Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication

Miao Zhu, Muhammad Umair Ali, Changwei Zou, Wei Xie, Songquan Li, Hong Meng

PDF(2517 KB)
PDF(2517 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 13302. DOI: 10.1007/s11467-020-0985-1
TOPICAL REVIEW
TOPICAL REVIEW

Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication

Author information +
History +

Abstract

Tactile and temperature sensors are the key components for e-skin fabrication. Organic transistors, a kind of intrinsic logic devices with diverse internal configurations, offer a wide range of options for sensor design and have played a vital role in the fabrication of e-skin-oriented tactile and temperature sensors. This research field has attained tremendous advancements, both in terms of materials design and device architecture, thereby leading to excellent performance of resulting tactile/temperature sensors. Herein, a systematic review of organic transistor-based tactile and temperature sensors is presented to summarize the latest progress in these devices. Particularly, we focus on spotlighting various device structures, underlying mechanisms and their performance. Lastly, an outlook for the future development of these devices is briefly discussed. We anticipate that this review will provide a quick overview of such a rapidly emerging research direction and attract more dedicated efforts for the development of next-generation sensing devices towards e-skin fabrication.

Keywords

tactile sensor / temperature sensor / flexible / e-skin / organic transistor

Cite this article

Download citation ▾
Miao Zhu, Muhammad Umair Ali, Changwei Zou, Wei Xie, Songquan Li, Hong Meng. Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication. Front. Phys., 2021, 16(1): 13302 https://doi.org/10.1007/s11467-020-0985-1

