Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication
Miao Zhu, Muhammad Umair Ali, Changwei Zou, Wei Xie, Songquan Li, Hong Meng
Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication
Tactile and temperature sensors are the key components for e-skin fabrication. Organic transistors, a kind of intrinsic logic devices with diverse internal configurations, offer a wide range of options for sensor design and have played a vital role in the fabrication of e-skin-oriented tactile and temperature sensors. This research field has attained tremendous advancements, both in terms of materials design and device architecture, thereby leading to excellent performance of resulting tactile/temperature sensors. Herein, a systematic review of organic transistor-based tactile and temperature sensors is presented to summarize the latest progress in these devices. Particularly, we focus on spotlighting various device structures, underlying mechanisms and their performance. Lastly, an outlook for the future development of these devices is briefly discussed. We anticipate that this review will provide a quick overview of such a rapidly emerging research direction and attract more dedicated efforts for the development of next-generation sensing devices towards e-skin fabrication.
tactile sensor / temperature sensor / flexible / e-skin / organic transistor
[1] |
T. Nezakati, A. Seifalian, A. Tan, and A. M. Seifalian, Conductive polymers: Opportunities and challenges in biomedical applications, Chem. Rev. 118(14), 6766 (2018)
CrossRef
ADS
Google scholar
|
[2] |
J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, and Z. Guo, An overview of stretchable strain sensors from conductive polymer nanocomposites, J. Mater. Chem. C 7(38), 11710 (2019)
CrossRef
ADS
Google scholar
|
[3] |
J. Chen, Y. Zhu, J. Huang, J. Zhang, D. Pan, J. Zhou, J. Ryu, A. Umar, and Z. Guo, Advances in responsively conductive polymer composites and sensing applications, Polym. Rev., doi:10.1080/15583724.2020.1734818 (2020)
CrossRef
ADS
Google scholar
|
[4] |
C. H. Lee, B. Kim, and K. Kim, Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems, Adv. Mater. 32(15), 1902051 (2019)
CrossRef
ADS
Google scholar
|
[5] |
H. R. Lim, H. S. Kim, R. Qazi, Y. T. Kwon, J. W. Jeong, and W. H. Yeo, Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment, Adv. Mater. 32(15), 1901924 (2020)
CrossRef
ADS
Google scholar
|
[6] |
W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, Flexible electronics toward wearable sensing, Acc. Chem. Res. 52(3), 523 (2019)
CrossRef
ADS
Google scholar
|
[7] |
Y. Liu, M. Pharr, and G. A. Salvatore, Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring, ACS Nano 11(10), 9614 (2017)
CrossRef
ADS
Google scholar
|
[8] |
H. Xu, M. K. Zhang, Y. F. Lu, J. J. Li, S. J. Ge, and Z. Z. Gu, Dual-mode wearable strain sensor based on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions, Adv. Mater. Technol. 5(2), 1901056 (2020)
CrossRef
ADS
Google scholar
|
[9] |
X. You, J. Yang, M. Wang, J. Huh, Y. Ding, X. Zhang and S. Dong, Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion, 2D Mater. 7(1), 015025 (2020)
CrossRef
ADS
Google scholar
|
[10] |
C. Deng, P. Gao, L. Lan, P. He, X. Zhao, W. Zheng, W. Chen, X. Zhong, Y. Wu, L. Liu, J. Peng, and Y. Cao, Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene, Adv. Funct. Mater. 29(51), 1907151 (2019)
CrossRef
ADS
Google scholar
|
[11] |
C. Yang, W. Liu, N. Liu, J. Su, L. Li, L. Xiong, F. Long, Z. Zou, and Y. Gao, Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity, ACS Appl. Mater. Interfaces 11(36), 33165 (2019)
CrossRef
ADS
Google scholar
|
[12] |
B. Zhao, Y. Wang, S. Sinha, C. Chen, D. Liu, A. Dasgupta, L. Hu, and S. Das, Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotubegraphene- oxide inks for printing embedded structures and temperature sensors, Nanoscale 11(48), 23402 (2019)
CrossRef
ADS
Google scholar
|
[13] |
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue, W. Liu, L. Wang, S. Jia, C. Li, T. Qi, J. Wang, and Y. Gao, Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor, ACS Nano 14(2), 2145 (2020)
CrossRef
ADS
Google scholar
|
[14] |
Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian, D. Xiong, N. Chen, X. Chu, S. Zhong, W. Deng, Y. Fang, and W. Yang, Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor, Adv. Funct. Mater. 30(11), 1909603 (2020)
CrossRef
ADS
Google scholar
|
[15] |
Z. Cao, Y. Yang, Y. Zheng, W. Wu, F. Xu, R. Wang, and J. Sun, Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin, J. Mater. Chem. A 7(44), 25314 (2019)
CrossRef
ADS
Google scholar
|
[16] |
T. Huang, P. He, R. Wang, S. Yang, J. Sun, X. Xie, and G. Ding, Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors, Adv. Funct. Mater. 29(45), 1903732 (2019)
CrossRef
ADS
Google scholar
|
[17] |
Z. Zeng, S. I. S. Shahabadi, B. Che, Y. Zhang, C. Zhao, and X. Lu, Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites, Nanoscale 9(44), 17396 (2017)
CrossRef
ADS
Google scholar
|
[18] |
S. Riyajuddin, S. Kumar, S. P. Gaur, A. Sud, T. Maruyama, M. E. Ali, and K. Ghosh, Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure, Nanotechnology 31(29), 295501 (2020)
CrossRef
ADS
Google scholar
|
[19] |
Q. Tian, W. Yan, Y. Li, and D. Ho, Bean podinspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure, ACS Appl. Mater. Interfaces 12(8), 9710 (2020)
CrossRef
ADS
Google scholar
|
[20] |
R. Furlan de Oliveira, P. A. Livio, V. Montes-García, S. Ippolito, M. Eredia, P. Fanjul-Bolado, M. B. González García, S. Casalini, and P. Samorì, Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics, Adv. Funct. Mater. 29(46), 1905375 (2019)
CrossRef
ADS
Google scholar
|
[21] |
Z. Wang, Z. Hao, S. Yu, C. G. D. Moraes, L. H. Suh, X. Zhao, and Q. Lin, An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring, Adv. Funct. Mater. 29(44), 1905202 (2019)
CrossRef
ADS
Google scholar
|
[22] |
N. Schaefer, R. G. Cortadella, J. Martneíz-Aguilar, G. Schwesig, X. Illa, A. M. Lara, S. Santiago, C. Hébert, G. Guirado, R. Villa, A. Sirota, A. Guimerà-Brunet, and J. A. Garrido, Multiplexed neural sensor array of graphene solution-gated field-effect transistors, 2D Mater. 7(2), 025046 (2020)
CrossRef
ADS
Google scholar
|
[23] |
T. Leng, K. Parvez, K. Pan, J. Ali, D. McManus, K. S. Novoselov, C. Casiraghi, and Z. Hu, Printed graphene/WS2 battery-free wireless photosensor on papers, 2D Mater. 7(2), 024004 (2020)
CrossRef
ADS
Google scholar
|
[24] |
L. Li, Y. Guo, Y. Sun, L. Yang, L. Qin, S. Guan, J. Wang, X. Qiu, H. Li, Y. Shang, and Y. Fang, A general method for the chemical synthesis of large-scale, seamless transition metal dichalcogenide electronics, Adv. Mater. 30(12), 1706215 (2018)
CrossRef
ADS
Google scholar
|
[25] |
D. Zhang, J. Du, Y. L. Hong, W. Zhang, X. Wang, H. Jin, P. L. Burn, J. Yu, M. Chen, D. M. Sun, M. Li, L. Liu, L. P. Ma, H. M. Cheng, and W. Ren, A double support layer for facile clean transfer of two-dimensional materials for high-performance electronic and optoelectronic devices, ACS Nano 13(5), 5513 (2019)
CrossRef
ADS
Google scholar
|
[26] |
P. W. M. Blom, Polymer electronics: To be or not to be? Adv. Mater. Technol. 5(6), 2000144 (2020) https://doi.org/10.1002/admt.202000144
CrossRef
ADS
Google scholar
|
[27] |
K. G. Lim, E. Guo, A. Fischer, Q. Miao, K. Leo, and H. Kleemann, Anodization for simplified processing and efficient charge transport in vertical organic field-effect transistors, Adv. Funct. Mater. 2001703(27), 2001703 (2020)
CrossRef
ADS
Google scholar
|
[28] |
S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, and H. Sirringhaus, Charge transport in high-mobility conjugated polymers and molecular semiconductors, Nat. Mater. 19(5), 491 (2020)
CrossRef
ADS
Google scholar
|
[29] |
H. Zhong, G. Wu, Z. Fu, H. Lv, G. Xu, and R. Wang, Flexible porous organic polymer membranes for protonic field-effect transistors, Adv. Mater. 32(21), 2000730 (2020)
CrossRef
ADS
Google scholar
|
[30] |
H. Chen, W. Zhang, M. Li, G. He, and X. Guo, Interface engineering in organic field-effect transistors: Principles, applications, and perspectives, Chem. Rev. 120(5), 2879 (2020)
CrossRef
ADS
Google scholar
|
[31] |
T. Q. Trung, S. Ramasundaram, S. W. Hong, and N. E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor, Adv. Funct. Mater. 24(22), 3438 (2014)
CrossRef
ADS
Google scholar
|
[32] |
T. Q. Trung, S. Ramasundaram, B. U. Hwang, and N. E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics, Adv. Mater. 28(3), 502 (2016)
CrossRef
ADS
Google scholar
|
[33] |
Q. Zhang, F. Leonardi, R. Pfattner, and M. Mas-Torrent, A solid-state aqueous electrolyte-gated field-effect transistor as a low-voltage operation pressure-sensitive Platform, Adv. Mater. Interfaces 6(16), 1900719 (2019)
CrossRef
ADS
Google scholar
|
[34] |
X. Ren, K. Pei, B. Peng, Z. Zhang, Z. Wang, X. Wang, and P. K. L. Chan, A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array, Adv. Mater. 28(24), 4832 (2016)
CrossRef
ADS
Google scholar
|
[35] |
K. Nakayama, B. S. Cha, Y. Kanaoka, N. Isahaya, M. Omori, M. Uno, and J. Takeya, Organic temperature sensors and organic analog-to-digital converters based on ptype and n-type organic transistors, Org. Electron. 36, 148 (2016)
CrossRef
ADS
Google scholar
|
[36] |
Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon, and J. H. Oh, Flexible field-effect transistor-type sensors based on conjugated molecules, Chem 3(5), 724 (2017)
CrossRef
ADS
Google scholar
|
[37] |
K. Kim, G. Song, C. Park, and K. S. Yun, Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array, Sensors 17(11), 2582 (2017)
CrossRef
ADS
Google scholar
|
[38] |
H. K. Kim, S. Lee, and K. S. Yun, Capacitive tactile sensor array for touch screen application, Sens. Act. A: Phys. 165(1), 2 (2011)
CrossRef
ADS
Google scholar
|
[39] |
R. Surapaneni, Q. Guo, Y. Xie, D. J. Young, and C. H. Mastrangelo, A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes, J. Micromech. Microeng. 23(7), 075004 (2013)
CrossRef
ADS
Google scholar
|
[40] |
W. Shi, Y. Guo, and Y. Liu, When flexible organic fieldeffect transistors meet biomimetics: A prospective view of the internet of things, Adv. Mater. 32(15), 1901493 (2020)
CrossRef
ADS
Google scholar
|
[41] |
Y. H. Lee, O. Y. Kweon, H. Kim, J. H. Yoo, S. G. Han, and J. H. Oh, Recent advances in organic sensors for health self-monitoring systems, J. Mater. Chem. C 6(32), 8569 (2018)
CrossRef
ADS
Google scholar
|
[42] |
W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, Flexible electronics toward wearable sensing, Acc. Chem. Res. 52(3), 523 (2019)
CrossRef
ADS
Google scholar
|
[43] |
X. Wu, S. Mao, J. Chen, and J. Huang, Strategies for improving the performance of sensors based on organic fieldeffect transistors, Adv. Mater. 30(17), 1705642 (2018)
CrossRef
ADS
Google scholar
|
[44] |
D. Chen and Q. Pei, Electronic muscles and skins: A review of soft sensors and actuators, Chem. Rev. 117(17), 11239 (2017)
CrossRef
ADS
Google scholar
|
[45] |
Y. Zang, D. Huang, C. Di, and D. Zhu, Device engineered organic transistors for flexible sensing applications, Adv. Mater. 28(22), 4549 (2016)
CrossRef
ADS
Google scholar
|
[46] |
Q. J. Sun, T. Li, W. Wu, S. Venkatesh, X. H. Zhao, Z. X. Xu, and V. A. L. Roy, Printed high kdielectric for flexible low-power extended gate field-effect transistor in sensing pressure, ACS Appl. Electron. Mater. 1(5), 711 (2019)
CrossRef
ADS
Google scholar
|
[47] |
Z. Yin, M. J. Yin, Z. Liu, Y. Zhang, A. P. Zhang, and Q. Zheng, Solution-processed bilayer dielectrics for flexible low-voltage organic field-effect transistors in pressuresensing applications, Adv. Sci. 5(9), 1701041 (2018)
CrossRef
ADS
Google scholar
|
[48] |
M. J. Yin, Z. Yin, Y. Zhang, Q. Zheng, and A. P. Zhang, Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors, Nano Energy 58, 96 (2019)
CrossRef
ADS
Google scholar
|
[49] |
O. O. Ogunleye, H. Sakai, Y. Ishii, and H. Murata, Investigation of the sensing mechanism of dual-gate lowvoltage organic transistor based pressure sensor, Org. Electron. 75, 105431 (2019)
CrossRef
ADS
Google scholar
|
[50] |
F. A. Viola, A. Spanu, P. C. Ricci, A. Bonfiglio, and P. Cosseddu, Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors, Sci. Rep. 8(1), 8073 (2018)
CrossRef
ADS
Google scholar
|
[51] |
Z. Meng, H. Zhang, M. Zhu, X. Wei, J. Cao, I. Murtaza, M. U. Ali, H. Meng, and J. Xu, Lead zirconate titanate (a piezoelectric ceramic)-based thermal and tactile bimodal organic transistor sensors, Org. Electron. 80, 105673 (2020)
CrossRef
ADS
Google scholar
|
[52] |
S. Baek, G. Y. Bae, J. Kwon, K. Cho, and S. Jung, Flexible pressure-sensitive contact transistors operating in the subthreshold regime, ACS Appl. Mater. Interfaces 11(34), 31111 (2019)
CrossRef
ADS
Google scholar
|
[53] |
Z. Wang, S. Guo, H. Li, B. Wang, Y. Sun, Z. Xu, X. Chen, K. Wu, X. Zhang, F. Xing, L. Li, and W. Hu, The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors, Adv. Mater. 31(6), 1805630 (2018)
CrossRef
ADS
Google scholar
|
[54] |
Z. Liu, Z. Yin, J. Wang, and Q. Zheng, Polyelectrolyte dielectrics for flexible low-voltage organic thin-film transistors in highly sensitive pressure sensing, Adv. Funct. Mater. 29(1), 1806092 (2019)
CrossRef
ADS
Google scholar
|
[55] |
Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, and Z. L. Wang, Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system, ACS Nano 7(10), 9213 (2013)
CrossRef
ADS
Google scholar
|
[56] |
Z. Ren, J. Nie, L. Xu, T. Jiang, B. Chen, X. Chen, and Z. L. Wang, Directly visualizing tactile perception and ultrasensitive tactile sensors by utilizing body-enhanced induction of ambient electromagnetic waves, Adv. Funct. Mater. 28(47), 1805277 (2018)
CrossRef
ADS
Google scholar
|
[57] |
R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang, C. Li, and Z. L. Wang, Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensor for intelligent human-machine interaction, ACS Nano 12(6), 5190 (2018)
CrossRef
ADS
Google scholar
|
[58] |
C. Zhang, W. Tang, L. Zhang, C. Han, and Z. L. Wang, Contact electrification field-effect transistor, ACS Nano 8(8), 8702 (2014)
CrossRef
ADS
Google scholar
|
[59] |
Y. Jiang, Z. Liu, Z. Yin, and Q. Zheng, Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing, Mater. Chem. Front. 4(5), 1459 (2020)
CrossRef
ADS
Google scholar
|
[60] |
D. Thuau, K. Begley, R. Dilmurat, A. Ablat, G. Wantz, C. Ayela, and M. Abbas, Exploring the critical thickness of organic semiconductor layer for enhanced piezoresistive sensitivity in field-effect transistor sensors, Materials (Basel) 13(7), 1583 (2020)
CrossRef
ADS
Google scholar
|
[61] |
T. Ishikawa, H. Sakai, and H. Murata, Fabrication of the flexible dual-gate OFET based organic pressure sensor, IEICE Trans. Elect. E102-C(2), 188 (2019)
CrossRef
ADS
Google scholar
|
[62] |
S. Hannah, A. Davidson, I. Glesk, D. Uttamchandani, R. Dahiya, and H. Gleskova, Multifunctional sensor based on organic field-effect transistor and ferroelectric poly(vinylidene fluoride trifluoroethylene), Org. Electron. 56, 170 (2018)
CrossRef
ADS
Google scholar
|
[63] |
S. Wang, J. Xu, W. Wang, G. J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B.H. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
CrossRef
ADS
Google scholar
|
[64] |
S. Lai, F. A. Viola, P. Cosseddu, and A. Bonfiglio, Floating gate, organic field-effect transistor-based sensors towards biomedical applications fabricated with largearea processes over flexible substrates, Sensors 18(3), 688 (2018)
CrossRef
ADS
Google scholar
|
[65] |
T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes, Proc. Natl. Acad. Sci. USA 102(35), 12321 (2005)
CrossRef
ADS
Google scholar
|
[66] |
I. Graz, M. Krause, S. Bauer-Gogonea, S. Bauer, S. P. Lacour, B. Ploss, M. Zirkl, B. Stadlober, and S. Wagner, Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin, J. Appl. Phys. 106(3), 034503 (2009)
CrossRef
ADS
Google scholar
|
[67] |
X. Ren, P. K. L. Chan, J. Lu, B. Huang, and D. C. W. Leung, High dynamic range organic temperature sensor, Adv. Mater. 25(9), 1291 (2013)
CrossRef
ADS
Google scholar
|
[68] |
D. Zhao, S. Fabiano, M. Berggren, and X. Crispin, Ionic thermoelectric gating organic transistors, Nat. Commun. 8(1), 14214 (2017)
CrossRef
ADS
Google scholar
|
[69] |
N. T. Tien, S. Jeon, D. I. Kim, T. Q. Trung, M. Jang, B. U. Hwang, K. E. Byun, J. Bae, E. Lee, J. B. H. Tok, Z. Bao, N. E. Lee, and J. J. Park, A flexible bimodal sensor array for simultaneous sensing of pressure and temperature, Adv. Mater. 26(5), 796 (2014)
CrossRef
ADS
Google scholar
|
[70] |
C. Zhu, H. C. Wu, G. Nyikayaramba, Z. Bao, and B. Murmann, Intrinsically stretchable temperature sensor based on organic thin-film transistor, IEEE Electron Device Lett. 40(10), 1630 (2019)
CrossRef
ADS
Google scholar
|
[71] |
M. Zhu, J. Cao, X. Wei, Y. He, A. Li, X. Xu, M. U. Ali, L. Yan, and H. Meng, Self-supported hysteresis-free flexible organic thermal transistor based on commercial graphite paper, Appl. Phys. Lett. 112(25), 253301 (2018)
CrossRef
ADS
Google scholar
|
[72] |
N. V. V. Subbarao, S. Mandal, M. Gedda, P. K. Iyer, and D. K. Goswami, Effect of temperature on hysteresis of dipolar dielectric layer based organic field-effect transistors: A temperature sensing mechanism, Sens. Act. A: Phys. 269, 491 (2018)
CrossRef
ADS
Google scholar
|
[73] |
S. Mandal, M. Banerjee, S. Roy, A. Mandal, A. Ghosh, B. Satpati, and D. K. Goswami, Organic fieldeffect transistor-based ultrafast, flexible, physiologicaltemperature sensors with hexagonal barium titanate nanocrystals in amorphous matrix as sensing material, ACS Appl. Mater. Interfaces 11(4), 4193 (2019)
CrossRef
ADS
Google scholar
|
[74] |
J. Jang, B. Oh, S. Jo, S. Park, H. S. An, S. Lee, W. H. Cheong, S. Yoo, and J. U. Park, Human-interactive, active-matrix displays for visualization of tactile pressures, Adv. Mater. Technol. 4(7), 1900082 (2019)
CrossRef
ADS
Google scholar
|
[75] |
Y. H. Lee, O. Y. Kweon, H. Kim, J. H. Yoo, S. G. Han, and J. H. Oh, Recent advances in organic sensors for health self-monitoring systems, J. Mater. Chem. C 6(32), 8569 (2018)
CrossRef
ADS
Google scholar
|
[76] |
S. Bi, Q. Li, Z. He, Q. Guo, K. Asare-Yeboah, Y. Liu, and C. Jiang, Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel, Nano Energy 66, 104101 (2019)
CrossRef
ADS
Google scholar
|
[77] |
Y. J. Jeong, Y. E. Kim, K. J. Kim, E. J. Woo, and T. I. Oh, Multilayered fabric pressure sensor for real-time piezo-impedance imaging of pressure distribution, IEEE Trans. Instrum. Meas. 69(2), 565 (2020)
CrossRef
ADS
Google scholar
|
[78] |
Y. Guo, M. Zhong, Z. Fang, P. Wan, and G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing, Nano Lett. 19(2), 1143 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |