Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching
Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du
Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching
Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.
photocatalyst / ferroelectric / MoS2 / In2Se3 / heterostructures / water splitting / 2D materials
[1] |
J. M. Coronado, A Historical Introduction to Photocatalysis, in: Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, J. M. Coronado, F. Fresno, M. D. Hernández-Alonso, and R. Portela (Eds.), Springer London: London, 2013, pp 1–4
|
[2] |
C. F. Goodeve and J. A. Kitchener, The mechanism of photosensitisation by solids, Trans. Faraday Soc. 34(0), 902 (1938)
CrossRef
ADS
Google scholar
|
[3] |
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
CrossRef
ADS
Google scholar
|
[4] |
D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fedoped CeO2 films under visible light irradiation, Sci. Rep. 4(1), 5757 (2014)
CrossRef
ADS
Google scholar
|
[5] |
F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, and R. van de Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun. 4(1), 2195 (2013)
CrossRef
ADS
Google scholar
|
[6] |
P. Dong, G. Hou, X. Xi, R. Shao, and F. Dong, WO3-based photocatalysts: Morphology control, activity enhancement and multifunctional applications, Environ. Sci. Nano 4(3), 539 (2017)
CrossRef
ADS
Google scholar
|
[7] |
M. Luo, Y. Liu, J. Hu, H. Liu, and J. Li, One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability, ACS Appl. Mater. Interfaces 4(3), 1813 (2012)
CrossRef
ADS
Google scholar
|
[8] |
T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, and A. Yoshida, Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation,J. Mater. Sci. 41(11), 3527 (2006)
CrossRef
ADS
Google scholar
|
[9] |
A. Eftekhari, Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications, J. Mater. Chem. A 5(35), 18299 (2017)
CrossRef
ADS
Google scholar
|
[10] |
P. Varadhan, H. C. Fu, Y. C. Kao, R. H. Horng, and J. H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction, Nat. Commun. 10(1), 5282 (2019)
CrossRef
ADS
Google scholar
|
[11] |
L. Han, F. F. Abdi, R. van de Krol, R. Liu, Z. Huang, H. J. Lewerenz, B. Dam, M. Zeman, and A. H. M. Smets, Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells, Chem- SusChem 7(10), 2832 (2014)
CrossRef
ADS
Google scholar
|
[12] |
Y. Li, Y. L. Li, C. M. Araujo, W. Luo, and R. Ahuja, Single-layer MoS2 as an efficient photocatalyst, Catal. Sci. Technol. 3(9), 2214 (2013)
CrossRef
ADS
Google scholar
|
[13] |
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of twodimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef
ADS
Google scholar
|
[14] |
Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV-V compounds for visiblelight photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
CrossRef
ADS
Google scholar
|
[15] |
Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137(22), 224108 (2012)
CrossRef
ADS
Google scholar
|
[16] |
H. L. Zhuang and R. G. Hennig, Single-layer group- III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)
CrossRef
ADS
Google scholar
|
[17] |
M. Qiao, J. Liu, Y. Wang, Y. Li, and Z. Chen, PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc. 140(38), 12256 (2018)
CrossRef
ADS
Google scholar
|
[18] |
P. Zhao, Y. Ma, X. Lv, M. Li, B. Huang, and Y. Dai, Twodimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum, Nano Energy 51, 533 (2018)
CrossRef
ADS
Google scholar
|
[19] |
R. M. Navarro Yerga, M. C. Álvarez Galván, F. del Valle, J. A. Villoria de la Mano, and J. L. G. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation, ChemSusChem 2(6), 471 (2009)
CrossRef
ADS
Google scholar
|
[20] |
A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38(1), 253 (2009)
CrossRef
ADS
Google scholar
|
[21] |
M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev. 11(3), 401 (2007)
CrossRef
ADS
Google scholar
|
[22] |
A. Kakekhani and S. Ismail-Beigi, Ferroelectric-based catalysis: Switchable surface chemistry, ACS Catal. 5(8), 4537 (2015)
CrossRef
ADS
Google scholar
|
[23] |
X. Liu, Y. Wang, J. D. Burton, and E. Y. Tsymbal, Polarization-controlled Ohmic to Schottky transition at a metal/ferroelectric interface, Phys. Rev. B 88(16), 165139 (2013)
CrossRef
ADS
Google scholar
|
[24] |
D. Kim, H. Han, J. H. Lee, J. W. Choi, J. C. Grossman, H. M. Jang, and D. Kim, Electronhole separation in ferroelectric oxides for efficient photovoltaic responses, Proc. Natl. Acad. Sci. USA 115(26), 6566 (2018)
CrossRef
ADS
Google scholar
|
[25] |
D. Wijethunge, C. Tang, C. Zhang, L. Zhang, X. Mao, and A. Du, Bandstructure engineering in 2D materials using ferroelectric materials, Appl. Surf. Sci. 513, 145817 (2020)
CrossRef
ADS
Google scholar
|
[26] |
F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Roomtemperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7(1), 12357 (2016)
CrossRef
ADS
Google scholar
|
[27] |
S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10(1), 1775 (2019)
CrossRef
ADS
Google scholar
|
[28] |
A. Chandrasekaran, A. Mishra, and A. K. Singh, Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/ hole gas in multifunctional monolayer MXene, Nano Lett. 17(5), 3290 (2017)
CrossRef
ADS
Google scholar
|
[29] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction Photocatalysts 29(20), 1601694 (2017)
CrossRef
ADS
Google scholar
|
[30] |
C. Cui, W. J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, and L. J. Li, Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3, Nano Lett. 18(2), 1253 (2018)
CrossRef
ADS
Google scholar
|
[31] |
W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, Prediction of intrinsic twodimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials, Nat. Commun. 8(1), 14956 (2017)
CrossRef
ADS
Google scholar
|
[32] |
Y. Jiang, Q. Wang, L. Han, X. Zhang, L. Jiang, Z. Wu, Y. Lai, D. Wang, and F. Liu, Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting, Chem. Eng. J. 358, 752 (2019)
CrossRef
ADS
Google scholar
|
[33] |
J. R. Zhang, X. Z. Deng, B. Gao, L. Chen, C. T. Au, K. Li, S. F. Yin, and M. Q. Cai, Theoretical study on the intrinsic properties of In2Se3/MoS2 as a photocatalyst driven by near-infrared, visible and ultraviolet light, Catal. Sci. Technol. 9(17), 4659 (2019)
CrossRef
ADS
Google scholar
|
[34] |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef
ADS
Google scholar
|
[35] |
H. Li, K. Yu, Z. Tang, H. Fu, and Z. Zhu, High photocatalytic performance of a type-II α-MoO3@MoS2 heterojunction: From theory to experiment, Phys. Chem. Chem. Phys. 18(20), 14074 (2016)
CrossRef
ADS
Google scholar
|
[36] |
Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures, Langmuir 30(29), 8965 (2014)
CrossRef
ADS
Google scholar
|
[37] |
F. Li, C. Shi, D. Wang, G. Cui, P. Zhang, L. Lv, and L. Chen, Improved visible-light absorbance of monolayer MoS2 on AlN substrate and its angle-dependent electronic structures, Phys. Chem. Chem. Phys. 20(46), 29131 (2018)
CrossRef
ADS
Google scholar
|
[38] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[39] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[40] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[41] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[42] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef
ADS
Google scholar
|
[43] |
S. Grimme, J. Antony, S. Ehrlich, and, H. Krieg, A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)
CrossRef
ADS
Google scholar
|
[44] |
C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, A comparative study of lattice dynamics of three- and twodimensional MoS2, J. Phys. Chem. C 115(33), 16354 (2011)
CrossRef
ADS
Google scholar
|
[45] |
P. Joensen, R. F. Frindt, and S. R. Morrison, Single-layer MoS2, Mater. Res. Bull. 21(4), 457 (1986)
CrossRef
ADS
Google scholar
|
[46] |
Z. Xie, F. Yang, X. Xu, R. Lin, and L. M. Chen, Functionalization of α-In2Se3 monolayer via adsorption of small molecule for gas sensing, Front. Chem. 6, 430 (2018)
CrossRef
ADS
Google scholar
|
[47] |
A. Kuc, N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B 83(24), 245213 (2011)
CrossRef
ADS
Google scholar
|
[48] |
S. Lebègue and O. Eriksson, Electronic structure of twodimensional crystals from ab initiotheory, Phys. Rev. B 79(11), 115409 (2009)
CrossRef
ADS
Google scholar
|
[49] |
C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C 115(27), 13303 (2011)
CrossRef
ADS
Google scholar
|
[50] |
K. Kośmider and J. Fernández-Rossier, Electronic properties of the MoS2–WS2 heterojunction, Phys. Rev. B 87(7), 075451 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |