Theory, preparation, properties and catalysis application in 2D graphynes-based materials
Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu
Theory, preparation, properties and catalysis application in 2D graphynes-based materials
Carbon has three hybridization forms of sp−, sp2− and sp3−, and the combination of different forms can obtain different kinds of carbon allotropes, such as diamond, carbon nanotubes, fullerene, graphynes (GYs) and graphdiyne (GDY). Among them, the GDY molecule is a single-layer two-dimensional (2D) planar structure material with highly π-conjugation formed by sp− and sp2− hybridization. GDY has a carbon atom ring composed of benzene ring and acetylene, which makes GDY have a uniformly distributed pore structure. In addition, GDY planar material have some slight wrinkles, which makes GDY have better self-stability than other 2D planar materials. The excellent properties of GDY make it attract the attention of researchers. Therefore, GDY is widely used in chemical catalysis, electronics, communications, clean energy and composite materials. This paper summarizes the recent progress of GDY research, including structure, preparation, properties and application of GDY in the field of catalysts.
2D materials / catalysis application / graphyne / property
[1] |
Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, and X. F. Yu, TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer, 13(11), 1602896 (2017)
CrossRef
ADS
Google scholar
|
[2] |
F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, and Z. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)
CrossRef
ADS
Google scholar
|
[3] |
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, and Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. USA 115(3), 501 (2018)
CrossRef
ADS
Google scholar
|
[4] |
Y. L. Ding, B. M. Goh, H. Zhang, K. P. Loh, and L. Lu, Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for highrate lithium ion batteries, J. Power Sources 236, 1 (2013)
CrossRef
ADS
Google scholar
|
[5] |
H. Huang, H. Wang, B. Li, X. Mo, H. Long, Y. Li, H. Zhang, D. L. Carroll, and G. Fang, Seedless synthesis of layered ZnO nanowall networks on Al substrate for white light electroluminescence, Nanotechnology 24(31), 315203 (2013)
CrossRef
ADS
Google scholar
|
[6] |
J. Lu, K. Zhang, X. Feng Liu, H. Zhang, T. Chien Sum, A. H. Castro Neto, and K. P. Loh, Order–disorder transition in a two-dimensional boron–carbon–nitride alloy, Nat. Commun. 4(1), 2681 (2013)
CrossRef
ADS
Google scholar
|
[7] |
J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, PLLA nanofibrous paperbased plasmonic substrate with tailored hydrophilicity for focusing SERS detection, ACS Appl. Mater. Interfaces 7(9), 5391 (2015)
CrossRef
ADS
Google scholar
|
[8] |
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, On-nanowire axial heterojunction design for high-performance photodetectors, ACS Nano 10(9), 8474 (2016)
CrossRef
ADS
Google scholar
|
[9] |
Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, and H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes, Nanoscale 8(27), 13273 (2016)
CrossRef
ADS
Google scholar
|
[10] |
Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction, Angew. Chem. 128(44), 14053 (2016)
CrossRef
ADS
Google scholar
|
[11] |
S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, and G. S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas, Sens. Actuators B Chem. 226, 478 (2016)
CrossRef
ADS
Google scholar
|
[12] |
Z. Zhang, Y. Liu, L. Ren, H. Zhang, Z. Huang, X. Qi, X. Wei, and J. Zhong, Three-dimensional-networked Ni-Co- Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution, Electrochim. Acta 200, 142 (2016)
CrossRef
ADS
Google scholar
|
[13] |
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)
CrossRef
ADS
Google scholar
|
[14] |
X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, and H. Zhang, Few‐layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction, Adv. Energy Mater. 7(19), 1700396 (2017)
CrossRef
ADS
Google scholar
|
[15] |
Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horiz. 4(6), 997 (2017)
CrossRef
ADS
Google scholar
|
[16] |
S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect, Adv. Opt. Mater. 3(12), 1769 (2015)
CrossRef
ADS
Google scholar
|
[17] |
K. Wang, R. Liang, and P. Qiu, Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy, IEEE Photonics J. 7(6), 1 (2015)
CrossRef
ADS
Google scholar
|
[18] |
M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device, Opt. Lett. 40(20), 4767 (2015)
CrossRef
ADS
Google scholar
|
[19] |
Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, Large energy, wavelength widely tunable, topological insulator Q-switched erbiumdoped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20(5), 315 (2014)
CrossRef
ADS
Google scholar
|
[20] |
P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser, IEEE Photonics Technol. Lett. 27(3), 264 (2015)
