Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking

Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan

PDF(5632 KB)
PDF(5632 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 63503. DOI: 10.1007/s11467-020-0982-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking

Author information +
History +

Abstract

The two-dimensional (2D) C3N has emerged as a material with promising applications in high performance device owing to its intrinsic bandgap and tunable electronic properties. Although there are several reports about the bandgap tuning of C3N via stacking or forming nanoribbon, bandgap modulation of bilayer C3N nanoribbons (C3NNRs) with various edge structures is still far from well understood. Here, based on extensive first-principles calculations, we demonstrated the effective bandgap engineering of C3N by cutting it into hydrogen passivated C3NNRs and stacking them into bilayer heterostructures. It was found that armchair (AC) C3NNRs with three types of edge structures are all semiconductors, while only zigzag (ZZ) C3NNRs with edges composed of both C and N atoms (ZZCN/ CN) are semiconductors. The bandgaps of all semiconducting C3NNRs are larger than that of C3N nanosheet. More interestingly, AC-C3NNRs with CN/CN edges (AC-CN/CN) possess direct bandgap while ZZ-CN/CN have indirect bandgap. Compared with the monolayer C3NNR, the bandgaps of bilayer C3NNRs can be greatly modulated via different stacking orders and edge structures, varying from 0.43 eV for ZZ-CN/CN with AB′-stacking to 0.04 eV for AC-CN/CN with AA-stacking. Particularly, transition from direct to indirect bandgap was observed in the bilayer AC-CN/CN heterostructure with AA′-stacking, and the indirect-to-direct transition was found in the bilayer ZZ-CN/CN with ABstacking. This work provides insights into the effective bandgap engineering of C3N and offers a new opportunity for its applications in nano-electronics and optoelectronic devices.

Keywords

first-principles DFT calculations / hydrogenated C3N nanoribbons / heterostructure / bandgap modulation

Cite this article

Download citation ▾
Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking. Front. Phys., 2020, 15(6): 63503 https://doi.org/10.1007/s11467-020-0982-4

References

[1]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[2]
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef ADS Google scholar
[3]
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
CrossRef ADS Google scholar
[4]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
CrossRef ADS Google scholar
[5]
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
CrossRef ADS Google scholar
[6]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef ADS Google scholar
[7]
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Mater. 3, 654 (2008)
CrossRef ADS Google scholar
[8]
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef ADS Google scholar
[9]
S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, and K. Müllen, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater. 22(17), 3634 (2012)
CrossRef ADS Google scholar
[10]
J. Mahmood, E. K. Lee, M. Jung, D. Shin, H. J. Choi, J. M. Seo, S. M. Jung, D. Kim, F. Li, M. S. Lah, N. Park, H. J. Shin, J. H. Oh, and J. B. Baek, Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state, Proc. Natl. Acad. Sci. USA 113(27), 7414 (2016)
CrossRef ADS Google scholar
[11]
S. Yang, W. Li, C. Ye, G. Wang, H. Tian, C. Zhu, P. He, G. Ding, X. Xie, Y. Liu, Y. Lifshitz, S.T. Lee, Z. Kang, and M. Jiang, C3N-A 2D crystalline, hole-free, tunablenarrow- bandgap semiconductor with ferromagnetic properties, Adv. Mater. 29(16), 1605625 (2017)
CrossRef ADS Google scholar
[12]
K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, A role for graphene in silicon-based semiconductor devices, Nature 479(7373), 338 (2011)
CrossRef ADS Google scholar
[13]
B. Mortazavi, Ultra high stiffness and thermal conductivity of graphene like C3N, Carbon 118, 25 (2017)
CrossRef ADS Google scholar
[14]
X. Wang, Q. Li, H. Wang, Y. Gao, J. Hou, and J. Shao, Anisotropic carrier mobility in single- and bi-layer C3N sheets, Physica B 537, 314 (2018)
CrossRef ADS Google scholar
[15]
X. Zhou, W. Feng, S. Guan, B. Fu, W. Su, and Y. Yao, Computational characterization of monolayer C3N: A two-dimensional nitrogen-graphene crystal, J. Mater. Res. 32(15), 2993 (2017)
CrossRef ADS Google scholar
[16]
X. Peng, Q. Wei, and A. Copple, Strain-engineered directindirect band gap transition and its mechanism in twodimensional phosphorene, Phys. Rev. B 90(8), 085402 (2014)
CrossRef ADS Google scholar
[17]
H. Rostami, A. G. Moghaddam, and R. Asgari, Effective lattice Hamiltonian for monolayer MoS2: Tailoring electronic structure with perpendicular electric and magnetic fields, Phys. Rev. B 88(8), 085440 (2013)
CrossRef ADS Google scholar
[18]
Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
CrossRef ADS Google scholar
[19]
C. Ataca, H. Şahin, E. Aktürk, and S. Ciraci, Mechanical and electronic properties of MoS2 nanoribbons and their defects, J. Phys. Chem. C 115(10), 3934 (2011)
CrossRef ADS Google scholar
[20]
K. Dolui, C. D. Pemmaraju, and S. Sanvito, Electric field effects on armchair MoS2 nanoribbons, ACS Nano 6(6), 4823 (2012)
CrossRef ADS Google scholar
[21]
Q. Li, H. Wang, H. Pan, and Y. Ding, Tunable electronic structures and magnetic properties of zigzag C3N nanoribbons, J. Phys. D Appl. Phys. 51(34), 345301 (2018)
CrossRef ADS Google scholar
[22]
M. B. Tagani and S. I. Vishkayi, Polyaniline (C3N) nanoribbons: Magnetic metal, semiconductor, and halfmetal, J. Appl. Phys. 124(8), 084304 (2018)
CrossRef ADS Google scholar
[23]
J. Dai and X. C. Zeng, Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells, J. Phys. Chem. Lett. 5(7), 1289 (2014)
CrossRef ADS Google scholar
[24]
J. E. Padilha, A. Fazzio, and A. J. da Silva, Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015)
CrossRef ADS Google scholar
[25]
A. Bafekry, C. Stampfl, and S. Farjami Shayesteh, A first-principles study of C3N nanostructures: Control and engineering of the electronic and magnetic properties of nanosheets, tubes and ribbons, ChemPhysChem 21(2), 164 (2020)
CrossRef ADS Google scholar
[26]
Y. Ding and Y. Wang, Stable H-terminated edges, variable semiconducting properties, and solar cell applications of C3N nanoribbons: A first-principles study, ACS Omega 3(8), 8777 (2018)
CrossRef ADS Google scholar
[27]
M. Dürr and U. Höfer, Molecular beam investigation of hydrogen dissociation on Si(001) and Si(111) surfaces, J. Chem. Phys. 121(16), 8058 (2004)
CrossRef ADS Google scholar
[28]
J. Shi, H. C. Kang, E. S. Tok, and J. Zhang, Evidence for hydrogen desorption through both interdimer and intradimer paths from Si(100)-(2×1), J. Chem. Phys. 123, 34701 (2005)
CrossRef ADS Google scholar
[29]
G. Kresse and J. Furthmuller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[30]
J. P. Perdew, K. Burke, and M. Ernzerhof, Erratum: Generalized gradient approximation made simple (Phys. Rev. Lett.(1996) 77 (3865)), Phys. Rev. Lett. 78, 1396 (1997)
CrossRef ADS Google scholar
[31]
A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125(22), 224106 (2006)
CrossRef ADS Google scholar
[32]
P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, Intrinsic n-type behavior in transparent conducting oxides: A comparative hybrid-functional study of In2O3, SnO2, and ZnO, Phys. Rev. Lett. 103(24), 245501 (2009)
CrossRef ADS Google scholar
[33]
F. Oba, M. Choi, A. Togo, and I. Tanaka, Point defects in ZnO: An approach from first principles, Sci. Technol. Adv. Mater. 12(3), 034302 (2011)
CrossRef ADS Google scholar
[34]
J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors, Phys. Rev. X 4(3), 031005 (2014)
CrossRef ADS Google scholar
[35]
L. Liu, D. A. Siegel, W. Chen, P. Liu, J. Guo, G. Duscher, C. Zhao, H. Wang, W. Wang, X. Bai, K. F. McCarty, Z. Zhang, and G. Gu, Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy, Proc. Natl. Acad. Sci. USA 111(47), 16670 (2014)
CrossRef ADS Google scholar
[36]
Y. Gao, S. Kim, S. Zhou, H.C. Chiu, D. Nélias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, Elastic coupling between layers in two-dimensional materials, Nat. Mater. 14(7), 714 (2015)
CrossRef ADS Google scholar
[37]
T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Structure, stability, edge states, and aromaticity of graphene ribbons, Phys. Rev. Lett. 101(9), 096402 (2008)
CrossRef ADS Google scholar
[38]
A. P. Seitsonen, A. M. Saitta, T. Wassmann, M. Lazzeri, and F. Mauri, Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia, Phys. Rev. B 82(11), 115425 (2010)
CrossRef ADS Google scholar
[39]
M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. Hwan Lee, P. Kim, J. Hone, and W. Jong Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun. 4(1), 1624 (2013)
CrossRef ADS Google scholar
[40]
Y. C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M. Y. Li, X. Peng, M. J. Kim, L. J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures, Nat. Commun. 6(1), 7311 (2015)
CrossRef ADS Google scholar
[41]
M. Birowska, K. Milowska, and J. A. Majewski, Van der Waals density functionals for graphene layers and graphite, Acta Phys. Pol. A 120(5), 845 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(5632 KB)

Accesses

Citations

Detail

Sections
Recommended

/