Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice

Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang

PDF(2811 KB)
PDF(2811 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 12503. DOI: 10.1007/s11467-020-0983-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice

Author information +
History +

Abstract

We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime. We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su–Schrieffer–Heeger (SSH) model via designing the effective optomechanical coupling. Especially, the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the optomechanical coupling. We stress that the topological phase transition is mainly induced by the decay of the cavity field, which is counter-intuitive since the dissipation is usually detrimental to the system. Also, we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice. We find that the quantum state transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields. Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.

Keywords

topological phase transition / topological state transfer / optomechanical lattice

Cite this article

Download citation ▾
Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice. Front. Phys., 2021, 16(1): 12503 https://doi.org/10.1007/s11467-020-0983-3

References

[1]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[2]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[3]
C. K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
CrossRef ADS Google scholar
[4]
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef ADS Google scholar
[5]
C. Dlaska, B. Vermersch, and P. Zoller, Robust quantum state transfer via topologically protected edge channels in dipolar arrays, Quantum Sci. Technol. 2(1), 015001 (2017)
CrossRef ADS Google scholar
[6]
F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum state transfer via topological edge states in superconducting qubit chains, Phys. Rev. A 98(1), 012331 (2018)
CrossRef ADS Google scholar
[7]
L. Qi, G. L. Wang, S. Liu, S. Zhang, and H. F. Wang, Controllable photonic and phononic topological state transfers in a small optomechanical lattice, Opt. Lett. 45(7), 2018 (2020)
CrossRef ADS Google scholar
[8]
D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Milestones toward Majorana-based quantum computing, Phys. Rev. X 6(3), 031016 (2016)
CrossRef ADS Google scholar
[9]
S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Inf. 1, 15001 (2015)
CrossRef ADS Google scholar
[10]
G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, Topological insulator laser: Theory, Science 359, eaar4003 (2018)
CrossRef ADS Google scholar
[11]
M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Topological insulator laser: Experiments, Science 359, eaar4005 (2018)
CrossRef ADS Google scholar
[12]
A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater. 12(3), 233 (2013)
CrossRef ADS Google scholar
[13]
M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic floquet topological insulators, Nature 496(7444), 196 (2013)
CrossRef ADS Google scholar
[14]
P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser, IEEE Photonics Technol. Lett. 27, 264 (2014)
CrossRef ADS Google scholar
[15]
L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Symmetry-protected topological photonic crystal in three dimensions, Nat. Phys. 12(4), 337 (2016)
CrossRef ADS Google scholar
[16]
L. Gao, T. Zhu, W. Huang, and Z. Luo, Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: From anomalous dispersion to normal dispersion, IEEE Photonics J. 7, 1 (2015)
CrossRef ADS Google scholar
[17]
M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, Robust topologically protected transport in photonic crystals at telecommunication wavelengths, Nat. Nanotechnol. 14(1), 31 (2019)
CrossRef ADS Google scholar
[18]
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, Experimental observation of large Chern numbers in photonic crystals, Phys. Rev. Lett. 115(25), 253901 (2015)
CrossRef ADS Google scholar
[19]
L. Xu, H. X. Wang, Y. D. Xu, H. Y. Chen, and J. H. Jiang, Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals, Opt. Express 24(16), 18059 (2016)
CrossRef ADS Google scholar
[20]
L. H. Wu and X. Hu, Scheme for achieving a topological photonic crystal by using dielectric material, Phys. Rev. Lett. 114(22), 223901 (2015)
CrossRef ADS Google scholar
[21]
A. Tomita and R. Y. Chiao, Observation of Berry’s topological phase by use of an optical fiber, Phys. Rev. Lett. 57(8), 937 (1986)
CrossRef ADS Google scholar
[22]
W. J. Chen, S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W. Dong, and C. T. Chan, Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nat. Commun. 5(1), 5782 (2014)
CrossRef ADS Google scholar
[23]
S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, Topological bound modes in anti-PT-symmetric optical waveguide arrays, Opt. Express 27(10), 13858 (2019)
CrossRef ADS Google scholar
[24]
S. Longhi, Zak phase of photons in optical waveguide lattices, Opt. Lett. 38(19), 3716 (2013)
CrossRef ADS Google scholar
[25]
A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, Topological optical waveguiding in silicon and the transition between topological and trivial defect states, Phys. Rev. Lett. 116(16), 163901 (2016)
CrossRef ADS Google scholar
[26]
G. Liang and Y. Chong, Optical resonator analog of a two-dimensional topological insulator, Phys. Rev. Lett. 110(20), 203904 (2013)
CrossRef ADS Google scholar
[27]
F. Mivehvar, H. Ritsch, and F. Piazza, Superradiant topological Peierls insulator inside an optical cavity, Phys. Rev. Lett. 118(7), 073602 (2017)
CrossRef ADS Google scholar
[28]
G. Liang and Y. Chong, Optical resonator analog of a photonic topological insulator: A finite-difference timedomain study, Int. J. Mod. Phys. B 28(02), 1441007 (2014)
CrossRef ADS Google scholar
[29]
C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus, Selective enhancement of topologically induced interface states in a dielectric resonator chain, Nat. Commun. 6(1), 6710 (2015)
CrossRef ADS Google scholar
[30]
C. He, Z. Li, X. Ni, X. C. Sun, S. Y. Yu, M. H. Lu, X. P. Liu, and Y. F. Chen, Topological phononic states of underwater sound based on coupled ring resonators, Appl. Phys. Lett. 108(3), 031904 (2016)
CrossRef ADS Google scholar
[31]
D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices, Phys. Rev. Lett. 121(2), 023901 (2018)
CrossRef ADS Google scholar
[32]
J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan, D. Jaksch, and D. G. Angelakis, Topological pumping of photons in nonlinear resonator arrays, Phys. Rev. Lett. 117(21), 213603 (2016)
CrossRef ADS Google scholar
[33]
M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor, Imaging topological edge states in silicon photonics, Nat. Photonics 7(12), 1001 (2013)
CrossRef ADS Google scholar
[34]
T. Ma and G. Shvets, All-Si valley-Hall photonic topological insulator, New J. Phys. 18(2), 025012 (2016)
CrossRef ADS Google scholar
[35]
X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, and J. W. Dong, A silicon-on-insulator slab for topological valley transport, Nat. Commun. 10(1), 872 (2019)
CrossRef ADS Google scholar
[36]
F. Mei, Z. Y. Xue, D. W. Zhang, L. Tian, C. Lee, and S. L. Zhu, Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice, Quantum Sci. Technol. 1(1), 015006 (2016)
CrossRef ADS Google scholar
[37]
Y. Huang, Z. Q. Yin, and W. Yang, Realizing a topological transition in a non-Hermitian quantum walk with circuit QED, Phys. Rev. A 94(2), 022302 (2016)
CrossRef ADS Google scholar
[38]
F. Mei, J. B. You, W. Nie, R. Fazio, S. L. Zhu, and L. C. Kwek, Simulation and detection of photonic Chern insulators in a one-dimensional circuit-QED lattice, Phys. Rev. A 92(4), 041805 (2015)
CrossRef ADS Google scholar
[39]
L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, Simulation and detection of the topological properties of a modulated Ricemele model in a one-dimensional circuit-QED lattice, Sci. China Phys. Mech. Astron. 61(8), 080313 (2018)
CrossRef ADS Google scholar
[40]
X. Tan, Y. Zhao, Q. Liu, G. Xue, H. F. Yu, Z. Wang, and Y. Yu, Simulation and manipulation of tunable Weyl semimetal bands using superconducting quantum circuits, Phys. Rev. Lett. 122(1), 010501 (2019)
CrossRef ADS Google scholar
[41]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
CrossRef ADS Google scholar
[42]
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)
CrossRef ADS Google scholar
[43]
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature 462, 78 (2009)
CrossRef ADS Google scholar
[44]
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics, Opt. Express 15(25), 17172 (2007)
CrossRef ADS Google scholar
[45]
T. Wang, M. H. Zheng, C. H. Bai, D. Y. Wang, A. D. Zhu, H. F. Wang, and S. Zhang, Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system, Ann. Phys. 530(10), 1800228 (2018)
CrossRef ADS Google scholar
[46]
J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett. 101(26), 263602 (2008)
CrossRef ADS Google scholar
[47]
Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. 110(15), 153606 (2013)
CrossRef ADS Google scholar
[48]
D. Vitali, S. Gigan, A. Ferreira, H. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405 (2007)
CrossRef ADS Google scholar
[49]
R. Ghobadi, S. Kumar, B. Pepper, D. Bouwmeester, A. Lvovsky, and C. Simon, Optomechanical micro-macro entanglement, Phys. Rev. Lett. 112(8), 080503 (2014)
CrossRef ADS Google scholar
[50]
C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving, Photon. Res. 7(11), 1229 (2019)
CrossRef ADS Google scholar
[51]
T. P. Purdy, P. L. Yu, R. Peterson, N. Kampel, and C. Regal, Strong optomechanical squeezing of light, Phys. Rev. X 3(3), 031012 (2013)
CrossRef ADS Google scholar
[52]
C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, Qubitassisted squeezing of mirror motion in a dissipative cavity optomechanical system, Sci. China Phys. Mech. Astron. 62(7), 970311 (2019)
CrossRef ADS Google scholar
[53]
A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Cooling and squeezing via quadratic optomechanical coupling, Phys. Rev. A 82(2), 021806 (2010)
CrossRef ADS Google scholar
[54]
D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, Optomechanical cooling beyond the quantum back-action limit with frequency modulation, Phys. Rev. A 98(2), 023816 (2018)
CrossRef ADS Google scholar
[55]
G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, Collective dynamics in optomechanical arrays, Phys. Rev. Lett. 107(4), 043603 (2011)
CrossRef ADS Google scholar
[56]
M. Ludwig and F. Marquardt, Quantum many-body dynamics in optomechanical arrays, Phys. Rev. Lett. 111(7), 073603 (2013)
CrossRef ADS Google scholar
[57]
A. Xuereb, C. Genes, and A. Dantan, Strong coupling and long-range collective interactions in optomechanical arrays, Phys. Rev. Lett. 109(22), 223601 (2012)
CrossRef ADS Google scholar
[58]
U. Akram, W. Munro, K. Nemoto, and G. Milburn, Photon–phonon entanglement in coupled optomechanical arrays, Phys. Rev. A 86(4), 042306 (2012)
CrossRef ADS Google scholar
[59]
H. Xiong, L. G. Si, X. Yang, and Y. Wu, Asymmetric optical transmission in an optomechanical array, Appl. Phys. Lett. 107(9), 091116 (2015)
CrossRef ADS Google scholar
[60]
L. Qi, Y. Yan, G. L. Wang, S. Zhang, and H. F. Wang, Bosonic Kitaev phase in a frequency-modulated optomechanical array, Phys. Rev. A 100(6), 062323 (2019)
CrossRef ADS Google scholar
[61]
A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller, Reservoir engineering and dynamical phase transitions in optomechanical arrays, Phys. Rev. A 86(3), 033821 (2012)
CrossRef ADS Google scholar
[62]
J. H. Gan, H. Xiong, L. G. Si, X. Y. Lü, and Y. Wu, Solitons in optomechanical arrays, Opt. Lett. 41(12), 2676 (2016)
CrossRef ADS Google scholar
[63]
L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, Simulating Z2 topological insulators via a onedimensional cavity optomechanical cells array, Opt. Express 25(15), 17948 (2017)
CrossRef ADS Google scholar
[64]
T. F. Roque, V. Peano, O. M. Yevtushenko, and F. Marquardt, Anderson localization of composite excitations in disordered optomechanical arrays, New J. Phys. 19(1), 013006 (2017)
CrossRef ADS Google scholar
[65]
S. Raeisi and F. Marquardt, Quench dynamics in onedimensional optomechanical arrays, Phys. Rev. A 101(2), 023814 (2020)
CrossRef ADS Google scholar
[66]
D. Obana, F. Liu, and K. Wakabayashi, Topological edge states in the Su–Schrieffer–Heeger model, Phys. Rev. B 100(7), 075437 (2019)
CrossRef ADS Google scholar
[67]
T. Liu and H. Guo, Topological phase transition in the quasiperiodic disordered Su–Schriffer–Heeger chain, Phys. Lett. A 382(45), 3287 (2018)
CrossRef ADS Google scholar
[68]
F. L. J. Vos, D. P. Aalberts, and W. Saarloos, Su– Schrieffer–Heeger model applied to chains of finite length, Phys. Rev. B 53(22), 14922 (1996)
CrossRef ADS Google scholar
[69]
S. R. Barone, M. A. Narcowich, and F. J. Narcowich, Floquet theory and applications, Phys. Rev. A 15(3), 1109 (1977)
CrossRef ADS Google scholar
[70]
W. Berdanier, M. Kolodrubetz, R. Vasseur, and J. E. Moore, Floquet dynamics of boundary-driven systems at criticality, Phys. Rev. Lett. 118(26), 260602 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2811 KB)

Accesses

Citations

Detail

Sections
Recommended

/