CrossRef
ADS
Google scholar
|
[21] |
X. Jiang, S, Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, Broadband nonlinear photonics in fewlayer MXene Ti3C2Tx (T= F, O, or OH), Laser Photonics Rev. 12 (2018)
CrossRef
ADS
Google scholar
|
[22] |
D. Wang, M. Zhang, Z. Li, and Y. Cui, Flexible optical cross-connect structures supporting WDM multicast with multiple pumps for multiple channels, IEEE Photonics J. 6(6), 1 (2014)
CrossRef
ADS
Google scholar
|
[23] |
P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber, IEEE Photonics Technol. Lett. 26(19), 1912 (2014)
CrossRef
ADS
Google scholar
|
[24] |
H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, Vector dissipative solitons in graphene mode locked fiber lasers, Opt. Commun. 283(17), 3334 (2010)
CrossRef
ADS
Google scholar
|
[25] |
Y. Song, H. Zhang, D. Tang, and D. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser, Opt. Express 20(24), 27283 (2012)
CrossRef
ADS
Google scholar
|
[26] |
Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Qswitched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)
CrossRef
ADS
Google scholar
|
[27] |
G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, Improved transfer quality of CVDgrown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics, ACS Appl. Mater. Interfaces 5(20), 10288 (2013)
CrossRef
ADS
Google scholar
|
[28] |
R. Zhou, P. Tang, Y. Chen, S. Chen, C. Zhao, H. Zhang, and S. Wen, Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber, Appl. Opt. 53(2), 254 (2014)
CrossRef
ADS
Google scholar
|
[29] |
Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)
CrossRef
ADS
Google scholar
|
[30] |
L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime, Photon. Res. 3(5), 214 (2015)
CrossRef
ADS
Google scholar
|
[31] |
H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation, ACS Photonics 2(7), 832 (2015)
CrossRef
ADS
Google scholar
|
[32] |
Y. F. Song, H. Zhang, L. M. Zhao, D. Y. Shen, and D. Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene, Opt. Express 24(2), 1814 (2016)
CrossRef
ADS
Google scholar
|
[33] |
M. Liu, A. Luo, X. Zheng, N. Zhao, H. Liu, Z. Luo, W. Xu, Y. Chen, C. Zhao, and H. Zhang, Microfiber-based highly nonlinear topological insulator photonic device for the formation of versatile multi-soliton patterns in a fiber laser, J. Lightwave Technol. 33(10), 2056 (2015)
CrossRef
ADS
Google scholar
|
[34] |
R. Baughman, H. Eckhardt, and M. Kertesz, Structure‐ property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)
CrossRef
ADS
Google scholar
|
[35] |
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
CrossRef
ADS
Google scholar
|
[36] |
J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, Photonics and optoelectronics of two-dimensional materials beyond graphene, Nanotechnology 27(46), 462001 (2016)
CrossRef
ADS
Google scholar
|
[37] |
H. Bao, L. Wang, C. Li, and J. Luo, Structural characterization and identification of graphdiyne and graphdiynebased materials, ACS Appl. Mater. Interfaces 11(3), 2717 (2019)
CrossRef
ADS
Google scholar
|
[38] |
Q. Bao, H. Zhang, and C. Pan, Electric-field-induced microstructural transformation of carbon nanotubes, Appl. Phys. Lett. 89(6), 063124 (2006)
CrossRef
ADS
Google scholar
|
[39] |
Q. Bao, H. Zhang, and C. Pan, Simulation for growth of multi-walled carbon nanotubes in electric field, Comput. Mater. Sci. 39(3), 616 (2007)
CrossRef
ADS
Google scholar
|
[40] |
S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, Healable, transparent, room‐temperature electronic sensors based on carbon nanotube network‐coated polyelectrolyte multilayers, Small 11(43), 5807 (2015)
CrossRef
ADS
Google scholar
|
[41] |
P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high‐performance gas sensing, Small 11(40), 5409 (2015)
CrossRef
ADS
Google scholar
|
[42] |
H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter, Appl. Phys. Express 7(2), 024301 (2014)
CrossRef
ADS
Google scholar
|
[43] |
Z. Huang, W. Han, H, Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015)
CrossRef
ADS
Google scholar
|
[44] |
R. Wang, X. Li, Z. Wang, and H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive, Nano Energy 34, 131 (2017)
CrossRef
ADS
Google scholar
|
[45] |
Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)
CrossRef
ADS
Google scholar
|
[46] |
S. W. Cranford, and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)
CrossRef
ADS
Google scholar
|
[47] |
H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, and D. Wang, Two-dimensional carbon leading to new photoconversion processes, Chem. Soc. Rev. 43(13), 4281 (2014)
CrossRef
ADS
Google scholar
|
[48] |
P. Wu, P. Du, H. Zhang, and C. Cai, Graphdiyne as a metal-free catalyst for low-temperature CO oxidation, Phys. Chem. Chem. Phys. 16(12), 5640 (2014)
CrossRef
ADS
Google scholar
|
[49] |
