Self-organized criticality in multi-pulse gamma-ray bursts

Fen Lyu, Ya-Ping Li, Shu-Jin Hou, Jun-Jie Wei, Jin-Jun Geng, Xue-Feng Wu

PDF(2130 KB)
PDF(2130 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 14501. DOI: 10.1007/s11467-020-0989-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Self-organized criticality in multi-pulse gamma-ray bursts

Author information +
History +

Abstract

The variability in multi-pulse gamma-ray bursts (GRBs) may help to reveal the mechanism of underlying processes from the central engine. To investigate whether the self-organized criticality (SOC) phenomena exist in the prompt phase of GRBs, we statistically study the properties of GRBs with more than 3 pulses in each burst by fitting the distributions of several observed physical variables with a Markov Chain Monte Carlo approach, including the isotropic energy Eiso, the duration time T, and the peak count rate P of each pulse. Our sample consists of 454 pulses in 93 GRBs observed by the CGRO/BATSE satellite. The best-fitting values and uncertainties for these power-law indices of the differential frequency distributions are: αE d=1.54 ±0.09, αT d= 1.820.15+0.14 and αPd=2.090.19+0.18, while the power-law indices in the cumulative frequency distributions are: αE c= 1.440.10+0.08, αTc=1.750.13+0.11 and αP c= 1.990.19+0.16. We find that these distributions are roughly consistent with the physical framework of a Fractal-Diffusive, Self-Organized Criticality (FD-SOC) system with the spatial dimension S = 3 and the classical diffusion β=1. Our results support that the jet responsible for the GRBs should be magnetically dominated and magnetic instabilities (e.g., kink model, or tearing-model instability) lead the GRB emission region into the SOC state.

Keywords

gamma-ray burst / general methods: statistical

Cite this article

Download citation ▾
Fen Lyu, Ya-Ping Li, Shu-Jin Hou, Jun-Jie Wei, Jin-Jun Geng, Xue-Feng Wu. Self-organized criticality in multi-pulse gamma-ray bursts. Front. Phys., 2021, 16(1): 14501 https://doi.org/10.1007/s11467-020-0989-x

References

[1]
P. Meszaros and M. J. Rees, Tidal heating and mass loss in neutron star binaries- Implications for gamma-ray burst models, Astrophys. J. 397, 570 (1992)
CrossRef ADS Google scholar
[2]
B. Paczynski, Gamma-ray bursters at cosmological distances, Astrophys. J. Lett. 308, L43 (1986)
CrossRef ADS Google scholar
[3]
B. D. Metzger, D. Giannios, and S. Horiuchi, Heavy nuclei synthesized in gamma-ray burst outflows as the source of ultrahigh energy cosmic rays, Mon. Not. R. Astron. Soc. 415(3), 2495 (2011)
CrossRef ADS Google scholar
[4]
A. Goldstein, P. Veres, E. Burns, M. S. Briggs, R. Hamburg, et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A, Astrophys. J. Lett. 848(2), L14 (2017)
CrossRef ADS Google scholar
[5]
Z. G. Dai, X. Y. Wang, and X. F. Wu, X-ray flares from postmerger millisecond pulsars, Science 311(5764), 1127 (2006)
CrossRef ADS Google scholar
[6]
A. I. MacFadyen and S. E. Woosley, Collapsars: Gammaray bursts and explosions in “failed supernovae”, Astrophys. J. 524(1), 262 (1999)
CrossRef ADS Google scholar
[7]
D. N. Burrows, P. Romano, A. Falcone, et al., Bright X-ray flares in gamma-ray burst afterglows, Science 309(5742), 1833 (2005)
CrossRef ADS Google scholar
[8]
E. W. Liang, B. Zhang, P. T. O’Brien, R. Willingale, L. Angelini, D. N. Burrows, S. Campana, G. Chincarini, A. Falcone, N. Gehrels, M. R. Goad, D. Grupe, S. Kobayashi, P. Meszaros, J. A. Nousek, J. P. Osborne, K. L. Page, and G. Tagliaferri, Testing the curvature effect and internal origin of gamma-ray burst prompt emissions and X-ray flares with swift data, Astrophys. J. 646(1), 351 (2006)
CrossRef ADS Google scholar
[9]
B. Zhang, Y. Z. Fan, J. Dyks, S. Kobayashi, P. Meszaros, D. N. Burrows, J. A. Nousek, and N. Gehrels, Physical processes shaping gamma-ray burst X-ray afterglow light curves: Theoretical implications from the swift X-ray telescope observations, Astrophys. J. 642(1), 354 (2006)
CrossRef ADS Google scholar
[10]
C. Liu and J. Mao, GRB X-ray flare properties among different GRB subclasses, Astrophys. J. 884(1), 59 (2019)
CrossRef ADS Google scholar
[11]
M. L. Goodman, C. Kwan, B. Ayhan, and E. L. Shang, A new approach to solar flare prediction, Front. Phys. 15(3), 34601 (2020)
CrossRef ADS Google scholar
[12]
F. Y. Wang and H. Yu, SGR-like behaviour of the repeating FRB 121102, J. Cosmol. Astropart. Phys. 2017, 023 (2017)
CrossRef ADS Google scholar
[13]
B. Li, L. B. Li, Z. B. Zhang, et al., Statistical properties of the repeating fast radio burst source FRB 121102, arXiv: 1901.03484 (2019)
[14]
G. Q. Zhang, F. Y. Wang, and Z. G. Dai, Similar behaviors between FRB 121102 and solar type III radio bursts, arXiv: 1903.11895 (2019)
[15]
M. J. Aschwanden, A macroscopic description of a generalized self-organized criticality system: Astrophysical applications, Astrophys. J. 782(1), 54 (2014)
CrossRef ADS Google scholar
[16]
M. J. Aschwanden, N. B. Crosby, M. Dimitropoulou, M. K. Georgoulis, S. Hergarten, J. McAteer, A. V. Milovanov, S. Mineshige, L. Morales, N. Nishizuka, G. Pruessner, R. Sanchez, A. S. Sharma, A. Strugarek, and V. Uritsky, 25 years of self-organized criticality: Solar and astrophysics, Space Sci. Rev. 198(1–4), 47 (2016)
CrossRef ADS Google scholar
[17]
J. I. Katz, A model of propagating brittle failure in heterogeneous media, J. Geophys. Res.: Solid Earth 91(B10), 10412 (1986)
CrossRef ADS Google scholar
[18]
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59, 381 (1987)
CrossRef ADS Google scholar
[19]
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38, 364 (1988)
CrossRef ADS Google scholar
[20]
M. J. Aschwanden and J. M. McTiernan, Reconciliation of waiting time statistics of solar flares observed in hard X-rays, Astrophys. J. 717(2), 683 (2010)
CrossRef ADS Google scholar
[21]
M. J. Aschwanden, A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system, Astron. Astrophys. 539, A2 (2012)
CrossRef ADS Google scholar
[22]
F. Y. Wang and Z. G. Dai, Self-organized criticality in Xray flares of gamma-ray-burst afterglows, Nat. Phys. 9(8), 465 (2013)
CrossRef ADS Google scholar
[23]
B. E. Stern and R. Svensson, Evidence for “chain reaction” in the time profiles of gamma-ray bursts, Astrophys. J. Lett. 469, L109 (1996)
CrossRef ADS Google scholar
[24]
F. Y. Wang, Z. G. Dai, S. X. Yi, and S. Q. Xi, Universal behavior of X-ray flares from black hole systems, Astrophys. J. Suppl. 216(1), 8 (2015)
CrossRef ADS Google scholar
[25]
Y. P. Li, F. Yuan, Q. Yuan, Q. D. Wang, P. F. Chen, J. Neilsen, T. Fang, S. Zhang, and J. Dexter, Statistics of X-ray flares of sagittarius A*: Evidence for solar-like selforganized criticality phenomena, Astrophys. J. 810(1), 19 (2015)
CrossRef ADS Google scholar
[26]
C. Guidorzi, S. Dichiara, F. Frontera, R. Margutti, A. Baldeschi, and L. Amati, A common stochastic process rules gamma-ray burst prompt emission and X-ray flares, Astrophys. J. 801(1), 57 (2015)
CrossRef ADS Google scholar
[27]
S. X. Yi, S. Q. Xi, H. Yu, F. Y. Wang, H. J. Mu, L. Z. Lü, and E. W. Liang, Comprehensive study of the X-ray flares from gamma-ray bursts observed by swift, Astrophys. J. Suppl. 224(2), 20 (2016)
CrossRef ADS Google scholar
[28]
S. X. Yi, H. Yu, F. Y. Wang, and Z. G. Dai, Statistical distributions of optical flares from gamma-ray bursts, Astrophys. J. 844(1), 79 (2017)
CrossRef ADS Google scholar
[29]
A. M. Beloborodov, B. E. Stern, and R. Svensson, Power density spectra of gamma-ray bursts, Astrophys. J. 535(1), 158 (2000)
CrossRef ADS Google scholar
[30]
Z. L. Uhm and B. Zhang, On the curvature effect of a relativistic spherical shell, Astrophys. J. 808(1), 33 (2015)
CrossRef ADS Google scholar
[31]
J. J. Geng, Y. F. Huang, X. F. Wu, L. M. Song, and H. S. Zong, Probing magnetic fields of GRB X-ray flares with polarization observations, Astrophys. J. 862(2), 115 (2018)
CrossRef ADS Google scholar
[32]
M. J. Aschwanden, Thresholded power law size distributions of instabilities in astrophysics, Astrophys. J. 814(1), 19 (2015)
CrossRef ADS Google scholar
[33]
G. J. Fishman, C. A. Meegan, R. B. Wilson, et al., The BATSE experiment for the GRO- Solar flare hard Xray and γ-ray capabilities, Bull. Am. Astron. Soc. 21, 860 (1989)
[34]
C. A. Meegan, G. J. Fishman, R. B. Wilson, W. S. Paciesas, G. N. Pendleton, J. M. Horack, M. N. Brock, and C. Kouveliotou, Spatial distribution of γ-ray bursts observed by BATSE, Nature 355(6356), 143 (1992)
CrossRef ADS Google scholar
[35]
N. Gehrels, E. Chipman, and D. Kniffen, The Compton gamma ray observatory, Astrophys. J. Suppl. 92, 351 (1994)
CrossRef ADS Google scholar
[36]
J. Hakkila and R. D. Preece, Unification of pulses in long and short gamma-ray bursts: Evidence from pulse properties and their correlations, Astrophys. J. 740(2), 104 (2011)
CrossRef ADS Google scholar
[37]
D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, A. K. Inoue, and K. Ioka, Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation, Astrophys. J. 609(2), 935 (2004)
CrossRef ADS Google scholar
[38]
A. Goldstein, R. D. Preece, R. S. Mallozzi, M. S. Briggs, G. J. Fishman, C. Kouveliotou, W. S. Paciesas, and J. M. Burgess, The BATSE 5B gamma-ray burst spectral catalog, Astrophys. J. Suppl. 208(2), 21 (2013)
CrossRef ADS Google scholar
[39]
D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouveliotou, C. Meegan, R. Wilson, and P. Lestrade, BATSE observations of gamma-ray burst spectra (I): Spectral diversity, Astrophys. J. 413, 281 (1993)
CrossRef ADS Google scholar
[40]
L. Amati, F. Frontera, M. Tavani, J. J. M. in’t Zand, A. Antonelli, E. Costa, M. Feroci, C. Guidorzi, J. Heise, N. Masetti, E. Montanari, L. Nicastro, E. Palazzi, E. Pian, L. Piro, and P. Soffitta, Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts, Astron. Astrophys. 390(1), 81 (2002)
CrossRef ADS Google scholar
[41]
J. P. Norris, J. T. Bonnell, D. Kazanas, J. D. Scargle, J. Hakkila, and T. W. Giblin, Long-lag, wide-pulse gammaray bursts, Astrophys. J. 627(1), 324 (2005)
CrossRef ADS Google scholar
[42]
D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, EMCEE: The MCMC hammer, Publications of the Astronomical Society of the Pacific 125, 306 (2013)
CrossRef ADS Google scholar
[43]
F. Lyu, Y. Wang, Y. Liang, T. T. Lin, Y. D. Hu, and E. W. Liang, Comparison between the time-integrated spectrum and the peak time spectrum of gamma-ray bursts and possible implications, Sci. China Phys. Mech. Astron. 58(3), 5575 (2015)
CrossRef ADS Google scholar
[44]
P. Meszaros and M. J. Rees, Relativistic fireballs and their impact on external matter: Models for cosmological gamma-ray bursts, Astrophys. J. 405, 278 (1993)
CrossRef ADS Google scholar
[45]
T. Piran, A. Shemi, and R. Narayan, Hydrodynamics of relativistic fireballs, Mon. Not. R. Astron. Soc. 263(4), 861 (1993)
CrossRef ADS Google scholar
[46]
S. J. Hou, B. B. Zhang, Y. Z. Meng, X. F. Wu, E. W. Liang, H. J. Lü, T. Liu, Y. F. Liang, L. Lin, R. Lu, J. S. Huang, and B. Zhang, Multicolor blackbody emission in GRB 081221, Astrophys. J. 866(1), 13 (2018)
CrossRef ADS Google scholar
[47]
Y. Z. Meng, J. J. Geng, B. B. Zhang, J. J. Wei, D. Xiao, L. D. Liu, H. Gao, X. F. Wu, E. W. Liang, Y. F. Huang, Z. G. Dai, and B. Zhang, The origin of the prompt emission for short GRB 170817A: Photosphere emission or synchrotron emission? Astrophys. J. 860(1), 72 (2018)
CrossRef ADS Google scholar
[48]
Y. Z. Meng, L. D. Liu, J. J. Wei, X. F. Wu, and B. B. Zhang, The time-resolved spectra of photospheric emission from a structured jet for gamma-ray bursts, Astrophys. J. 882(1), 26 (2019)
CrossRef ADS Google scholar
[49]
B. Zhang and H. Yan, The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts, Astrophys. J. 726(2), 90 (2011)
CrossRef ADS Google scholar
[50]
F. Lyu, E. W. Liang, Y. F. Liang, et al., Distributions of gamma-ray bursts and blazars in the Lp–Ep-plane and possible implications for their radiation physics, Astrophys. J. 793, 36 (2014)
CrossRef ADS Google scholar
[51]
Z. L. Uhm and B. Zhang, Fast-cooling synchrotron radiation in a decaying magnetic field and γ-ray burst emission mechanism, Nat. Phys. 10(5), 351 (2014)
CrossRef ADS Google scholar
[52]
R. D. Blandford and R. L. Znajek, Electromagnetic extraction of energy from Kerr black holes, Mon. Not. R. Astron Soc. 179(3), 433 (1977)
CrossRef ADS Google scholar
[53]
Y. D. Hu, E. W. Liang, S. Q. Xi, F. K. Peng, R. J. Lu, L. Z. Lü, and B. Zhang, Internal energy dissipation of gamma-ray bursts observed with swift: Precursors, prompt gamma-rays, extended emission, and late X-ray flares, Astrophys. J. 789(2), 145 (2014)
CrossRef ADS Google scholar
[54]
B. Zhang and B. Zhang, Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model, Astrophys. J. 782(2), 92 (2014)
CrossRef ADS Google scholar
[55]
A. Lazarian, G. L. Eyink, A. Jafari, et al., 3D turbulent reconnection: Theory, tests, and astrophysical implications, Phys. Plasmas 27, 012305 (2020)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2130 KB)

Accesses

Citations

Detail

Sections
Recommended

/