Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications

Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang

PDF(6260 KB)
PDF(6260 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 13301. DOI: 10.1007/s11467-020-0986-0
REVIEW ARTICLE
REVIEW ARTICLE

Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications

Author information +
History +

Abstract

Copper indium thiophosphate, CuInP2S6, has attracted much attention in recent years due to its van der Waals layered structure and robust ferroelectricity at room temperature. In this review, we aim to give an overview of the various properties of CuInP2S6, covering structural, ferroelectric, dielectric, piezoelectric and transport properties, as well as its potential applications. We also highlight the remaining questions and possible research directions related to this fascinating material and other compounds of the same family.

Keywords

CuInP2S6 / van der Waals ferroelectric / phase transition / ionic conduction / piezoelectricity

Cite this article

Download citation ▾
Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301 https://doi.org/10.1007/s11467-020-0986-0

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
C. Gong and X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices, Science 363(6428), eaav4450 (2019)
CrossRef ADS Google scholar
[3]
K. S. Burch, D. Mandrus, and J. G. Park, Magnetism in two-dimensional van der Waals materials, Nature 563(7729), 47 (2018)
CrossRef ADS Google scholar
[4]
L. Mennel, M. M. Furchi, S. Wachter, M. Paur, D. K. Polyushkin, and T. Mueller, Optical imaging of strain in two-dimensional crystals, Nat. Commun. 9(1), 516 (2018)
CrossRef ADS Google scholar
[5]
Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
CrossRef ADS Google scholar
[6]
F. Zhang, Z. Wang, J. Dong, A. Nie, J. Xiang, W. Zhu, Z. Liu, and C. Tao, Atomic-scale observation of reversible thermally driven phase transformation in 2D In2Se3, ACS Nano 13(7), 8004 (2019)
CrossRef ADS Google scholar
[7]
T. Zhang, S. Wu, R. Yang, and G. Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206 (2017)
CrossRef ADS Google scholar
[8]
J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exception alballistic transport in epitaxial graphene nanoribbons, Nature 506(349), 7488 (2014)
CrossRef ADS Google scholar
[9]
S. J. Liang, B. Cheng, X. Cui, and F. Miao, Van der Waals heterostructures for high-performance device applications: Challenges and opportunities, Adv. Mater. 6(1), 1903800 (2019)
CrossRef ADS Google scholar
[10]
X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao, F. Liu, L. You, Q. Zeng, Y. Deng, C. Zhu, J. Zhou, Q. Fu, J. Wang, Y. Huang, and Z. Liu, Van der Waals negative capacitance transistors, Nat. Commun. 10(1), 3037 (2019)
CrossRef ADS Google scholar
[11]
Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes, Nano Lett. 17(9), 5508 (2017)
CrossRef ADS Google scholar
[12]
K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q. K. Xue, X. Chen, and S. H. Ji, Discovery of robust in-plane ferroelectricity in atomic-thick SnTe, Science 353(6296), 274 (2016)
CrossRef ADS Google scholar
[13]
F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7(1), 12357 (2016)
CrossRef ADS Google scholar
[14]
S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10, 1775 (2019)
CrossRef ADS Google scholar
[15]
Z. Guan, H. Hu, X. Shen, P. Xiang, N. Zhong, J. Chu, and C. Duan, Recent progress in two-dimensional ferroelectric materials, Adv. Electron. Mater. 6(1), 1900818 (2020)
CrossRef ADS Google scholar
[16]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS Google scholar
[17]
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Wang, Z. Sun, Y. Yi, Y. Wu, S. Wu, J. Zhu, J. Wang, X. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef ADS Google scholar
[18]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS Google scholar
[19]
M. Wu and X. C. Zeng, Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues, Nano Lett. 16(5), 3236 (2016)
CrossRef ADS Google scholar
[20]
W. Y. Tong, S. J. Gong, X. Wan, and C. G. Duan, Concepts of ferrovalley material and anomalous valley hall effect, Nat. Commun. 7(1), 13612 (2016)
CrossRef ADS Google scholar
[21]
X. W. Shen, H. Hu, and C. G. Duan, Chapter 3: Twodimensional ferrovalley materials, Spintronic 2D Materials, Eds. W. Q. Liu and Y. B. Xu, 2020, p. 65
CrossRef ADS Google scholar
[22]
J. F. Scott, Ferroelectric Memories, Springer Science & Business Media, 2000
CrossRef ADS Google scholar
[23]
J. Deng, Y. Liu, M. Li, S. Xu, Y. Lun, P. Lv, T. Xia, P. Gao, X. Wang, and J. Hong, Thickness-dependent inplane polarization and structural phase transition in van der Waals ferroelectric CuInP2S6, Small 16(1), 1904529 (2020)
CrossRef ADS Google scholar
[24]
Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
CrossRef ADS Google scholar
[25]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[26]
M. A. Susner, M. Chyasnavichyus, M. A. McGuire, P. Ganesh, and P. Maksymovych, Metal thio- and selenophosphates as multifunctional van der Waals layered materials, Adv. Mater. 29(38), 1602852 (2017)
CrossRef ADS Google scholar
[27]
X. Wang, Z. Song, W. Wen, H. Liu, J. Wu, C. Dang, M. Hossain, M. A. Iqbal, and L. Xie, Potential 2D materials with phase transitions: Structure, synthesis, and device applications, Adv. Mater. 31(45), 1804682 (2019)
CrossRef ADS Google scholar
[28]
R. Brec, Review on structural and chemical properties of transition metal phosphorus trisulfides MPS3, Solid State Ion. 22(1), 3 (1986)
CrossRef ADS Google scholar
[29]
A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, and S. V. Kalinin, CuInP2S6 room temperature layered ferroelectric, Nano Lett. 15(6), 3808 (2015)
CrossRef ADS Google scholar
[30]
M. Si, P. Y. Liao, G. Qiu, Y. Duan, and P. D. Ye, Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure, ACS Nano 12(7), 6700 (2018)
CrossRef ADS Google scholar
[31]
J. A. Brehm, S. M. Neumayer, L. Tao, A. O’Hara, M. Chyasnavichus, M. A. Susner, M. A. McGuire, S. V. Kalinin, S. Jesse, P. Ganesh, S. T. Pantelides, P. Maksymovych, and N. Balke, Tunable quadruple-well ferroelectric van der Waals crystals, Nat. Mater. 19(1), 43 (2020)
CrossRef ADS Google scholar
[32]
N. Balke, S. M. Neumayer, J. A. Brehm, M. A. Susner, B. J. Rodriguez, S. Jesse, S. V. Kalinin, S. T. Pantelides, M. A. McGuire, and P. Maksymovych, Locally controlled Cu-ion transport in layered ferroelectric CuInP2S6, ACS Appl. Mater. Interfaces 10(32), 27188 (2018)
CrossRef ADS Google scholar
[33]
M. A. Susner, M. Chyasnavichyus, A. A. Puretzky, Q. He, B. S. Conner, Y. Ren, D. A. Cullen, P. Ganesh, D. Shin, H. Demir, J. W. McMurray, A. Y. Borisevich, P. Maksymovych, and M. A. McGuire, Cation-eutectic transition via sublattice melting in CuInP2S6/In4/3P2S6 van der Waals layered crystals, ACS Nano 11(7), 7060 (2017)
CrossRef ADS Google scholar
[34]
L. Chen, Y. Li, C. Li, H. Wang, Z. Han, H. Ma, G. Yuan, L. Lin, Z. Yan, X. Jiang, and J. M. Liu, Thickness dependence of domain size in 2D ferroelectric CuInP2S6 nanoflakes, AIP Adv. 9(11), 115211 (2019)
CrossRef ADS Google scholar
[35]
L. Niu, F. Liu, Q. Zeng, X. Zhu, Y. Wang, P. Yu, J. Shi, J. Line, J. Zhou, Q. Fu, W. Zhou, T. Yu, X. Liu, and Z. Liu, Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes, Nano Energy 58, 596 (2019)
CrossRef ADS Google scholar
[36]
M. Si, A. K. Saha, P. Y. Liao, S. Gao, S. M. Neumayer, J. Jian, J. Qin, N. B. Wisinger, H. Wang, P. Maksymovych, W. Wu, S. K. Gupta, and P. D. Ye, Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration, ACS Nano 13(8), 8760 (2019)
CrossRef ADS Google scholar
[37]
S. M. Neumayer, E. A. Eliseev, M. A. Susner, A. Tselev, B. J. Rodriguez, J. A. Brehm, S. T. Pantelides, G. Panchapakesan, S. Jesse, S. V. Kalinin, M. A. McGuire, A. N. Morozovska, P. Maksymovych, and N. Balke, Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric, Phys. Rev. Mater. 3(2), 024401 (2019)
CrossRef ADS Google scholar
[38]
M. A. Susner, A. Belianinov, A. Borisevich, Q. He, M. Chyasnavichyus, H. Demir, D. S. Sholl, P. Ganesh, D. L. Abernathy, M. A. McGuire, and P. Maksymovych, High-T C layered ferrielectric crystals by coherent spinodal decomposition, ACS Nano 9(12), 12365 (2015)
CrossRef ADS Google scholar
[39]
Z. Sun, W. Xun, L. Jiang, J. L. Zhong, and Y. Z. Wu, Strain engineering to facilitate the occurrence of 2D ferroelectricity in CuInP2S6 monolayer, J. Phys. D Appl. Phys. 52(46), 465302 (2019)
CrossRef ADS Google scholar
[40]
L. You, Y. Zhang, S. Zhou, A. Chaturvedi, S. A. Morris, F. Liu, L. Chang, D. Ichinose, H. Funakubo, W. Hu, T. Wu, Z. Liu, S. Dong, and J. Wang, Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric, Sci. Adv. 5(4), eaav3780 (2019)
CrossRef ADS Google scholar
[41]
S. Zhou, L. You, A. Chaturvedi, S. A. Morris, J. S. Herrin, N. Zhang, A. Abdelsamie, Y. Hu, J. Chen, Y. Zhou, S. Dong, and J. Wang, Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor, Mater. Horiz. 7(1), 263 (2020)
CrossRef ADS Google scholar
[42]
V. Maisonneuve, M. Evain, C. Payen, V. B. Cajipe, and P. Molinie, Room-temperature crystal structure of the layered phase CuIInIIIP2S6, J. Alloys Compd. 218(2), 157 (1995)
CrossRef ADS Google scholar
[43]
S. Lee, P. Colombet, G. Ouvrard, and R. Brec, General trends observed in the substituted thiophosphate family. Synthesis and structure of silver scandium thiophosphate, AgScP2S6, and cadmium iron thiophosphate, CdFeP2S6, Inorg. Chem. 27(7), 1291 (1988)
CrossRef ADS Google scholar
[44]
J. K. Burdett and O. Eisenstein, From three-to fourcoordination in copper (I) and silver (I), Inorg. Chem. 31(10), 1758 (1992)
CrossRef ADS Google scholar
[45]
S. H. Wei, S. B. Zhang, and A. Zunger, Off-center atomic displacements in zinc-blende semiconductor, Phys. Rev. Lett. 70(11), 1639 (1993)
CrossRef ADS Google scholar
[46]
V. Maisonneuve, V. B. Cajipe, A. Simon, R. Von Der Muhll, and J. Ravez, Ferrielectric ordering in lamellar CuInP2S6, Phys. Rev. B 56(17), 10860 (1997)
CrossRef ADS Google scholar
[47]
A. Simon, J. Ravez, V. Maisonneuve, C. Payen, and V. B. Cajipe, Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6, Chem. Mater. 6(9), 1575 (1994)
CrossRef ADS Google scholar
[48]
A. Dziaugys, V. V. Shvartsman, J. Macutkevic, J. Banys, Y. Vysochanskii, and W. Kleemann, Phase diagram of mixed Cu(InxCr1−x)P2S6 crystals, Phys. Rev. B 85(13), 134105 (2012)
CrossRef ADS Google scholar
[49]
Q. He, A. Belianinov, A. Dziaugys, P. Maksymovych, Y. Vysochanskii, S. V. Kalinin, and A. Y. Borisevich, Antisite defects in layered multiferroic CuCr0.9In0.1P2S6, Nanoscale 7(44), 18579 (2015)
CrossRef ADS Google scholar
[50]
A. Dziaugys, J. Banys, J. Macutkevic, and Y. Vysochanskii, Anisotropy effects in thick layered CuInP2S6 and CuInP2Se6 crystals, Phase Transit. 86(9), 878 (2013)
CrossRef ADS Google scholar
[51]
Y. Vysochanskii, R. Yevych, L. Beley, V. Stephanovich, V. Mytrovcij, O. Mykajlo, A. Molnar, and M. Gurzan, Phonon spectra and phase transitions in CuInP2(SexS1−x)6 ferroelectrics, Ferroelectrics 284(1), 161 (2003)
CrossRef ADS Google scholar
[52]
A. Dziaugys, J. Banys, J. Macutkevic, R. Sobiestianskas, and Y. Vysochanskii, Dipolar glass phase in ferrielectrics: CuInP2S6 and Ag0.1Cu0.9InP2S6 crystals, Phys. Status Solid. A 207(8), 1960 (2010)
CrossRef ADS Google scholar
[53]
G. Burr, E. Durand, M. Evain, and R. Brec, Lowtemperature copper ordering in the layered thiophosphate CuVP2S6: A time-of-flight neutron powder diffraction study, J. Solid State Chem. 103(2), 514 (1993)
CrossRef ADS Google scholar
[54]
A. Grzechnik, V. B. Cajipe, C. Payen, and P. F. McMillan, Pressure-induced phase transition in ferrielectric CuInP2S6, Solid State Commun. 108(1), 43 (1998)
CrossRef ADS Google scholar
[55]
V. S. Shusta, I. P. Prits, P. P. Guranich, E. I. Gerzanich, and A. G. Slivka, Dielectric properties of CuInP2S6 crystals under high pressure, Condens. Matter Phys. 10(1), 91 (2007)
CrossRef ADS Google scholar
[56]
P. P. Guranich, A. G. Slivka, V. S. Shusta, O. O. Gomonnai, and I. P. Prits, Optical and dielectric properties of CuInP2S6 layered crystals at high hydrostatic pressure, J. Phys. Conf. Ser. 121(2), 022015 (2008)
CrossRef ADS Google scholar
[57]
A. Dziaugys, J. Banys, and Y. Vysochanskii, Broadband dielectric investigations of indium rich CuInP2S6 layered crystals, Z. Kristallogr. Cryst. Mater. 226(2), 171 (2011)
CrossRef ADS Google scholar
[58]
A. Dziaugys, J. Banys, V. Samulionis, J. Macutkevic, Y. Vysochanskii, V. Shvartsman, and W. Kleemann, Phase transitions in layered semiconductor-ferroelectrics, in: Ferroelectrics-Characterization and Modeling, IntechOpen, 2011
CrossRef ADS Google scholar
[59]
G. A. Samara, T. Sakudo, and K. Yoshimitsu, Important generalization concerning the role of competing forces in displacive phase transitions, Phys. Rev. Lett. 35(26), 1767 (1975)
CrossRef ADS Google scholar
[60]
A. K. Jonscher, Dielectric relaxation in solids, J. Phys. D Appl. Phys. 32(14), R57 (1999)
CrossRef ADS Google scholar
[61]
A. K. Jonscher, The “universal”dielectric response, Nature 267(5613), 673 (1977)
CrossRef ADS Google scholar
[62]
V. Maisonneuve, J. M. Reau, M. Dong, V. B. Cajipe, C. Payen, and J. Ravez, Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6, Ferroelectrics 196(1), 257 (1997)
CrossRef ADS Google scholar
[63]
Y. M. Vysochanskii, A. A. Molnar, V. A. Stephanovich, V. B. Cajipe, and X. Bourdon, Dipole ordering and critical behavior of the static and dynamic properties in threedimensional and layered MMP2X crystals (M, M=Sn, Cu, In; X=S, Se), Ferroelectrics 226(1), 243 (1999)
CrossRef ADS Google scholar
[64]
J. Banys, J. Macutkevic, V. Samulionis, A. Brilingas, and Y. Vysochanskii, Dielectric and ultrasonic investigation of phase transition in CuInP2S6 crystals, Phase Transit. 77(4), 345 (2004)
CrossRef ADS Google scholar
[65]
J. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, Gordon and Breach Science Publ, OPA Amsterdam, 1996
[66]
J. F. Scott, Soft-mode spectroscopy: Experimental studies of structural phase transitions, Rev. Mod. Phys. 46(1), 83 (1974)
CrossRef ADS Google scholar
[67]
D. Xu, R. Ma, Y. Zhao, Z. Guan, Q. Zhong, R. Huang, P. Xiang, N. Zhong, and C. Duan, Unconventional outof- plane domain inversion via in-plane ionic migration in a van der Waals ferroelectric, J. Mater. Chem. C 8(21), 6966 (2020)
CrossRef ADS Google scholar
[68]
R. R. Mehta, B. D. Silverman, and J. T. Jacobs, Depolarization fields in thin ferroelectric films, J. Appl. Phys. 44(8), 3379 (1973)
CrossRef ADS Google scholar
[69]
M. Chyasnavichyus, M. A. Susner, A. V. Ievlev, E. A. Eliseev, S. V. Kalinin, N. Balke, A. N. Morozovska, M. A. McGuire, and P. Maksymovych, Size-effect in layered ferrielectric CuInP2S6, Appl. Phys. Lett. 109(17), 172901 (2016)
CrossRef ADS Google scholar
[70]
M. F. Chisholm, W. Luo, M. P. Oxley, S. T. Pantelides, and H. N. Lee, Atomic-scale compensation phenomena at polar interfaces, Phys. Rev. Lett. 105(19), 197602 (2010)
CrossRef ADS Google scholar
[71]
G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Domain wall nanoelectronics, Rev. Mod. Phys. 84(1), 119 (2012)
CrossRef ADS Google scholar
[72]
M. Dawber, A. Gruverman, and J. F. Scott, Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnets, J. Phys.: Condens. Matter 18(5), L71 (2006)
CrossRef ADS Google scholar
[73]
W. J. Hu, D. M. Juo, L. You, J. Wang, Y. C. Chen, Y. H. Chu, and T. Wu, Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films, Sci. Rep. 4(1), 4772 (2015)
CrossRef ADS Google scholar
[74]
Y. W. So, D. J. Kim, T. W. Noh, J. G. Yoon, and T. K. Song, Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films, Appl. Phys. Lett. 86(9), 092905 (2005)
CrossRef ADS Google scholar
[75]
Y. Ishibashi and Y. Takagi, Note on ferroelectric domain switching, J. Phys. Soc. Jpn. 31(2), 506 (1971)
CrossRef ADS Google scholar
[76]
A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films, Phys. Rev. B 66(21), 214109 (2002)
CrossRef ADS Google scholar
[77]
I. W. Chen, and Y. Wang, Activation field and fatigue of (Pb,La)(Zr,Ti)O3 thin films, Appl. Phys. Lett. 75(26), 4186 (1999)
CrossRef ADS Google scholar
[78]
H. Ma, W. Gao, J. Wang, T. Wu, G. Yuan, J. Liu, and Z. Liu, Ferroelectric polarization switching dynamics and domain growth of triglycine sulfate and imidazolium perchlorate, Adv. Electron. Mater. 2(6), 1600038 (2016)
CrossRef ADS Google scholar
[79]
W. J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev. 95(3), 690 (1954)
CrossRef ADS Google scholar
[80]
P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, and O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO3, Phys. Rev. B 74(22), 224412 (2006)
CrossRef ADS Google scholar
[81]
R. Landauer, Electrostatic considerations in BaTiO3 domain formation during polarization reversal, J. Appl. Phys. 28(2), 227 (1957)
CrossRef ADS Google scholar
[82]
P. Ben Ishai, C. E. M. de Oliveira, Y. Ryabov, A. J. Agranat, and Y. Feldman, Unusual glass-like systemsrelaxation dynamics of Cu+ ions in ferroelectric KTN crystals, J. Non-Cryst. Solids 351(33–36), 2786 (2005)
CrossRef ADS Google scholar
[83]
I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W. M. Blom, D. Damjanovic, M. M. Nielsen, and D. M. de Leeuw, The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride), Nat. Mater. 15(1), 78 (2016)
CrossRef ADS Google scholar
[84]
V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, and A. L. Kholkin, Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly (vinylidene fluoride) (PVDF), J. Mol. Model. 19(9), 3591 (2013)
CrossRef ADS Google scholar
[85]
F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B 56(16), R10024 (1997)
CrossRef ADS Google scholar
[86]
S. Liu and R. E. Cohen, Origin of negative longitudinal piezoelectric effect, Phys. Rev. Lett. 119(20), 207601 (2017)
CrossRef ADS Google scholar
[87]
M. G. Broadhurst and G. T. Davis, Physical basis for piezoelectricity in PVDF, Ferroelectrics 60(1), 3 (1984)
CrossRef ADS Google scholar
[88]
R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sens. Act. A Phys. 64(1), 77 (1998)
CrossRef ADS Google scholar
[89]
I. Urbanaviciute, X. Meng, M. Biler, Y. Wei, T. D. Cornelissen, S. Bhattacharjee, M. Linares, and M. Kemerink, Negative piezoelectric effect in an organic supramolecular ferroelectric, Mater. Horiz. 6(8), 1688 (2019)
CrossRef ADS Google scholar
[90]
J. Kim, K. M. Rabe, and D. Vanderbilt, Negative piezoelectric response of van der Waals layered bismuth tellurohalides, Phys. Rev. B 100(10), 104115 (2019)
CrossRef ADS Google scholar
[91]
D. M. Bercha, S. Bercha, K. Glukhov, and M. Sznajder, Electron-phonon interaction as a mechanism of phase transition in the CuInP2S6 crystal, Acta Phys. Pol. A 126(5), 1143 (2014)
CrossRef ADS Google scholar
[92]
D. M. Bercha, S. A. Bercha, K. E. Glukhov, and M. Sznajder, Vibronic interaction in crystals with the Jahn– Teller centers in the elementary energy bands concept, Condens. Matter Phys. 18(3), 33705 (2015)
CrossRef ADS Google scholar
[93]
T. Babuka, K. Glukhov, Y. Vysochanskii, and M. Makowska-Janusik, Layered ferrielectric crystals CuInP2S(Se)6: A study from the first principles, Phase Transit. 92(5), 440 (2019)
CrossRef ADS Google scholar
[94]
T. Babuka, K. Glukhov, Y. Vysochanskii, and M. Makowska-Janusik, Structural, electronic, vibration and elastic properties of the layered AgInP2S6 semiconducting crystal-DFT approach, RSC Adv. 8(13), 6965 (2018)
CrossRef ADS Google scholar
[95]
Y. Fagot-Revurat, X. Bourdon, F. Bertran, V. B. Cajipe, and D. Malterre, Interplay between electronic and crystallographic instabilities in the low-dimensional ferroelectric CuInP2Se6, J. Phys.: Condens. Matter 15(3), 595 (2003)
CrossRef ADS Google scholar
[96]
C. Zhang, Y. Nie, and A. Du, Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2X6 Materials, Acta Physico-Chimica Sinica 35(10), 1128 (2019)
CrossRef ADS Google scholar
[97]
Y. M. Vysochanskii, V. A. Stephanovich, A. A. Molnar, V. B. Cajipe, and X. Bourdon, Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6, Phys. Rev. B 58(14), 9119 (1998)
CrossRef ADS Google scholar
[98]
T. V. Misuryaev, T. V. Murzina, O. A. Aktsipetrov, N. E. Sherstyuk, V. B. Cajipe, and X. Bourdon, Second harmonic generation in the lamellar ferrielectric CuInP2S6, Solid State Commun. 115(11), 605 (2000)
CrossRef ADS Google scholar
[99]
I. P. Studenyak, V. V. Mitrovcij, G. S. Kovacs, M. I. Gurzan, O. A. Mykajlo, Y. M. Vysochanskii, and V. B. Cajipe, Disordering effect on optical absorption processes in CuInP2S6 layered ferrielectrics, Phys. Stat. Solid. B 236(3), 678 (2003)
CrossRef ADS Google scholar
[100]
M. Moustafa, A. Wasnick, C. Janowitz, and R. Manzke, Temperature shift of the absorption edge and Urbach tail of ZrSxSe2−x single crystals, Phys. Rev. B 95(24), 245207 (2017)
CrossRef ADS Google scholar
[101]
F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92(5), 1324 (1953)
CrossRef ADS Google scholar
[102]
M. Kranjčec, D. I. Desnica, B. Celustka, G. S. Kovacs, and I. P. Studenyak, Fundamental optical absorption edge and compositional disorder in γ1-(GaxIn1−x)2Se3 single crystals, Phys. Stat. Solid. A 144(1), 223 (1994)
CrossRef ADS Google scholar
[103]
V. Samulionis, J. Banys, Yu. Vysochanskii, and V. Cajipe, Elastic and electromechanical properties of new ferroelectric-semiconductor materials of Sn2P2S6 family, Ferroelectrics 257(1), 113 (2001)
CrossRef ADS Google scholar
[104]
V. Samulionis, J. Banys, and Y. Vysochanskii, Linear and nonlinear elastic properties of CuInP2S6 layered crystals under polarization reversal,Ferroelectrics 389(1), 18 (2009)
CrossRef ADS Google scholar
[105]
V. Samulionis, J. Banys, and Y. Vysochanskii, The characterization of two dimensional electrostrictive CuInP2S6 materials for transducers, in: Materials science forum, Vol. 514, pp 230–234, Trans Tech Publications, 2006
CrossRef ADS Google scholar
[106]
V. Samulionis, J. Banys, and Y. Vysochanskii, Ultrasonic and piezoelectric studies of phase transitions in two-dimensional CuInP2S6 type crystals, Ferroelectrics 379(1), 69 (2009)
CrossRef ADS Google scholar
[107]
A. Dziaugys, J. Banys, V. Samulionis, and Y. Vysochanskii, Dielectric and ultrasonic studies of new Ag0.1Cu0.9InP2S6 layered ferroelectric compound, Ultragarsas 63(3), 7 (2008)
[108]
A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Solid-state memories based on ferroelectric tunnel junctions, Nat. Nanotechnol. 7(2), 101 (2012)
CrossRef ADS Google scholar
[109]
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef ADS Google scholar
[110]
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
CrossRef ADS Google scholar
[111]
S. Wan, Y. Li, W. Li, X. Mao, C. Wang, C. Chen, J. Dong, A. Nie, J. Xiang, Z. Liu, W. Zhu, and H. Zeng, Nonvolatile ferroelectric memory effect in ultrathin α- In2Se3, Adv. Funct. Mater. 29(20), 1808606 (2019)
CrossRef ADS Google scholar
[112]
W. Huang, F. Wang, L. Yin, R. Cheng, Z. Wang, M. G. Sendeku, J. Wang, N. Li, Y. Yao, and J. He, Gatecoupling- enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions, Adv. Mater. 32(14), 1908040 (2020)
CrossRef ADS Google scholar
[113]
X. Wang, C. Liu, Y. Chen, G. Wu, X. Yan, H. Huang, P. Wang, B. Tian, Z. Hong, Y. Wang, Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels, 2D Mater. 4(2), 025036 (2017)
CrossRef ADS Google scholar
[114]
H. S. Lee, S. W. Min, M. K. Park, Y. T. Lee, P. J. Jeon, J. H. Kim, S. Ryu, and S. Im, MoS2 nanosheets for topgate nonvolatile memory transistor channel, Small 8(20), 3111 (2012)
CrossRef ADS Google scholar
[115]
A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, Negative capacitance in a ferroelectric capacitor, Nat. Mater. 14(2), 182 (2015)
CrossRef ADS Google scholar
[116]
X. Wang, Y. Chen, G. Wu, D. Li, L. Tu, S. Sun, H. Shen, T. Lin, Y. Xiao, M. Tang, W. Hu, L. Liao, P. Zhou, J. Sun, X. Meng, J. Chu, and J. Wang, Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating, npj 2D Mater. Appl. 1(1), 38 (2017)
CrossRef ADS Google scholar
[117]
M. Si, C. Jiang, W. Chung, Y. Du, M. A. Alam, and P. D. Ye, Steep-slope WSe2 negative capacitance field-effect transistor, Nano Lett. 18(6), 3682 (2018)
CrossRef ADS Google scholar
[118]
M. Si, C.J. Su, C. Jiang, N. J. Conrad, H. Zhou, K. D. Maize, G. Qiu, C.T. Wu, A. Shakouri, M. A. Alam, and P. D. Ye, Steep-slope hysteresis-free negative capacitance MoS2 transistors, Nat. Nanotechnol. 13(1), 24 (2018)
CrossRef ADS Google scholar
[119]
H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12(9), 4674 (2012)
CrossRef ADS Google scholar
[120]
J. Wu, H.Y. Chen, N. Yang, J. Cao, X. Yan, F. Liu, Q. Sun, X. Ling, J. Guo, and H. Wang, High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation, Nat. Elctron. 3, 466 (2020)
CrossRef ADS Google scholar
[121]
B. A. Tuttle and D. A. Payne, The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics, Ferroelectrics 37(1), 603 (1981)
CrossRef ADS Google scholar
[122]
A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3, Science 311(5765), 1270 (2006)
CrossRef ADS Google scholar
[123]
R. Ma, Z. Zhang, K. Tong, D. Huber, R. Kornbluh, Y. S. Ju, and Q. Pei, Highly efficient electrocaloric cooling with electrostatic actuation, Science 357(6356), 1130 (2017)
CrossRef ADS Google scholar
[124]
H. Hu, W. Tong, Y. Shen, and C. G. Duan, Electrical control of the valley degree of freedom in 2D ferroelectric/antiferromagnetic heterostructures, J. Mater. Chem. C 8(24), 8098 (2020)
CrossRef ADS Google scholar
[125]
S. M. Neumayer, L. Tao, A. O’Hara, J. Brehm, M. Si, P. Y. Liao, T. Feng, S. V. Kalinin, P. D. Ye, S. T. Pantelides, P. Maksymovych, and N. Balke, Alignment of polarization against an electric field in van der Waals ferroelectrics, Phys. Rev. Appl. 13(6), 064063 (2020)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(6260 KB)

Accesses

Citations

Detail

Sections
Recommended

/