H. Ren, H. Shao, L. Zhang, D. Guo, Q. Jin, R. Yu, L. Wang, Y. Li, Y. Wang, H. Zhao, and D. Wang, A new graphdiyne nanosheet/Pt nanoparticle‐based counter electrode material with enhanced catalytic activity for dye‐sensitized solar cells, Adv. Energy Mater. 5(12), 1500296 (2015)
CrossRef
ADS
Google scholar
|
[50] |
K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)
CrossRef
ADS
Google scholar
|
[51] |
H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)
CrossRef
ADS
Google scholar
|
[52] |
Z. Chen, C. Molina‐Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nanotechnological applications, Ann. Phys. 529(11), 1700056 (2017)
CrossRef
ADS
Google scholar
|
[53] |
Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang, and Y. Li, Synthesis and properties of 2D carbon graphdiyne, Acc. Chem. Res. 50(10), 2470 (2017)
CrossRef
ADS
Google scholar
|
[54] |
Z. Jia, Z. Zuo, Y. Yi, H. Liu, D. Li, Y. Li, and Y. Li, Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage, Nano Energy 33, 343 (2017)
CrossRef
ADS
Google scholar
|
[55] |
J. He, N. Wang, Z. Yang, X. Shen, K. Wang, C. Huang, Y. Yi, Z. Tu, and Y. Li, Fluoride graphdiyne as a freestanding electrode displaying ultra-stable and extraordinary high Li storage performance, Energy Environ. Sci. 11(10), 2893 (2018)
CrossRef
ADS
Google scholar
|
[56] |
C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev. 118(16), 7744 (2018)
CrossRef
ADS
Google scholar
|
[57] |
M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)
CrossRef
ADS
Google scholar
|
[58] |
N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)
CrossRef
ADS
Google scholar
|
[59] |
M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)
CrossRef
ADS
Google scholar
|
[60] |
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(19), 3256 (2010)
CrossRef
ADS
Google scholar
|
[61] |
M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)
CrossRef
ADS
Google scholar
|
[62] |
K. Wang, N. Wang, J. He, Z. Yang, X. Shen, and C. Huang, Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors, ACS Appl. Mater. Interfaces 9(46), 40604 (2017)
CrossRef
ADS
Google scholar
|
[63] |
C. Xie, N. Wang, X. Li, G. Xu, and C. Huang, Research on the preparation of graphdiyne and its derivatives, Chemistry 26(3), 569 (2020)
CrossRef
ADS
Google scholar
|
[64] |
N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, and D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment, ACS Nano 7(2), 1504 (2013)
CrossRef
ADS
Google scholar
|
[65] |
R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)
CrossRef
ADS
Google scholar
|
[66] |
S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)
CrossRef
ADS
Google scholar
|
[67] |
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Robust superhydrophobic foam: A graphdiyne‐based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)
CrossRef
ADS
Google scholar
|
[68] |
N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li, and D. Wang, Few‐layer graphdiyne nanosheets applied for multiplexed real‐time DNA detection, Adv. Mater. 29(18), 1606755 (2017)
CrossRef
ADS
Google scholar
|
[69] |
N. Yang, in: The Preparation of Nano Composites and Their Applications in Solar Energy Conversion93–110, Springer, 2017
CrossRef
ADS
Google scholar
|
[70] |
C. Lu, Y. Yang, J. Wang, R. Fu, X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Lin, X. Tao, Y. Li, and W. Chen, Highperformance graphdiyne-based electrochemical actuators, Nat. Commun. 9(1), 752 (2018)
CrossRef
ADS
Google scholar
|
[71] |
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)
CrossRef
ADS
Google scholar
|
[72] |
Z. Shi, X. Li, Y. Zhang, H. Li, Y. Zhao, P. Guo, and Y. Guo, Graphdiyne for ultrashort pulse generation in an erbium-doped hybrid mode-locked fiber laser, Front. Phys. 7, 150 (2019)
CrossRef
ADS
Google scholar
|
[73] |
W. Ma, Y. Xue, S. Guo, Y. Jiang, F. Wu, P. Yu, and L. Mao, Graphdiyne oxide: A new carbon nanozyme, Chem. Commun. 56(38), 5115 (2020)
CrossRef
ADS
Google scholar
|
[74] |
T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, A flexible transparent colorimetric wrist strap sensor, Nanoscale 9(2), 869 (2017)
CrossRef
ADS
Google scholar
|
[75] |
Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2, 035011 (2015)
CrossRef
ADS
Google scholar
|
[76] |
J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers, Opt. Express 23(17), 22643 (2015)
CrossRef
ADS
Google scholar
|
[77] |
Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)
CrossRef
ADS
Google scholar
|
[78] |
B. X. Wang and G. Z. Wang, Quad-band terahertz absorber based on a simple design of metamaterial resonator, IEEE Photonics J. 8(6), 1 (2016)
CrossRef
ADS
Google scholar
|
[79] |
J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, Black phosphorus based all-optical-signalprocessing toward high performances and enhanced stability, ACS Photonics 4(6), 1466 (2017)
CrossRef
ADS
Google scholar
|
[80] |
J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)
CrossRef
ADS
Google scholar
|
[81] |
Y. Xu, X. F. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)
CrossRef
ADS
Google scholar
|
[82] |
Z. Chu, J. Liu, Z. Guo, and H. Zhang, 2 m passively Q-switched laser based on black phosphorus, Opt. Mater. Express 6(7), 2374 (2016)
CrossRef
ADS
Google scholar
|
[83] |
J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)
CrossRef
ADS
Google scholar
|
[84] |
X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector, Adv. Funct. Mater. 27(18), 1606834 (2017)
CrossRef
ADS
Google scholar
|
[85] |
J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and modelocked fiber lasers, Sci. Rep. 6(1), 30361 (2016)
CrossRef
ADS
Google scholar
|
[86] |
C. Ge, J. Chen, S. Tang, Y. Du, and N. Tang, Review of the electronic, optical, and magnetic properties of graphdiyne: From theories to experiments, ACS Appl. Mater. Interfaces 11(3), 2707 (2019)
CrossRef
ADS
Google scholar
|
[87] |
R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, Carbon nanotubes – the route toward applications, Science 297(5582), 787 (2002)
CrossRef
ADS
Google scholar
|
[88] |
Q. Li, Y. Li, Y. Chen, L. Wu, C. Yang, and X. Cui, Synthesis of γ-graphyne by mechanochemistry and its electronic structure, Carbon 136, 248 (2018)
CrossRef
ADS
Google scholar
|
[89] |
C. Yang, Y. Li, Y. Chen, Q. Li, L. Wu, and X. Cui, Mechanochemical synthesis of ‐graphyne with enhanced lithium storage performance, Small 15(8), 1804710 (2019)
CrossRef
ADS
Google scholar
|
[90] |
S. W. Cranford, D. B. Brommer, and M. Buehler, Extended graphynes: Simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)
CrossRef
ADS
Google scholar
|
[91] |
J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet, J. Phys. Chem. C 115(42), 20466 (2011)
CrossRef
ADS
Google scholar
|
[92] |
J. Zhou, K. Lv, Q. Wang, X. S. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)
CrossRef
ADS
Google scholar
|
[93] |
Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)
CrossRef
ADS
Google scholar
|
[94] |
T. Dinadayalane and J. Leszczynski, Remarkable diversity of carbon–carbon bonds: Structures and properties of fullerenes, carbon nanotubes, and graphene, Struct. Chem. 21(6), 1155 (2010)
CrossRef
ADS
Google scholar
|
[95] |
A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)
CrossRef
ADS
Google scholar
|
[96] |
J. Carper, Vol. 124192-+ (Bowker magazine group cahners magazine division 249 W 17TH ST, New York, 1999
|
[97] |
Y. Yang and X. Xu, Mechanical properties of graphyne and its family–A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)
CrossRef
ADS
Google scholar
|
[98] |
S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)
CrossRef
ADS
Google scholar
|
[99] |
H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Adv. 1(5), 768 (2011)
CrossRef
ADS
Google scholar
|
[100] |
M. Mirnezhad, R. Ansari, H. Rouhi, M. Seifi, and M. Faghihnasiri, Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption, Solid State Commun. 152(20), 1885 (2012)
CrossRef
ADS
Google scholar
|
[101] |
Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: A first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)
CrossRef
ADS
Google scholar
|
[102] |
Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)
CrossRef
ADS
Google scholar
|
[103] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme, Nature 438, 197 (2005)
CrossRef
ADS
Google scholar
|
[104] |
D. Malko, C. Neiss, F. Viñes, and A. Görling, Competition for graphene: Graphynes with direction-dependent Dirac cones, Phys. Rev. Lett. 108(8), 086804 (2012)
CrossRef
ADS
Google scholar
|
[105] |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef
ADS
Google scholar
|
[106] |
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
CrossRef
ADS
Google scholar
|
[107] |
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
CrossRef
ADS
Google scholar
|
[108] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[109] |
J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross, M. Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang, A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, and A. Görling, Understanding band gaps of solids in generalized Kohn–Sham theory, Proc. Natl. Acad. Sci. USA 114(11), 2801 (2017)
CrossRef
ADS
Google scholar
|
[110] |
E. N. Economou, Green’s Functions in Quantum Physics, Vol. 7, Springer Science & Business Media, 2006
CrossRef
ADS
Google scholar
|
[111] |
L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem, Phys. Rev. 139(3A), A796 (1965)
CrossRef
ADS
Google scholar
|
[112] |
M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)
CrossRef
ADS
Google scholar
|
[113] |
F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Z. Phys. 52(7–8), 555 (1929)
CrossRef
ADS
Google scholar
|
[114] |
J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94(6), 1498 (1954)
CrossRef
ADS
Google scholar
|
[115] |
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65(16), 165401 (2002)
CrossRef
ADS
Google scholar
|
[116] |
J. S. Wang, J. Wang, and J. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
CrossRef
ADS
Google scholar
|
[117] |
Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phononphonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B 78(22), 224303 (2008)
CrossRef
ADS
Google scholar
|
[118] |
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef
ADS
Google scholar
|
[119] |
X. Qian, H. Liu, C. Huang, S. Chen, L. Zhang, Y. Li, J. Wang, and Y. Li, Self-catalyzed growth of large-area nanofilms of two-dimensional carbon, Sci. Rep. 5(1), 7756 (2015)
CrossRef
ADS
Google scholar
|
[120] |
R. Liu, X. Gao, J. Zhou, H. Xu, Z. Li, and S. Zhang, Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil, Adv. Mater. 29(18), 1604665 (2017)
CrossRef
ADS
Google scholar
|
[121] |
J. Zhou, Z. Xie, R. Liu, X. Gao, J. Li, Y. Xiong, L. Tong, J. Zhang, and Z. Liu, Synthesis of ultrathin graphdiyne film using a surface template, ACS Appl. Mater. Interfaces 11(3), 2632 (2019)
CrossRef
ADS
Google scholar
|
[122] |
F. Zhao, In situ growth of graphdiyne on arbitrary substrates with a controlled-release method, Chem. Commun. 54, 6004 (2018)
CrossRef
ADS
Google scholar
|
[123] |
Z. Yang, X. Shen, N. Wang, J. He, X. Li, X. Wang, Z. Hou, K. Wang, J. Gao, T. Jiu, and C. Huang, Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion, ACS Appl. Mater. Interfaces 11(3), 2608 (2019)
CrossRef
ADS
Google scholar
|
[124] |
G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, and Y. Li, Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission, J. Phys. Chem. C 115(6), 2611 (2011)
CrossRef
ADS
Google scholar
|
[125] |
X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, and Y. Li, Construction of graphdiyne nanowires with highconductivity and mobility, Dalton Transactions 41, 730 (2012)
CrossRef
ADS
Google scholar
|
[126] |
B. G. Shohany, M. R. Roknabadi, and A. Kompany, Computational study of edge configuration and the diameter effects on the electrical transport of graphdiyne nanotubes, Physica E 84, 146 (2016)
CrossRef
ADS
Google scholar
|
[127] |
L. D. Pan, L. Z. Zhang, B. Q. Song, S. X. Du, and H. J. Gao, Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures, Appl. Phys. Lett. 98(17), 173102 (2011)
CrossRef
ADS
Google scholar
|
[128] |
X. Gao, H. Ren, J. Zhou, R. Du, C. Yin, R. Liu, H. Peng, L. Tong, Z. Liu, and J. Zhang, Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation, Chem. Mater. 29(14), 5777 (2017)
CrossRef
ADS
Google scholar
|
[129] |
J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)
CrossRef
ADS
Google scholar
|
[130] |
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, A graphdiyne-based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)
CrossRef
ADS
Google scholar
|
[131] |
P. Prabakaran, S. Satapathy, E. Prasad, and S. Sankararaman, Architecting pyrediyne nanowalls with improved inter-molecular interactions, electronic features and transport characteristics, J. Mater. Chem. C 6, 380, (2018)
CrossRef
ADS
Google scholar
|
[132] |
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29, 1605308 (2017)
CrossRef
ADS
Google scholar
|
[133] |
R. Matsuoka, R. Sakamoto, K. Hoshiko, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/ liquid interface, J. Am. Chem. Soc. 139(8), 3145 (2017)
CrossRef
ADS
Google scholar
|
[134] |
R. Toyoda, R. Shiotsuki, N. Fukui, K. Wada, H. Maeda, R. Sakamoto, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Expansion of the graphdiyne family: A triphenylene-cored analogue, ACS Appl. Mater. Interfaces 11(3), 2730 (2018)
CrossRef
ADS
Google scholar
|
[135] |
X. Kan, Y. Ban, C. Wu, Q. Pan, H. Liu, J. Song, Z. Zuo, Z. Li, and Y. Zhao, Interfacial synthesis of conjugated two-dimensional N-graphdiyne, ACS Appl. Mater. Interfaces 10(1), 53 (2018)
CrossRef
ADS
Google scholar
|
[136] |
H. Shang, Z. Zuo, L. Li, F. Wang, H. Liu, Y. Li, and Y. Li, Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes, Angewandte Chemie International Edition 57(3), 774 (2018)
CrossRef
ADS
Google scholar
|
[137] |
S. S. Wang, H. B. Liu, X. N. Kan, L. Wang, Y. H. Chen, B. Su, Y. L. Li, and L. Jiang, Superlyophilicity-facilitated synthesis reaction at the microscale: Ordered graphdiyne stripe arrays, Small 13(4), 1602265 (2017)
CrossRef
ADS
Google scholar
|
[138] |
Z. Zuo, H. Shang, Y. Chen, J. Li, H. Liu, Y. Li, and Y. Li, A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode, Chem. Commun. 53(57), 8074 (2017)
CrossRef
ADS
Google scholar
|
[139] |
H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, Y. Li, and Y. Li, N-doped graphdiyne for highperformance electrochemical electrodes, Nano Energy 44, 144 (2018)
CrossRef
ADS
Google scholar
|
[140] |
J. Li, J. Xu, Z. Xie, X. Gao, J. Zhou, Y. Xiong, C. Chen, J. Zhang, and Z. Liu, Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application, Adv. Mater. 30(20), 1800548 (2018)
CrossRef
ADS
Google scholar
|
[141] |
Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101(8), 081909 (2012)
CrossRef
ADS
Google scholar
|
[142] |
A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes, physica status solidi (b) 248, 1879 (2011)
CrossRef
ADS
Google scholar
|
[143] |
J. Chen, J. Xi, D. Wang, and Z. Shuai, Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction, J. Phys. Chem. Lett. 4(9), 1443 (2013)
CrossRef
ADS
Google scholar
|
[144] |
J. Xi, D. Wang, Y. Yi, and Z. Shuai, Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach, J. Chem. Phys. 141(3), 034704 (2014)
CrossRef
ADS
Google scholar
|
[145] |
B. G. Kim and H. J. Choi, Graphyne: Hexagonal network of carbon with versatile Dirac cones, Phys. Rev. B 86(11), 115435 (2012)
CrossRef
ADS
Google scholar
|
[146] |
J. He, S. Y. Ma, P. Zhou, C. X. Zhang, C. He, and L. Z. Sun, Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+Ucalculations, J. Phys. Chem. C 116(50), 26313 (2012)
CrossRef
ADS
Google scholar
|
[147] |
H. Bu, M. Zhao, A. Wang, and X. Wang, First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons, Carbon 65, 341 (2013)
CrossRef
ADS
Google scholar
|
[148] |
G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)
CrossRef
ADS
Google scholar
|
[149] |
Q. Zheng, G. Luo, Q. Liu, R. Quhe, J. Zheng, K. Tang, Z. Gao, S. Nagase, and J. Lu, Structural and electronic properties of bilayer and trilayer graphdiyne, Nanoscale 4(13), 3990 (2012)
CrossRef
ADS
Google scholar
|
[150] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[151] |
X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang, C. Yin, F. Ding, S. Zhang, X. Yi, J. Wang, L. Tong, Y. Han, Z. Liu, and J. Zhang, Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy, Sci. Adv. 4(7), eaat6378 (2018)
CrossRef
ADS
Google scholar
|
[152] |
C. Li, X. Lu, Y. Han, S. Tang, Y. Ding, R. Liu, H. Bao, Y. Li, J. Luo, and T. Lu, Direct imaging and determination of the crystal structure of six-layered graphdiyne, Nano Res. 11(3), 1714 (2018)
CrossRef
ADS
Google scholar
|
[153] |
J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)
CrossRef
ADS
Google scholar
|
[154] |
S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong, Z. Liu, J. Zhang, and Z. Liu, Raman spectra and corresponding strain effects in graphyne and graphdiyne, J. Phys. Chem. C 120(19), 10605 (2016)
CrossRef
ADS
Google scholar
|
[155] |
J. Zhong, J. Wang, J. G. Zhou, B. H. Mao, C. H. Liu, H. B. Liu, Y. L. Li, T. K. Sham, X. H. Sun, and S. D. Wang, Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy, J. Phys. Chem. C 117(11), 5931 (2013)
CrossRef
ADS
Google scholar
|
[156] |
Y. Zheng, Y. Chen, L. Lin, Y. Sun, H. Liu, Y. Li, Y. Du, and N. Tang, Intrinsic magnetism of graphdiyne, Appl. Phys. Lett. 111(3), 033101 (2017)
CrossRef
ADS
Google scholar
|
[157] |
X. Huang, X. Qi, F. Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2), 666 (2012)
CrossRef
ADS
Google scholar
|
[158] |
J. Zhou, J. Zhang, and Z. Liu, Advanced progress in the synthesis of graphdiyne, Acta Physico-Chimica Sinica 34(9), 977 (2018)
|
[159] |
J. Xi, Y. Nakamura, T. Zhao, D. Wang, and Z. Shuai, Theoretical studies on the deformation potential, electron-phonon coupling, and carrier transports of layered systems, Acta Physico-Chimica Sinica 34(9), 961 (2018)
CrossRef
ADS
Google scholar
|
[160] |
J. Lee, Y. Li, J. Tang, and X. Cui, Synthesis of hydrogen substituted graphyne through mechanochemistry and its electrocatalytic properties, Acta Physico-Chimica Sinica 34(9), 1080 (2018)
CrossRef
ADS
Google scholar
|
[161] |
M. Liu and Y. Li, Graphdiyne: From synthesis to application, Acta Physico-Chimica Sinica 34(9), 959 (2018)
CrossRef
ADS
Google scholar
|
[162] |
X. Chen and S. Zhang, Modulation of molecular sensing properties of graphdiyne based on 3d impurities, Acta Physico-Chimica Sinica 34(9), 1061 (2018)
|
[163] |
X. Shen, J. He, N. Wang, and C. Huang, Graphdiyne for electrochemical energy storage devices, Acta Physico-Chimica Sinica 34(9), 1029 (2018)
CrossRef
ADS
Google scholar
|
[164] |
X. Lu, Y. Han, and T. Lu, Structure characterization and application of graphdiyne in photocatalytic and electrocatalytic reactions, Acta Physico-Chimica Sinica 34(9), 1014 (2018)
CrossRef
ADS
Google scholar
|
[165] |
Y. Chen, J. Li, and H. Liu, Preparation of graphdiyneorganic conjugated molecular composite materials for lithium ion batteries, Acta Physico-Chimica Sinica 34(9), 1074 (2018)
|
[166] |
Y. Zhao, L. Zhang, J. Qi, Q. Jin, K. Lin, and D. Wang, Graphdiyne with enhanced ability for electron transfer, Wuli Huaxue Xuebao 34(9), 1048 (2018)
|
[167] |
Y. Li and Y. Li, Chemical modification and functionalization of graphdiyne, Acta Physico-Chimica Sinica 34(9), 992 (2018)
|
[168] |
Z. Huang, Z. Yu, Y. Li, and J. Wang, ZnO ultraviolet photodetector modified with graphdiyne, Acta Physico-Chimica Sinica 34(9), 1088 (2018)
|
[169] |
S. Wang, L. Yi, J. E. Halpert, X. Lai, Y. Liu, H. Cao, R. Yu, D. Wang, and Y. Li, A novel and highly efficient photocatalyst based on P25–Graphdiyne nanocomposite, Small 8(2), 265 (2012)
CrossRef
ADS
Google scholar
|
[170] |
Y. Y. Liu, First-principles study on new photocatalytic materials graphdiyne-TiO2, Acta Chimica Sinica 71(2), 260 (2013)
CrossRef
ADS
Google scholar
|
[171] |
S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S. J. Kim, and G. Venugopal, Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material, J. Phys. Chem. C 119(38), 22057 (2015)
CrossRef
ADS
Google scholar
|
[172] |
X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)
CrossRef
ADS
Google scholar
|
[173] |
H. Y. Si, C. J. Mao, J. Y. Zhou, X. F. Rong, Q. X. Deng, S. L.Chen, J. J. Zhao, X. G. Sun, Y. M. Shen, W. J. Feng, P. Gao, and J. Zhang, Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne, Carbon 132, 598 (2018)
CrossRef
ADS
Google scholar
|
[174] |
S. Guo, Y. Jiang, F. Wu, P. Yu, H. Liu, Y. Li, and L. Mao, Graphdiyne-promoted highly efficient photocatalytic activity of graphdiyne/silver phosphate pickering emulsion under visible-light irradiation, ACS Appl. Mater. Interfaces 11(3), 2684 (2019)
CrossRef
ADS
Google scholar
|
[175] |
J. X. Lv, Z. M. Zhang, J. Wang, X. L. Lu, W. Zhang, and T. B. Lu, In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production, ACS Appl. Mater. Interfaces 11(3), 2655 (2019)
CrossRef
ADS
Google scholar
|
[176] |
B. K. Das, D. Sen, and K. K. Chattopadhyay, Nitrogen doping in acetylene bonded two dimensional carbon crystals: Ab-initioforecast of electrocatalytic activities vis-à-vis boron doping, Carbon 105, 330 (2016)
CrossRef
ADS
Google scholar
|
[177] |
B. K. Das, D. Sen, and K. K. Chattopadhyay, Implications of boron doping on electrocatalytic activities of graphyne and graphdiyne families: A first principles study, Phys. Chem. Chem. Phys. 18(4), 2949 (2016)
CrossRef
ADS
Google scholar
|
[178] |
B. Kang and J. Y. Lee, Graphynes as promising cathode material of fuel cell: Improvement of oxygen reduction efficiency, J. Phys. Chem. C 118(22), 12035 (2014)
CrossRef
ADS
Google scholar
|
[179] |
X. Chen, Q. Qiao, L. An, and D. Xia, Why do boron and nitrogen doped α- and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study, J. Phys. Chem. C 119(21), 11493 (2015)
CrossRef
ADS
Google scholar
|
[180] |
S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu, H. Cao, M. Wang, J. Liu, G. Zhang, Y. Li, H. Liu, and B. Li, Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium, J. Mater. Chem. A Mater. Energy Sustain. 4(13), 4738 (2016)
CrossRef
ADS
Google scholar
|
[181] |
A. Mohajeri and A. Shahsavar, Tailoring the optoelectronic properties of graphyne and graphdiyne: Nitrogen/ sulfur dual doping versus oxygen containing functional groups, J. Mater. Sci. 52(9), 5366 (2017)
CrossRef
ADS
Google scholar
|
[182] |
Q. Lv, W. Si, Z. Yang, N. Wang, Z. Tu, Y. Yi, C. Huang, L. Jiang, M. Zhang, J. He, and Y. Long, Nitrogen-doped porous graphdiyne: A highly efficient metal-free electrocatalyst for oxygen reduction reaction, ACS Appl. Mater. Interfaces 9(35), 29744 (2017)
CrossRef
ADS
Google scholar
|
[183] |
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271), 361 (2016)
CrossRef
ADS
Google scholar
|
[184] |
Y. Xue, Y. Guo, Y. Yi, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Self-catalyzed growth of Cu@graphdiyne core– shell nanowires array for high efficient hydrogen evolution cathode, Nano Energy 30, 858 (2016)
CrossRef
ADS
Google scholar
|
[185] |
Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of pH, ACS Appl. Mater. Interfaces 8(45), 31083 (2016)
CrossRef
ADS
Google scholar
|
[186] |
X. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu, R. Si, and T. B. Lu, Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution, Angewandte Chemie International Edition 57(30), 9382 (2018)
CrossRef
ADS
Google scholar
|
[187] |
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)
CrossRef
ADS
Google scholar
|
[188] |
Y. Xue, Z. Zuo, Y. Li, H. Liu, and Y. Li, Graphdiyne‐supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material, Small 13(31), 1700936 (2017)
CrossRef
ADS
Google scholar
|
[189] |
H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Li, Z. Zuo, Y. Zhao, Z. Li, and Y. Li, Efficient hydrogen production on a 3D flexible heterojunction material, Adv. Mater. 30(21), 1707082 (2018)
CrossRef
ADS
Google scholar
|
[190] |
G. Shi, C. Yu, Z. Fan, J. Li, and M. Yuan, Graphdiynesupported NiFe layered double hydroxide nanosheets as functional electrocatalysts for oxygen evolution, ACS Appl. Mater. Interfaces 11(3), 2662 (2019)
CrossRef
ADS
Google scholar
|
[191] |
P. Kuang, B. Zhu, Y. Li, H. Liu, J. Yu, and K. Fan, Graphdiyne: A superior carbon additive to boost the activity of water oxidation catalysts, Nanoscale Horizons 3(3), 317 (2018).
