]
J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)
CrossRef ADS Google scholar
[130]
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, A graphdiyne-based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)
CrossRef ADS Google scholar
[131]
P. Prabakaran, S. Satapathy, E. Prasad, and S. Sankararaman, Architecting pyrediyne nanowalls with improved inter-molecular interactions, electronic features and transport characteristics, J. Mater. Chem. C 6, 380, (2018)
CrossRef ADS Google scholar
[132]
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29, 1605308 (2017)
CrossRef ADS Google scholar
[133]
R. Matsuoka, R. Sakamoto, K. Hoshiko, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/ liquid interface, J. Am. Chem. Soc. 139(8), 3145 (2017)
CrossRef ADS Google scholar
[134]
R. Toyoda, R. Shiotsuki, N. Fukui, K. Wada, H. Maeda, R. Sakamoto, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Expansion of the graphdiyne family: A triphenylene-cored analogue, ACS Appl. Mater. Interfaces 11(3), 2730 (2018)
CrossRef ADS Google scholar
[135]
X. Kan, Y. Ban, C. Wu, Q. Pan, H. Liu, J. Song, Z. Zuo, Z. Li, and Y. Zhao, Interfacial synthesis of conjugated two-dimensional N-graphdiyne, ACS Appl. Mater. Interfaces 10(1), 53 (2018)
CrossRef ADS Google scholar
[136]
H. Shang, Z. Zuo, L. Li, F. Wang, H. Liu, Y. Li, and Y. Li, Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes, Angewandte Chemie International Edition 57(3), 774 (2018)
CrossRef ADS Google scholar
[137]
S. S. Wang, H. B. Liu, X. N. Kan, L. Wang, Y. H. Chen, B. Su, Y. L. Li, and L. Jiang, Superlyophilicity-facilitated synthesis reaction at the microscale: Ordered graphdiyne stripe arrays, Small 13(4), 1602265 (2017)
CrossRef ADS Google scholar
[138]
Z. Zuo, H. Shang, Y. Chen, J. Li, H. Liu, Y. Li, and Y. Li, A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode, Chem. Commun. 53(57), 8074 (2017)
CrossRef ADS Google scholar
[139]
H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, Y. Li, and Y. Li, N-doped graphdiyne for highperformance electrochemical electrodes, Nano Energy 44, 144 (2018)
CrossRef ADS Google scholar
[140]
J. Li, J. Xu, Z. Xie, X. Gao, J. Zhou, Y. Xiong, C. Chen, J. Zhang, and Z. Liu, Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application, Adv. Mater. 30(20), 1800548 (2018)
CrossRef ADS Google scholar
[141]
Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101(8), 081909 (2012)
CrossRef ADS Google scholar
[142]
A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes, physica status solidi (b) 248, 1879 (2011)
CrossRef ADS Google scholar
[143]
J. Chen, J. Xi, D. Wang, and Z. Shuai, Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction, J. Phys. Chem. Lett. 4(9), 1443 (2013)
CrossRef ADS Google scholar
[144]
J. Xi, D. Wang, Y. Yi, and Z. Shuai, Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach, J. Chem. Phys. 141(3), 034704 (2014)
CrossRef ADS Google scholar
[145]
B. G. Kim and H. J. Choi, Graphyne: Hexagonal network of carbon with versatile Dirac cones, Phys. Rev. B 86(11), 115435 (2012)
CrossRef ADS Google scholar
[146]
J. He, S. Y. Ma, P. Zhou, C. X. Zhang, C. He, and L. Z. Sun, Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+Ucalculations, J. Phys. Chem. C 116(50), 26313 (2012)
CrossRef ADS Google scholar
[147]
H. Bu, M. Zhao, A. Wang, and X. Wang, First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons, Carbon 65, 341 (2013)
CrossRef ADS Google scholar
[148]
G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)
CrossRef ADS Google scholar
[149]
Q. Zheng, G. Luo, Q. Liu, R. Quhe, J. Zheng, K. Tang, Z. Gao, S. Nagase, and J. Lu, Structural and electronic properties of bilayer and trilayer graphdiyne, Nanoscale 4(13), 3990 (2012)
CrossRef ADS Google scholar
[150]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[151]
X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang, C. Yin, F. Ding, S. Zhang, X. Yi, J. Wang, L. Tong, Y. Han, Z. Liu, and J. Zhang, Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy, Sci. Adv. 4(7), eaat6378 (2018)
CrossRef ADS Google scholar
[152]
C. Li, X. Lu, Y. Han, S. Tang, Y. Ding, R. Liu, H. Bao, Y. Li, J. Luo, and T. Lu, Direct imaging and determination of the crystal structure of six-layered graphdiyne, Nano Res. 11(3), 1714 (2018)
CrossRef ADS Google scholar
[153]
J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)
CrossRef ADS Google scholar
[154]
S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong, Z. Liu, J. Zhang, and Z. Liu, Raman spectra and corresponding strain effects in graphyne and graphdiyne, J. Phys. Chem. C 120(19), 10605 (2016)
CrossRef ADS Google scholar
[155]
J. Zhong, J. Wang, J. G. Zhou, B. H. Mao, C. H. Liu, H. B. Liu, Y. L. Li, T. K. Sham, X. H. Sun, and S. D. Wang, Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy, J. Phys. Chem. C 117(11), 5931 (2013)
CrossRef ADS Google scholar
[156]
Y. Zheng, Y. Chen, L. Lin, Y. Sun, H. Liu, Y. Li, Y. Du, and N. Tang, Intrinsic magnetism of graphdiyne, Appl. Phys. Lett. 111(3), 033101 (2017)
CrossRef ADS Google scholar
[157]
X. Huang, X. Qi, F. Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2), 666 (2012)
CrossRef ADS Google scholar
[158]
J. Zhou, J. Zhang, and Z. Liu, Advanced progress in the synthesis of graphdiyne, Acta Physico-Chimica Sinica 34(9), 977 (2018)
[159]
J. Xi, Y. Nakamura, T. Zhao, D. Wang, and Z. Shuai, Theoretical studies on the deformation potential, electron-phonon coupling, and carrier transports of layered systems, Acta Physico-Chimica Sinica 34(9), 961 (2018)
CrossRef ADS Google scholar
[160]
J. Lee, Y. Li, J. Tang, and X. Cui, Synthesis of hydrogen substituted graphyne through mechanochemistry and its electrocatalytic properties, Acta Physico-Chimica Sinica 34(9), 1080 (2018)
CrossRef ADS Google scholar
[161]
M. Liu and Y. Li, Graphdiyne: From synthesis to application, Acta Physico-Chimica Sinica 34(9), 959 (2018)
CrossRef ADS Google scholar
[162]
X. Chen and S. Zhang, Modulation of molecular sensing properties of graphdiyne based on 3d impurities, Acta Physico-Chimica Sinica 34(9), 1061 (2018)
[163]
X. Shen, J. He, N. Wang, and C. Huang, Graphdiyne for electrochemical energy storage devices, Acta Physico-Chimica Sinica 34(9), 1029 (2018)
CrossRef ADS Google scholar
[164]
X. Lu, Y. Han, and T. Lu, Structure characterization and application of graphdiyne in photocatalytic and electrocatalytic reactions, Acta Physico-Chimica Sinica 34(9), 1014 (2018)
CrossRef ADS Google scholar
[165]
Y. Chen, J. Li, and H. Liu, Preparation of graphdiyneorganic conjugated molecular composite materials for lithium ion batteries, Acta Physico-Chimica Sinica 34(9), 1074 (2018)
[166]
Y. Zhao, L. Zhang, J. Qi, Q. Jin, K. Lin, and D. Wang, Graphdiyne with enhanced ability for electron transfer, Wuli Huaxue Xuebao 34(9), 1048 (2018)
[167]
Y. Li and Y. Li, Chemical modification and functionalization of graphdiyne, Acta Physico-Chimica Sinica 34(9), 992 (2018)
[168]
Z. Huang, Z. Yu, Y. Li, and J. Wang, ZnO ultraviolet photodetector modified with graphdiyne, Acta Physico-Chimica Sinica 34(9), 1088 (2018)
[169]
S. Wang, L. Yi, J. E. Halpert, X. Lai, Y. Liu, H. Cao, R. Yu, D. Wang, and Y. Li, A novel and highly efficient photocatalyst based on P25–Graphdiyne nanocomposite, Small 8(2), 265 (2012)
CrossRef ADS Google scholar
[170]
Y. Y. Liu, First-principles study on new photocatalytic materials graphdiyne-TiO2, Acta Chimica Sinica 71(2), 260 (2013)
CrossRef ADS Google scholar
[171]
S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S. J. Kim, and G. Venugopal, Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material, J. Phys. Chem. C 119(38), 22057 (2015)
CrossRef ADS Google scholar
[172]
X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)
CrossRef ADS Google scholar
[173]
H. Y. Si, C. J. Mao, J. Y. Zhou, X. F. Rong, Q. X. Deng, S. L.Chen, J. J. Zhao, X. G. Sun, Y. M. Shen, W. J. Feng, P. Gao, and J. Zhang, Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne, Carbon 132, 598 (2018)
CrossRef ADS Google scholar
[174]
S. Guo, Y. Jiang, F. Wu, P. Yu, H. Liu, Y. Li, and L. Mao, Graphdiyne-promoted highly efficient photocatalytic activity of graphdiyne/silver phosphate pickering emulsion under visible-light irradiation, ACS Appl. Mater. Interfaces 11(3), 2684 (2019)
CrossRef ADS Google scholar
[175]
J. X. Lv, Z. M. Zhang, J. Wang, X. L. Lu, W. Zhang, and T. B. Lu, In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production, ACS Appl. Mater. Interfaces 11(3), 2655 (2019)
CrossRef ADS Google scholar
[176]
B. K. Das, D. Sen, and K. K. Chattopadhyay, Nitrogen doping in acetylene bonded two dimensional carbon crystals: Ab-initioforecast of electrocatalytic activities vis-à-vis boron doping, Carbon 105, 330 (2016)
CrossRef ADS Google scholar
[177]
B. K. Das, D. Sen, and K. K. Chattopadhyay, Implications of boron doping on electrocatalytic activities of graphyne and graphdiyne families: A first principles study, Phys. Chem. Chem. Phys. 18(4), 2949 (2016)
CrossRef ADS Google scholar
[178]
B. Kang and J. Y. Lee, Graphynes as promising cathode material of fuel cell: Improvement of oxygen reduction efficiency, J. Phys. Chem. C 118(22), 12035 (2014)
CrossRef ADS Google scholar
[179]
X. Chen, Q. Qiao, L. An, and D. Xia, Why do boron and nitrogen doped α- and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study, J. Phys. Chem. C 119(21), 11493 (2015)
CrossRef ADS Google scholar
[180]
S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu, H. Cao, M. Wang, J. Liu, G. Zhang, Y. Li, H. Liu, and B. Li, Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium, J. Mater. Chem. A Mater. Energy Sustain. 4(13), 4738 (2016)
CrossRef ADS Google scholar
[181]
A. Mohajeri and A. Shahsavar, Tailoring the optoelectronic properties of graphyne and graphdiyne: Nitrogen/ sulfur dual doping versus oxygen containing functional groups, J. Mater. Sci. 52(9), 5366 (2017)
CrossRef ADS Google scholar
[182]
Q. Lv, W. Si, Z. Yang, N. Wang, Z. Tu, Y. Yi, C. Huang, L. Jiang, M. Zhang, J. He, and Y. Long, Nitrogen-doped porous graphdiyne: A highly efficient metal-free electrocatalyst for oxygen reduction reaction, ACS Appl. Mater. Interfaces 9(35), 29744 (2017)
CrossRef ADS Google scholar
[183]
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271), 361 (2016)
CrossRef ADS Google scholar
[184]
Y. Xue, Y. Guo, Y. Yi, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Self-catalyzed growth of Cu@graphdiyne core– shell nanowires array for high efficient hydrogen evolution cathode, Nano Energy 30, 858 (2016)
CrossRef ADS Google scholar
[185]
Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of pH, ACS Appl. Mater. Interfaces 8(45), 31083 (2016)
CrossRef ADS Google scholar
[186]
X. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu, R. Si, and T. B. Lu, Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution, Angewandte Chemie International Edition 57(30), 9382 (2018)
CrossRef ADS Google scholar
[187]
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)
CrossRef ADS Google scholar
[188]
Y. Xue, Z. Zuo, Y. Li, H. Liu, and Y. Li, Graphdiyne‐supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material, Small 13(31), 1700936 (2017)
CrossRef ADS Google scholar
[189]
H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Li, Z. Zuo, Y. Zhao, Z. Li, and Y. Li, Efficient hydrogen production on a 3D flexible heterojunction material, Adv. Mater. 30(21), 1707082 (2018)
CrossRef ADS Google scholar
[190]
G. Shi, C. Yu, Z. Fan, J. Li, and M. Yuan, Graphdiynesupported NiFe layered double hydroxide nanosheets as functional electrocatalysts for oxygen evolution, ACS Appl. Mater. Interfaces 11(3), 2662 (2019)
CrossRef ADS Google scholar
[191]
P. Kuang, B. Zhu, Y. Li, H. Liu, J. Yu, and K. Fan, Graphdiyne: A superior carbon additive to boost the activity of water oxidation catalysts, Nanoscale Horizons 3(3), 317 (2018).
CrossRef ADS Google scholar
[192]
Y. Yao, Z. Jin, Y. Chen, Z. Gao, and S. Liu, Graphdiyne-WS2 2D-nanohybrid electrocatalysts for high-performance hydrogen evolution reaction, Carbon 129, 228 (2018)
CrossRef ADS Google scholar
[193]
J. Li, X. Gao, X. Jiang, X. B. Li, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A promising catalystsupport to stabilize cobalt nanoparticles for oxygen evolution, ACS Catal. 7(8), 5209 (2017)
CrossRef ADS Google scholar
[194]
H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Zhao, Z. Li, and Y. Li, Controlled growth of MoS2 nanosheets on 2D Ndoped graphdiyne nanolayers for highly associated effects on water reduction, Adv. Funct. Mater. 28(19), 1707564 (2018)
CrossRef ADS Google scholar
[195]
L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, and Y. Li, Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst, J. Am. Chem. Soc. 141(27), 10677 (2019)
CrossRef ADS Google scholar
[196]
Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui, Y. Liu, C. Xing, C. Zhang, D. Zhang, Z. Wang, X. Chen, Y. Gao, B. Huang, and Y. Li, Graphdiyne interface engineering: Highly active and selective ammonia synthesis, Angew. Chem. Int. Ed. 59(31), 13021 (2020)
CrossRef ADS Google scholar
[197]
C. Xing, C. Wu, Y. Xue, Y. Zhao, L. Hui, H. Yu, Y. Liu, Q. Pan, Y. Fang, C. Zhang, D. Zhang, X. Chen, and Y. Li, A highly selective and active metal-free catalyst for ammonia production, Nanoscale Horizons 5(8), 1274 (2020)
CrossRef ADS Google scholar
[198]
X. Gao, J. Li, R. Du, J. Zhou, M. Y. Huang, R. Liu, J. Li, Z. Xie, L. Z. Wu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29(9), 1605308 (2017)
CrossRef ADS Google scholar
[199]
Y. Y. Han, X. L. Lu, S. F. Tang, X. P. Yin, Z. W. Wei, and T. B. Lu, Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride, Adv. Energy Mater. 8(16), 1702992 (2018)
CrossRef ADS Google scholar
[200]
L. Hui, D. Jia, H. Yu, Y. Xue, and Y. Li, Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting, ACS Appl. Mater. Interfaces 11(3), 2618 (2019)
CrossRef ADS Google scholar
[201]
L. Hui, Y. Xue, D. Jia, H. Yu, C. Zhang, and Y. Li, Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting, Adv. Energy Mater. 8(20), 1800175 (2018)
CrossRef ADS Google scholar
[202]
L. Hui, Y. Xue, B. Huang, H. Yu, C. Zhang, D. Zhang, D. Jia, Y. Zhao, Y. Li, H. Liu, and Y. Li, Overall water splitting by graphdiyne-exfoliated and-sandwiched layered double-hydroxide nanosheet arrays, Nat. Commun. 9(1), 5309 (2018)
CrossRef ADS Google scholar
[203]
Y. Xue, Y. Li, J. Zhang, Z. Liu, and Y. Zhao, 2D graphdiyne materials: Challenges and opportunities in energy field, Sci. China Chem. 61(7), 765 (2018)
CrossRef ADS Google scholar
[204]
H. Yu, Y. Xue, and Y. Li, Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications, Adv. Mater. 31(42), 1803101 (2019)
CrossRef ADS Google scholar
[205]
A. Seif, M. J. López, A. Granja-DelRío, K. Azizi, and J. A. Alonso, Adsorption and growth of palladium clusters on graphdiyne, Phys. Chem. Chem. Phys. 19(29), 19094 (2017)
CrossRef ADS Google scholar
[206]
H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)
CrossRef ADS Google scholar
[207]
Z. Lu, S. Li, P. Lv, C. He, D. Ma, and Z. Yang, First principles study on the interfacial properties of NM/graphdiyne (NM= Pd, Pt, Rh and Ir): The implications for NM growing, Appl. Surf. Sci. 360, 1 (2016)
CrossRef ADS Google scholar
[208]
A. H. Mashhadzadeh, A. M. Vahedi, M. Ardjmand, and M. G. Ahangari, Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study, Superlattices Microstruct. 100, 1094 (2016)
CrossRef ADS Google scholar
[209]
Z. W. Chen, Z. Wen, and Q. Jiang, Rational design of Ag38 cluster supported by graphdiyne for catalytic CO oxidation, J. Phys. Chem. C 121(6), 3463 (2017)
CrossRef ADS Google scholar
[210]
Z. Z. Lin, Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation, Carbon 108, 343 (2016)
CrossRef ADS Google scholar
[211]
Z. Z. Lin, Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst, Carbon 86, 301 (2015)
CrossRef ADS Google scholar
[212]
H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)
CrossRef ADS Google scholar
[213]
H. Shen, Y. Li, and Z. Shi, A novel graphdiyne-based catalyst for effective hydrogenation reaction, ACS Appl. Mater. Interfaces 11(3), 2563 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(8909 KB)

Accesses

Citations

Detail

Sections
Recommended

/