References

[1]
T. Nezakati, A. Seifalian, A. Tan, and A. M. Seifalian, Conductive polymers: Opportunities and challenges in biomedical applications, Chem. Rev. 118(14), 6766 (2018)
CrossRef ADS Google scholar
[2]
J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, and Z. Guo, An overview of stretchable strain sensors from conductive polymer nanocomposites, J. Mater. Chem. C 7(38), 11710 (2019)
CrossRef ADS Google scholar
[3]
J. Chen, Y. Zhu, J. Huang, J. Zhang, D. Pan, J. Zhou, J. Ryu, A. Umar, and Z. Guo, Advances in responsively conductive polymer composites and sensing applications, Polym. Rev., doi:10.1080/15583724.2020.1734818 (2020)
CrossRef ADS Google scholar
[4]
C. H. Lee, B. Kim, and K. Kim, Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems, Adv. Mater. 32(15), 1902051 (2019)
CrossRef ADS Google scholar
[5]
H. R. Lim, H. S. Kim, R. Qazi, Y. T. Kwon, J. W. Jeong, and W. H. Yeo, Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment, Adv. Mater. 32(15), 1901924 (2020)
CrossRef ADS Google scholar
[6]
W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, Flexible electronics toward wearable sensing, Acc. Chem. Res. 52(3), 523 (2019)
CrossRef ADS Google scholar
[7]
Y. Liu, M. Pharr, and G. A. Salvatore, Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring, ACS Nano 11(10), 9614 (2017)
CrossRef ADS Google scholar
[8]
H. Xu, M. K. Zhang, Y. F. Lu, J. J. Li, S. J. Ge, and Z. Z. Gu, Dual-mode wearable strain sensor based on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions, Adv. Mater. Technol. 5(2), 1901056 (2020)
CrossRef ADS Google scholar
[9]
X. You, J. Yang, M. Wang, J. Huh, Y. Ding, X. Zhang and S. Dong, Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion, 2D Mater. 7(1), 015025 (2020)
CrossRef ADS Google scholar
[10]
C. Deng, P. Gao, L. Lan, P. He, X. Zhao, W. Zheng, W. Chen, X. Zhong, Y. Wu, L. Liu, J. Peng, and Y. Cao, Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene, Adv. Funct. Mater. 29(51), 1907151 (2019)
CrossRef ADS Google scholar
[11]
C. Yang, W. Liu, N. Liu, J. Su, L. Li, L. Xiong, F. Long, Z. Zou, and Y. Gao, Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity, ACS Appl. Mater. Interfaces 11(36), 33165 (2019)
CrossRef ADS Google scholar
[12]
B. Zhao, Y. Wang, S. Sinha, C. Chen, D. Liu, A. Dasgupta, L. Hu, and S. Das, Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotubegraphene- oxide inks for printing embedded structures and temperature sensors, Nanoscale 11(48), 23402 (2019)
CrossRef ADS Google scholar
[13]
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue, W. Liu, L. Wang, S. Jia, C. Li, T. Qi, J. Wang, and Y. Gao, Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor, ACS Nano 14(2), 2145 (2020)
CrossRef ADS Google scholar
[14]
Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian, D. Xiong, N. Chen, X. Chu, S. Zhong, W. Deng, Y. Fang, and W. Yang, Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor, Adv. Funct. Mater. 30(11), 1909603 (2020)
CrossRef ADS Google scholar
[15]
Z. Cao, Y. Yang, Y. Zheng, W. Wu, F. Xu, R. Wang, and J. Sun, Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin, J. Mater. Chem. A 7(44), 25314 (2019)
CrossRef ADS Google scholar
[16]
T. Huang, P. He, R. Wang, S. Yang, J. Sun, X. Xie, and G. Ding, Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors, Adv. Funct. Mater. 29(45), 1903732 (2019)
CrossRef ADS Google scholar
[17]
Z. Zeng, S. I. S. Shahabadi, B. Che, Y. Zhang, C. Zhao, and X. Lu, Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites, Nanoscale 9(44), 17396 (2017)
CrossRef ADS Google scholar
[18]
S. Riyajuddin, S. Kumar, S. P. Gaur, A. Sud, T. Maruyama, M. E. Ali, and K. Ghosh, Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure, Nanotechnology 31(29), 295501 (2020)
CrossRef ADS Google scholar
[19]
Q. Tian, W. Yan, Y. Li, and D. Ho, Bean podinspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure, ACS Appl. Mater. Interfaces 12(8), 9710 (2020)
CrossRef ADS Google scholar
[20]
R. Furlan de Oliveira, P. A. Livio, V. Montes-García, S. Ippolito, M. Eredia, P. Fanjul-Bolado, M. B. González García, S. Casalini, and P. Samorì, Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics, Adv. Funct. Mater. 29(46), 1905375 (2019)
CrossRef ADS Google scholar
[21]
Z. Wang, Z. Hao, S. Yu, C. G. D. Moraes, L. H. Suh, X. Zhao, and Q. Lin, An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring, Adv. Funct. Mater. 29(44), 1905202 (2019)
CrossRef ADS Google scholar
[22]
N. Schaefer, R. G. Cortadella, J. Martneíz-Aguilar, G. Schwesig, X. Illa, A. M. Lara, S. Santiago, C. Hébert, G. Guirado, R. Villa, A. Sirota, A. Guimerà-Brunet, and J. A. Garrido, Multiplexed neural sensor array of graphene solution-gated field-effect transistors, 2D Mater. 7(2), 025046 (2020)
CrossRef ADS Google scholar
[23]
T. Leng, K. Parvez, K. Pan, J. Ali, D. McManus, K. S. Novoselov, C. Casiraghi, and Z. Hu, Printed graphene/WS2 battery-free wireless photosensor on papers, 2D Mater. 7(2), 024004 (2020)
CrossRef ADS Google scholar
[24]
L. Li, Y. Guo, Y. Sun, L. Yang, L. Qin, S. Guan, J. Wang, X. Qiu, H. Li, Y. Shang, and Y. Fang, A general method for the chemical synthesis of large-scale, seamless transition metal dichalcogenide electronics, Adv. Mater. 30(12), 1706215 (2018)
CrossRef ADS Google scholar
[25]
D. Zhang, J. Du, Y. L. Hong, W. Zhang, X. Wang, H. Jin, P. L. Burn, J. Yu, M. Chen, D. M. Sun, M. Li, L. Liu, L. P. Ma, H. M. Cheng, and W. Ren, A double support layer for facile clean transfer of two-dimensional materials for high-performance electronic and optoelectronic devices, ACS Nano 13(5), 5513 (2019)
CrossRef ADS Google scholar
[26]
P. W. M. Blom, Polymer electronics: To be or not to be? Adv. Mater. Technol. 5(6), 2000144 (2020) https://doi.org/10.1002/admt.202000144
CrossRef ADS Google scholar
[27]
K. G. Lim, E. Guo, A. Fischer, Q. Miao, K. Leo, and H. Kleemann, Anodization for simplified processing and efficient charge transport in vertical organic field-effect transistors, Adv. Funct. Mater. 2001703(27), 2001703 (2020)
CrossRef ADS Google scholar
[28]
S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, and H. Sirringhaus, Charge transport in high-mobility conjugated polymers and molecular semiconductors, Nat. Mater. 19(5), 491 (2020)
CrossRef ADS Google scholar
[29]
H. Zhong, G. Wu, Z. Fu, H. Lv, G. Xu, and R. Wang, Flexible porous organic polymer membranes for protonic field-effect transistors, Adv. Mater. 32(21), 2000730 (2020)
CrossRef ADS Google scholar
[30]
H. Chen, W. Zhang, M. Li, G. He, and X. Guo, Interface engineering in organic field-effect transistors: Principles, applications, and perspectives, Chem. Rev. 120(5), 2879 (2020)
CrossRef ADS Google scholar
[31]
T. Q. Trung, S. Ramasundaram, S. W. Hong, and N. E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor, Adv. Funct. Mater. 24(22), 3438 (2014)
CrossRef ADS Google scholar
[32]
T. Q. Trung, S. Ramasundaram, B. U. Hwang, and N. E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics, Adv. Mater. 28(3), 502 (2016)
CrossRef ADS Google scholar
[33]
Q. Zhang, F. Leonardi, R. Pfattner, and M. Mas-Torrent, A solid-state aqueous electrolyte-gated field-effect transistor as a low-voltage operation pressure-sensitive Platform, Adv. Mater. Interfaces 6(16), 1900719 (2019)
CrossRef ADS Google scholar
[34]
X. Ren, K. Pei, B. Peng, Z. Zhang, Z. Wang, X. Wang, and P. K. L. Chan, A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array, Adv. Mater. 28(24), 4832 (2016)
CrossRef ADS Google scholar
[35]
K. Nakayama, B. S. Cha, Y. Kanaoka, N. Isahaya, M. Omori, M. Uno, and J. Takeya, Organic temperature sensors and organic analog-to-digital converters based on ptype and n-type organic transistors, Org. Electron. 36, 148 (2016)
CrossRef ADS Google scholar
[36]
Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon, and J. H. Oh, Flexible field-effect transistor-type sensors based on conjugated molecules, Chem 3(5), 724 (2017)
CrossRef ADS Google scholar
[37]
K. Kim, G. Song, C. Park, and K. S. Yun, Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array, Sensors 17(11), 2582 (2017)
CrossRef ADS Google scholar
[38]
H. K. Kim, S. Lee, and K. S. Yun, Capacitive tactile sensor array for touch screen application, Sens. Act. A: Phys. 165(1), 2 (2011)
CrossRef ADS Google scholar
[39]
R. Surapaneni, Q. Guo, Y. Xie, D. J. Young, and C. H. Mastrangelo, A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes, J. Micromech. Microeng. 23(7), 075004 (2013)
CrossRef ADS Google scholar
[40]
W. Shi, Y. Guo, and Y. Liu, When flexible organic fieldeffect transistors meet biomimetics: A prospective view of the internet of things, Adv. Mater. 32(15), 1901493 (2020)
CrossRef ADS Google scholar
[41]
Y. H. Lee, O. Y. Kweon, H. Kim, J. H. Yoo, S. G. Han, and J. H. Oh, Recent advances in organic sensors for health self-monitoring systems, J. Mater. Chem. C 6(32), 8569 (2018)
CrossRef ADS Google scholar
[42]
W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, Flexible electronics toward wearable sensing, Acc. Chem. Res. 52(3), 523 (2019)
CrossRef ADS Google scholar
[43]
X. Wu, S. Mao, J. Chen, and J. Huang, Strategies for improving the performance of sensors based on organic fieldeffect transistors, Adv. Mater. 30(17), 1705642 (2018)
CrossRef ADS Google scholar
[44]
D. Chen and Q. Pei, Electronic muscles and skins: A review of soft sensors and actuators, Chem. Rev. 117(17), 11239 (2017)
CrossRef ADS Google scholar
[45]
Y. Zang, D. Huang, C. Di, and D. Zhu, Device engineered organic transistors for flexible sensing applications, Adv. Mater. 28(22), 4549 (2016)
CrossRef ADS Google scholar
[46]
Q. J. Sun, T. Li, W. Wu, S. Venkatesh, X. H. Zhao, Z. X. Xu, and V. A. L. Roy, Printed high kdielectric for flexible low-power extended gate field-effect transistor in sensing pressure, ACS Appl. Electron. Mater. 1(5), 711 (2019)
CrossRef ADS Google scholar
[47]
Z. Yin, M. J. Yin, Z. Liu, Y. Zhang, A. P. Zhang, and Q. Zheng, Solution-processed bilayer dielectrics for flexible low-voltage organic field-effect transistors in pressuresensing applications, Adv. Sci. 5(9), 1701041 (2018)
CrossRef ADS Google scholar
[48]
M. J. Yin, Z. Yin, Y. Zhang, Q. Zheng, and A. P. Zhang, Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors, Nano Energy 58, 96 (2019)
CrossRef ADS Google scholar
[49]
O. O. Ogunleye, H. Sakai, Y. Ishii, and H. Murata, Investigation of the sensing mechanism of dual-gate lowvoltage organic transistor based pressure sensor, Org. Electron. 75, 105431 (2019)
CrossRef ADS Google scholar
[50]
F. A. Viola, A. Spanu, P. C. Ricci, A. Bonfiglio, and P. Cosseddu, Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors, Sci. Rep. 8(1), 8073 (2018)
CrossRef ADS Google scholar
[51]
Z. Meng, H. Zhang, M. Zhu, X. Wei, J. Cao, I. Murtaza, M. U. Ali, H. Meng, and J. Xu, Lead zirconate titanate (a piezoelectric ceramic)-based thermal and tactile bimodal organic transistor sensors, Org. Electron. 80, 105673 (2020)
CrossRef ADS Google scholar
[52]
S. Baek, G. Y. Bae, J. Kwon, K. Cho, and S. Jung, Flexible pressure-sensitive contact transistors operating in the subthreshold regime, ACS Appl. Mater. Interfaces 11(34), 31111 (2019)
CrossRef ADS Google scholar
[53]
Z. Wang, S. Guo, H. Li, B. Wang, Y. Sun, Z. Xu, X. Chen, K. Wu, X. Zhang, F. Xing, L. Li, and W. Hu, The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors, Adv. Mater. 31(6), 1805630 (2018)
CrossRef ADS Google scholar
[54]
Z. Liu, Z. Yin, J. Wang, and Q. Zheng, Polyelectrolyte dielectrics for flexible low-voltage organic thin-film transistors in highly sensitive pressure sensing, Adv. Funct. Mater. 29(1), 1806092 (2019)
CrossRef ADS Google scholar
[55]
Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, and Z. L. Wang, Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system, ACS Nano 7(10), 9213 (2013)
CrossRef ADS Google scholar
[56]
Z. Ren, J. Nie, L. Xu, T. Jiang, B. Chen, X. Chen, and Z. L. Wang, Directly visualizing tactile perception and ultrasensitive tactile sensors by utilizing body-enhanced induction of ambient electromagnetic waves, Adv. Funct. Mater. 28(47), 1805277 (2018)
CrossRef ADS Google scholar
[57]
R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang, C. Li, and Z. L. Wang, Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensor for intelligent human-machine interaction, ACS Nano 12(6), 5190 (2018)
CrossRef ADS Google scholar
[58]
C. Zhang, W. Tang, L. Zhang, C. Han, and Z. L. Wang, Contact electrification field-effect transistor, ACS Nano 8(8), 8702 (2014)
CrossRef ADS Google scholar
[59]
Y. Jiang, Z. Liu, Z. Yin, and Q. Zheng, Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing, Mater. Chem. Front. 4(5), 1459 (2020)
CrossRef ADS Google scholar
[60]
D. Thuau, K. Begley, R. Dilmurat, A. Ablat, G. Wantz, C. Ayela, and M. Abbas, Exploring the critical thickness of organic semiconductor layer for enhanced piezoresistive sensitivity in field-effect transistor sensors, Materials (Basel) 13(7), 1583 (2020)
CrossRef ADS Google scholar
[61]
T. Ishikawa, H. Sakai, and H. Murata, Fabrication of the flexible dual-gate OFET based organic pressure sensor, IEICE Trans. Elect. E102-C(2), 188 (2019)
CrossRef ADS Google scholar
[62]
S. Hannah, A. Davidson, I. Glesk, D. Uttamchandani, R. Dahiya, and H. Gleskova, Multifunctional sensor based on organic field-effect transistor and ferroelectric poly(vinylidene fluoride trifluoroethylene), Org. Electron. 56, 170 (2018)
CrossRef ADS Google scholar
[63]
S. Wang, J. Xu, W. Wang, G. J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B.H. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
CrossRef ADS Google scholar
[64]
S. Lai, F. A. Viola, P. Cosseddu, and A. Bonfiglio, Floating gate, organic field-effect transistor-based sensors towards biomedical applications fabricated with largearea processes over flexible substrates, Sensors 18(3), 688 (2018)
CrossRef ADS Google scholar
[65]
T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes, Proc. Natl. Acad. Sci. USA 102(35), 12321 (2005)
CrossRef ADS Google scholar
[66]
I. Graz, M. Krause, S. Bauer-Gogonea, S. Bauer, S. P. Lacour, B. Ploss, M. Zirkl, B. Stadlober, and S. Wagner, Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin, J. Appl. Phys. 106(3), 034503 (2009)
CrossRef ADS Google scholar
[67]
X. Ren, P. K. L. Chan, J. Lu, B. Huang, and D. C. W. Leung, High dynamic range organic temperature sensor, Adv. Mater. 25(9), 1291 (2013)
CrossRef ADS Google scholar
[68]
D. Zhao, S. Fabiano, M. Berggren, and X. Crispin, Ionic thermoelectric gating organic transistors, Nat. Commun. 8(1), 14214 (2017)
CrossRef ADS Google scholar
[69]
N. T. Tien, S. Jeon, D. I. Kim, T. Q. Trung, M. Jang, B. U. Hwang, K. E. Byun, J. Bae, E. Lee, J. B. H. Tok, Z. Bao, N. E. Lee, and J. J. Park, A flexible bimodal sensor array for simultaneous sensing of pressure and temperature, Adv. Mater. 26(5), 796 (2014)
CrossRef ADS Google scholar
[70]
C. Zhu, H. C. Wu, G. Nyikayaramba, Z. Bao, and B. Murmann, Intrinsically stretchable temperature sensor based on organic thin-film transistor, IEEE Electron Device Lett. 40(10), 1630 (2019)
CrossRef ADS Google scholar
[71]
M. Zhu, J. Cao, X. Wei, Y. He, A. Li, X. Xu, M. U. Ali, L. Yan, and H. Meng, Self-supported hysteresis-free flexible organic thermal transistor based on commercial graphite paper, Appl. Phys. Lett. 112(25), 253301 (2018)
CrossRef ADS Google scholar
[72]
N. V. V. Subbarao, S. Mandal, M. Gedda, P. K. Iyer, and D. K. Goswami, Effect of temperature on hysteresis of dipolar dielectric layer based organic field-effect transistors: A temperature sensing mechanism, Sens. Act. A: Phys. 269, 491 (2018)
CrossRef ADS Google scholar
[73]
S. Mandal, M. Banerjee, S. Roy, A. Mandal, A. Ghosh, B. Satpati, and D. K. Goswami, Organic fieldeffect transistor-based ultrafast, flexible, physiologicaltemperature sensors with hexagonal barium titanate nanocrystals in amorphous matrix as sensing material, ACS Appl. Mater. Interfaces 11(4), 4193 (2019)
CrossRef ADS Google scholar
[74]
J. Jang, B. Oh, S. Jo, S. Park, H. S. An, S. Lee, W. H. Cheong, S. Yoo, and J. U. Park, Human-interactive, active-matrix displays for visualization of tactile pressures, Adv. Mater. Technol. 4(7), 1900082 (2019)
CrossRef ADS Google scholar
[75]
Y. H. Lee, O. Y. Kweon, H. Kim, J. H. Yoo, S. G. Han, and J. H. Oh, Recent advances in organic sensors for health self-monitoring systems, J. Mater. Chem. C 6(32), 8569 (2018)
CrossRef ADS Google scholar
[76]
S. Bi, Q. Li, Z. He, Q. Guo, K. Asare-Yeboah, Y. Liu, and C. Jiang, Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel, Nano Energy 66, 104101 (2019)
CrossRef ADS Google scholar
[77]
Y. J. Jeong, Y. E. Kim, K. J. Kim, E. J. Woo, and T. I. Oh, Multilayered fabric pressure sensor for real-time piezo-impedance imaging of pressure distribution, IEEE Trans. Instrum. Meas. 69(2), 565 (2020)
CrossRef ADS Google scholar
[78]
Y. Guo, M. Zhong, Z. Fang, P. Wan, and G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing, Nano Lett. 19(2), 1143 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2517 KB)

Accesses

Citations

Detail

Sections
Recommended

/