CrossRef
ADS
Google scholar
|
[192] |
Y. Yao, Z. Jin, Y. Chen, Z. Gao, and S. Liu, Graphdiyne-WS2 2D-nanohybrid electrocatalysts for high-performance hydrogen evolution reaction, Carbon 129, 228 (2018)
CrossRef
ADS
Google scholar
|
[193] |
J. Li, X. Gao, X. Jiang, X. B. Li, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A promising catalystsupport to stabilize cobalt nanoparticles for oxygen evolution, ACS Catal. 7(8), 5209 (2017)
CrossRef
ADS
Google scholar
|
[194] |
H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Zhao, Z. Li, and Y. Li, Controlled growth of MoS2 nanosheets on 2D Ndoped graphdiyne nanolayers for highly associated effects on water reduction, Adv. Funct. Mater. 28(19), 1707564 (2018)
CrossRef
ADS
Google scholar
|
[195] |
L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, and Y. Li, Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst, J. Am. Chem. Soc. 141(27), 10677 (2019)
CrossRef
ADS
Google scholar
|
[196] |
Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui, Y. Liu, C. Xing, C. Zhang, D. Zhang, Z. Wang, X. Chen, Y. Gao, B. Huang, and Y. Li, Graphdiyne interface engineering: Highly active and selective ammonia synthesis, Angew. Chem. Int. Ed. 59(31), 13021 (2020)
CrossRef
ADS
Google scholar
|
[197] |
C. Xing, C. Wu, Y. Xue, Y. Zhao, L. Hui, H. Yu, Y. Liu, Q. Pan, Y. Fang, C. Zhang, D. Zhang, X. Chen, and Y. Li, A highly selective and active metal-free catalyst for ammonia production, Nanoscale Horizons 5(8), 1274 (2020)
CrossRef
ADS
Google scholar
|
[198] |
X. Gao, J. Li, R. Du, J. Zhou, M. Y. Huang, R. Liu, J. Li, Z. Xie, L. Z. Wu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29(9), 1605308 (2017)
CrossRef
ADS
Google scholar
|
[199] |
Y. Y. Han, X. L. Lu, S. F. Tang, X. P. Yin, Z. W. Wei, and T. B. Lu, Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride, Adv. Energy Mater. 8(16), 1702992 (2018)
CrossRef
ADS
Google scholar
|
[200] |
L. Hui, D. Jia, H. Yu, Y. Xue, and Y. Li, Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting, ACS Appl. Mater. Interfaces 11(3), 2618 (2019)
CrossRef
ADS
Google scholar
|
[201] |
L. Hui, Y. Xue, D. Jia, H. Yu, C. Zhang, and Y. Li, Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting, Adv. Energy Mater. 8(20), 1800175 (2018)
CrossRef
ADS
Google scholar
|
[202] |
L. Hui, Y. Xue, B. Huang, H. Yu, C. Zhang, D. Zhang, D. Jia, Y. Zhao, Y. Li, H. Liu, and Y. Li, Overall water splitting by graphdiyne-exfoliated and-sandwiched layered double-hydroxide nanosheet arrays, Nat. Commun. 9(1), 5309 (2018)
CrossRef
ADS
Google scholar
|
[203] |
Y. Xue, Y. Li, J. Zhang, Z. Liu, and Y. Zhao, 2D graphdiyne materials: Challenges and opportunities in energy field, Sci. China Chem. 61(7), 765 (2018)
CrossRef
ADS
Google scholar
|
[204] |
H. Yu, Y. Xue, and Y. Li, Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications, Adv. Mater. 31(42), 1803101 (2019)
CrossRef
ADS
Google scholar
|
[205] |
A. Seif, M. J. López, A. Granja-DelRío, K. Azizi, and J. A. Alonso, Adsorption and growth of palladium clusters on graphdiyne, Phys. Chem. Chem. Phys. 19(29), 19094 (2017)
CrossRef
ADS
Google scholar
|
[206] |
H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)
CrossRef
ADS
Google scholar
|
[207] |
Z. Lu, S. Li, P. Lv, C. He, D. Ma, and Z. Yang, First principles study on the interfacial properties of NM/graphdiyne (NM= Pd, Pt, Rh and Ir): The implications for NM growing, Appl. Surf. Sci. 360, 1 (2016)
CrossRef
ADS
Google scholar
|
[208] |
A. H. Mashhadzadeh, A. M. Vahedi, M. Ardjmand, and M. G. Ahangari, Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study, Superlattices Microstruct. 100, 1094 (2016)
CrossRef
ADS
Google scholar
|
[209] |
Z. W. Chen, Z. Wen, and Q. Jiang, Rational design of Ag38 cluster supported by graphdiyne for catalytic CO oxidation, J. Phys. Chem. C 121(6), 3463 (2017)
CrossRef
ADS
Google scholar
|
[210] |
Z. Z. Lin, Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation, Carbon 108, 343 (2016)
CrossRef
ADS
Google scholar
|
[211] |
Z. Z. Lin, Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst, Carbon 86, 301 (2015)
CrossRef
ADS
Google scholar
|
[212] |
H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)
CrossRef
ADS
Google scholar
|
[213] |
H. Shen, Y. Li, and Z. Shi, A novel graphdiyne-based catalyst for effective hydrogenation reaction, ACS Appl. Mater. Interfaces 11(3), 2563 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |