Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice
Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang
Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime. We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su–Schrieffer–Heeger (SSH) model via designing the effective optomechanical coupling. Especially, the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the optomechanical coupling. We stress that the topological phase transition is mainly induced by the decay of the cavity field, which is counter-intuitive since the dissipation is usually detrimental to the system. Also, we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice. We find that the quantum state transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields. Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.
topological phase transition / topological state transfer / optomechanical lattice
[1] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[2] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[3] |
C. K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
CrossRef
ADS
Google scholar
|
[4] |
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef
ADS
Google scholar
|
[5] |
C. Dlaska, B. Vermersch, and P. Zoller, Robust quantum state transfer via topologically protected edge channels in dipolar arrays, Quantum Sci. Technol. 2(1), 015001 (2017)
CrossRef
ADS
Google scholar
|
[6] |
F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum state transfer via topological edge states in superconducting qubit chains, Phys. Rev. A 98(1), 012331 (2018)
CrossRef
ADS
Google scholar
|
[7] |
L. Qi, G. L. Wang, S. Liu, S. Zhang, and H. F. Wang, Controllable photonic and phononic topological state transfers in a small optomechanical lattice, Opt. Lett. 45(7), 2018 (2020)
CrossRef
ADS
Google scholar
|
[8] |
D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Milestones toward Majorana-based quantum computing, Phys. Rev. X 6(3), 031016 (2016)
CrossRef
ADS
Google scholar
|
[9] |
S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Inf. 1, 15001 (2015)
CrossRef
ADS
Google scholar
|
[10] |
G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, Topological insulator laser: Theory, Science 359, eaar4003 (2018)
CrossRef
ADS
Google scholar
|
[11] |
M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Topological insulator laser: Experiments, Science 359, eaar4005 (2018)
CrossRef
ADS
Google scholar
|
[12] |
A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater. 12(3), 233 (2013)
CrossRef
ADS
Google scholar
|
[13] |
M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic floquet topological insulators, Nature 496(7444), 196 (2013)
CrossRef
ADS
Google scholar
|
[14] |
P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser, IEEE Photonics Technol. Lett. 27, 264 (2014)
CrossRef
ADS
Google scholar
|
[15] |
L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Symmetry-protected topological photonic crystal in three dimensions, Nat. Phys. 12(4), 337 (2016)
CrossRef
ADS
Google scholar
|
[16] |
L. Gao, T. Zhu, W. Huang, and Z. Luo, Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: From anomalous dispersion to normal dispersion, IEEE Photonics J. 7, 1 (2015)
CrossRef
ADS
Google scholar
|
[17] |
M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, Robust topologically protected transport in photonic crystals at telecommunication wavelengths, Nat. Nanotechnol. 14(1), 31 (2019)
CrossRef
ADS
Google scholar
|
[18] |
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, Experimental observation of large Chern numbers in photonic crystals, Phys. Rev. Lett. 115(25), 253901 (2015)
CrossRef
ADS
Google scholar
|
[19] |
L. Xu, H. X. Wang, Y. D. Xu, H. Y. Chen, and J. H. Jiang, Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals, Opt. Express 24(16), 18059 (2016)
CrossRef
ADS
Google scholar
|
[20] |
L. H. Wu and X. Hu, Scheme for achieving a topological photonic crystal by using dielectric material, Phys. Rev. Lett. 114(22), 223901 (2015)
CrossRef
ADS
Google scholar
|
[21] |
A. Tomita and R. Y. Chiao, Observation of Berry’s topological phase by use of an optical fiber, Phys. Rev. Lett. 57(8), 937 (1986)
CrossRef
ADS
Google scholar
|
[22] |
W. J. Chen, S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W. Dong, and C. T. Chan, Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nat. Commun. 5(1), 5782 (2014)
CrossRef
ADS
Google scholar
|
[23] |
S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, Topological bound modes in anti-PT-symmetric optical waveguide arrays, Opt. Express 27(10), 13858 (2019)
CrossRef
ADS
Google scholar
|
[24] |
S. Longhi, Zak phase of photons in optical waveguide lattices, Opt. Lett. 38(19), 3716 (2013)
CrossRef
ADS
Google scholar
|
[25] |
A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, Topological optical waveguiding in silicon and the transition between topological and trivial defect states, Phys. Rev. Lett. 116(16), 163901 (2016)
CrossRef
ADS
Google scholar
|
[26] |
G. Liang and Y. Chong, Optical resonator analog of a two-dimensional topological insulator, Phys. Rev. Lett. 110(20), 203904 (2013)
CrossRef
ADS
Google scholar
|
[27] |
F. Mivehvar, H. Ritsch, and F. Piazza, Superradiant topological Peierls insulator inside an optical cavity, Phys. Rev. Lett. 118(7), 073602 (2017)
CrossRef
ADS
Google scholar
|
[28] |
G. Liang and Y. Chong, Optical resonator analog of a photonic topological insulator: A finite-difference timedomain study, Int. J. Mod. Phys. B 28(02), 1441007 (2014)
CrossRef
ADS
Google scholar
|
[29] |
C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus, Selective enhancement of topologically induced interface states in a dielectric resonator chain, Nat. Commun. 6(1), 6710 (2015)
CrossRef
ADS
Google scholar
|
[30] |
C. He, Z. Li, X. Ni, X. C. Sun, S. Y. Yu, M. H. Lu, X. P. Liu, and Y. F. Chen, Topological phononic states of underwater sound based on coupled ring resonators, Appl. Phys. Lett. 108(3), 031904 (2016)
CrossRef
ADS
Google scholar
|
[31] |
D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices, Phys. Rev. Lett. 121(2), 023901 (2018)
CrossRef
ADS
Google scholar
|
[32] |
J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan, D. Jaksch, and D. G. Angelakis, Topological pumping of photons in nonlinear resonator arrays, Phys. Rev. Lett. 117(21), 213603 (2016)
CrossRef
ADS
Google scholar
|
[33] |
M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor, Imaging topological edge states in silicon photonics, Nat. Photonics 7(12), 1001 (2013)
CrossRef
ADS
Google scholar
|
[34] |
T. Ma and G. Shvets, All-Si valley-Hall photonic topological insulator, New J. Phys. 18(2), 025012 (2016)
CrossRef
ADS
Google scholar
|
[35] |
X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, and J. W. Dong, A silicon-on-insulator slab for topological valley transport, Nat. Commun. 10(1), 872 (2019)
CrossRef
ADS
Google scholar
|
[36] |
F. Mei, Z. Y. Xue, D. W. Zhang, L. Tian, C. Lee, and S. L. Zhu, Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice, Quantum Sci. Technol. 1(1), 015006 (2016)
CrossRef
ADS
Google scholar
|
[37] |
Y. Huang, Z. Q. Yin, and W. Yang, Realizing a topological transition in a non-Hermitian quantum walk with circuit QED, Phys. Rev. A 94(2), 022302 (2016)
CrossRef
ADS
Google scholar
|
[38] |
F. Mei, J. B. You, W. Nie, R. Fazio, S. L. Zhu, and L. C. Kwek, Simulation and detection of photonic Chern insulators in a one-dimensional circuit-QED lattice, Phys. Rev. A 92(4), 041805 (2015)
CrossRef
ADS
Google scholar
|
[39] |
L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, Simulation and detection of the topological properties of a modulated Ricemele model in a one-dimensional circuit-QED lattice, Sci. China Phys. Mech. Astron. 61(8), 080313 (2018)
CrossRef
ADS
Google scholar
|
[40] |
X. Tan, Y. Zhao, Q. Liu, G. Xue, H. F. Yu, Z. Wang, and Y. Yu, Simulation and manipulation of tunable Weyl semimetal bands using superconducting quantum circuits, Phys. Rev. Lett. 122(1), 010501 (2019)
CrossRef
ADS
Google scholar
|
[41] |
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
CrossRef
ADS
Google scholar
|
[42] |
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)
CrossRef
ADS
Google scholar
|
[43] |
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature 462, 78 (2009)
CrossRef
ADS
Google scholar
|
[44] |
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics, Opt. Express 15(25), 17172 (2007)
CrossRef
ADS
Google scholar
|
[45] |
T. Wang, M. H. Zheng, C. H. Bai, D. Y. Wang, A. D. Zhu, H. F. Wang, and S. Zhang, Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system, Ann. Phys. 530(10), 1800228 (2018)
CrossRef
ADS
Google scholar
|
[46] |
J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett. 101(26), 263602 (2008)
CrossRef
ADS
Google scholar
|
[47] |
Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. 110(15), 153606 (2013)
CrossRef
ADS
Google scholar
|
[48] |
D. Vitali, S. Gigan, A. Ferreira, H. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405 (2007)
CrossRef
ADS
Google scholar
|
[49] |
R. Ghobadi, S. Kumar, B. Pepper, D. Bouwmeester, A. Lvovsky, and C. Simon, Optomechanical micro-macro entanglement, Phys. Rev. Lett. 112(8), 080503 (2014)
CrossRef
ADS
Google scholar
|
[50] |
C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving, Photon. Res. 7(11), 1229 (2019)
CrossRef
ADS
Google scholar
|
[51] |
T. P. Purdy, P. L. Yu, R. Peterson, N. Kampel, and C. Regal, Strong optomechanical squeezing of light, Phys. Rev. X 3(3), 031012 (2013)
CrossRef
ADS
Google scholar
|
[52] |
C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, Qubitassisted squeezing of mirror motion in a dissipative cavity optomechanical system, Sci. China Phys. Mech. Astron. 62(7), 970311 (2019)
CrossRef
ADS
Google scholar
|
[53] |
A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Cooling and squeezing via quadratic optomechanical coupling, Phys. Rev. A 82(2), 021806 (2010)
CrossRef
ADS
Google scholar
|
[54] |
D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, Optomechanical cooling beyond the quantum back-action limit with frequency modulation, Phys. Rev. A 98(2), 023816 (2018)
CrossRef
ADS
Google scholar
|
[55] |
G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, Collective dynamics in optomechanical arrays, Phys. Rev. Lett. 107(4), 043603 (2011)
CrossRef
ADS
Google scholar
|
[56] |
M. Ludwig and F. Marquardt, Quantum many-body dynamics in optomechanical arrays, Phys. Rev. Lett. 111(7), 073603 (2013)
CrossRef
ADS
Google scholar
|
[57] |
A. Xuereb, C. Genes, and A. Dantan, Strong coupling and long-range collective interactions in optomechanical arrays, Phys. Rev. Lett. 109(22), 223601 (2012)
CrossRef
ADS
Google scholar
|
[58] |
U. Akram, W. Munro, K. Nemoto, and G. Milburn, Photon–phonon entanglement in coupled optomechanical arrays, Phys. Rev. A 86(4), 042306 (2012)
CrossRef
ADS
Google scholar
|
[59] |
H. Xiong, L. G. Si, X. Yang, and Y. Wu, Asymmetric optical transmission in an optomechanical array, Appl. Phys. Lett. 107(9), 091116 (2015)
CrossRef
ADS
Google scholar
|
[60] |
L. Qi, Y. Yan, G. L. Wang, S. Zhang, and H. F. Wang, Bosonic Kitaev phase in a frequency-modulated optomechanical array, Phys. Rev. A 100(6), 062323 (2019)
CrossRef
ADS
Google scholar
|
[61] |
A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller, Reservoir engineering and dynamical phase transitions in optomechanical arrays, Phys. Rev. A 86(3), 033821 (2012)
CrossRef
ADS
Google scholar
|
[62] |
J. H. Gan, H. Xiong, L. G. Si, X. Y. Lü, and Y. Wu, Solitons in optomechanical arrays, Opt. Lett. 41(12), 2676 (2016)
CrossRef
ADS
Google scholar
|
[63] |
L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, Simulating Z2 topological insulators via a onedimensional cavity optomechanical cells array, Opt. Express 25(15), 17948 (2017)
CrossRef
ADS
Google scholar
|
[64] |
T. F. Roque, V. Peano, O. M. Yevtushenko, and F. Marquardt, Anderson localization of composite excitations in disordered optomechanical arrays, New J. Phys. 19(1), 013006 (2017)
CrossRef
ADS
Google scholar
|
[65] |
S. Raeisi and F. Marquardt, Quench dynamics in onedimensional optomechanical arrays, Phys. Rev. A 101(2), 023814 (2020)
CrossRef
ADS
Google scholar
|
[66] |
D. Obana, F. Liu, and K. Wakabayashi, Topological edge states in the Su–Schrieffer–Heeger model, Phys. Rev. B 100(7), 075437 (2019)
CrossRef
ADS
Google scholar
|
[67] |
T. Liu and H. Guo, Topological phase transition in the quasiperiodic disordered Su–Schriffer–Heeger chain, Phys. Lett. A 382(45), 3287 (2018)
CrossRef
ADS
Google scholar
|
[68] |
F. L. J. Vos, D. P. Aalberts, and W. Saarloos, Su– Schrieffer–Heeger model applied to chains of finite length, Phys. Rev. B 53(22), 14922 (1996)
CrossRef
ADS
Google scholar
|
[69] |
S. R. Barone, M. A. Narcowich, and F. J. Narcowich, Floquet theory and applications, Phys. Rev. A 15(3), 1109 (1977)
CrossRef
ADS
Google scholar
|
[70] |
W. Berdanier, M. Kolodrubetz, R. Vasseur, and J. E. Moore, Floquet dynamics of boundary-driven systems at criticality, Phys. Rev. Lett. 118(26), 260602 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |