Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking
Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan
Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking
The two-dimensional (2D) C3N has emerged as a material with promising applications in high performance device owing to its intrinsic bandgap and tunable electronic properties. Although there are several reports about the bandgap tuning of C3N via stacking or forming nanoribbon, bandgap modulation of bilayer C3N nanoribbons (C3NNRs) with various edge structures is still far from well understood. Here, based on extensive first-principles calculations, we demonstrated the effective bandgap engineering of C3N by cutting it into hydrogen passivated C3NNRs and stacking them into bilayer heterostructures. It was found that armchair (AC) C3NNRs with three types of edge structures are all semiconductors, while only zigzag (ZZ) C3NNRs with edges composed of both C and N atoms (ZZCN/ CN) are semiconductors. The bandgaps of all semiconducting C3NNRs are larger than that of C3N nanosheet. More interestingly, AC-C3NNRs with CN/CN edges (AC-CN/CN) possess direct bandgap while ZZ-CN/CN have indirect bandgap. Compared with the monolayer C3NNR, the bandgaps of bilayer C3NNRs can be greatly modulated via different stacking orders and edge structures, varying from 0.43 eV for ZZ-CN/CN with AB′-stacking to 0.04 eV for AC-CN/CN with AA-stacking. Particularly, transition from direct to indirect bandgap was observed in the bilayer AC-CN/CN heterostructure with AA′-stacking, and the indirect-to-direct transition was found in the bilayer ZZ-CN/CN with ABstacking. This work provides insights into the effective bandgap engineering of C3N and offers a new opportunity for its applications in nano-electronics and optoelectronic devices.
first-principles DFT calculations / hydrogenated C3N nanoribbons / heterostructure / bandgap modulation
[1] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[2] |
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef
ADS
Google scholar
|
[3] |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
CrossRef
ADS
Google scholar
|
[4] |
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
CrossRef
ADS
Google scholar
|
[5] |
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
CrossRef
ADS
Google scholar
|
[6] |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef
ADS
Google scholar
|
[7] |
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Mater. 3, 654 (2008)
CrossRef
ADS
Google scholar
|
[8] |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef
ADS
Google scholar
|
[9] |
S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, and K. Müllen, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater. 22(17), 3634 (2012)
CrossRef
ADS
Google scholar
|
[10] |
J. Mahmood, E. K. Lee, M. Jung, D. Shin, H. J. Choi, J. M. Seo, S. M. Jung, D. Kim, F. Li, M. S. Lah, N. Park, H. J. Shin, J. H. Oh, and J. B. Baek, Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state, Proc. Natl. Acad. Sci. USA 113(27), 7414 (2016)
CrossRef
ADS
Google scholar
|
[11] |
S. Yang, W. Li, C. Ye, G. Wang, H. Tian, C. Zhu, P. He, G. Ding, X. Xie, Y. Liu, Y. Lifshitz, S.T. Lee, Z. Kang, and M. Jiang, C3N-A 2D crystalline, hole-free, tunablenarrow- bandgap semiconductor with ferromagnetic properties, Adv. Mater. 29(16), 1605625 (2017)
CrossRef
ADS
Google scholar
|
[12] |
K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, A role for graphene in silicon-based semiconductor devices, Nature 479(7373), 338 (2011)
CrossRef
ADS
Google scholar
|
[13] |
B. Mortazavi, Ultra high stiffness and thermal conductivity of graphene like C3N, Carbon 118, 25 (2017)
CrossRef
ADS
Google scholar
|
[14] |
X. Wang, Q. Li, H. Wang, Y. Gao, J. Hou, and J. Shao, Anisotropic carrier mobility in single- and bi-layer C3N sheets, Physica B 537, 314 (2018)
CrossRef
ADS
Google scholar
|
[15] |
X. Zhou, W. Feng, S. Guan, B. Fu, W. Su, and Y. Yao, Computational characterization of monolayer C3N: A two-dimensional nitrogen-graphene crystal, J. Mater. Res. 32(15), 2993 (2017)
CrossRef
ADS
Google scholar
|
[16] |
X. Peng, Q. Wei, and A. Copple, Strain-engineered directindirect band gap transition and its mechanism in twodimensional phosphorene, Phys. Rev. B 90(8), 085402 (2014)
CrossRef
ADS
Google scholar
|
[17] |
H. Rostami, A. G. Moghaddam, and R. Asgari, Effective lattice Hamiltonian for monolayer MoS2: Tailoring electronic structure with perpendicular electric and magnetic fields, Phys. Rev. B 88(8), 085440 (2013)
CrossRef
ADS
Google scholar
|
[18] |
Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
CrossRef
ADS
Google scholar
|
[19] |
C. Ataca, H. Şahin, E. Aktürk, and S. Ciraci, Mechanical and electronic properties of MoS2 nanoribbons and their defects, J. Phys. Chem. C 115(10), 3934 (2011)
CrossRef
ADS
Google scholar
|
[20] |
K. Dolui, C. D. Pemmaraju, and S. Sanvito, Electric field effects on armchair MoS2 nanoribbons, ACS Nano 6(6), 4823 (2012)
CrossRef
ADS
Google scholar
|
[21] |
Q. Li, H. Wang, H. Pan, and Y. Ding, Tunable electronic structures and magnetic properties of zigzag C3N nanoribbons, J. Phys. D Appl. Phys. 51(34), 345301 (2018)
CrossRef
ADS
Google scholar
|
[22] |
M. B. Tagani and S. I. Vishkayi, Polyaniline (C3N) nanoribbons: Magnetic metal, semiconductor, and halfmetal, J. Appl. Phys. 124(8), 084304 (2018)
CrossRef
ADS
Google scholar
|
[23] |
J. Dai and X. C. Zeng, Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells, J. Phys. Chem. Lett. 5(7), 1289 (2014)
CrossRef
ADS
Google scholar
|
[24] |
J. E. Padilha, A. Fazzio, and A. J. da Silva, Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015)
CrossRef
ADS
Google scholar
|
[25] |
A. Bafekry, C. Stampfl, and S. Farjami Shayesteh, A first-principles study of C3N nanostructures: Control and engineering of the electronic and magnetic properties of nanosheets, tubes and ribbons, ChemPhysChem 21(2), 164 (2020)
CrossRef
ADS
Google scholar
|
[26] |
Y. Ding and Y. Wang, Stable H-terminated edges, variable semiconducting properties, and solar cell applications of C3N nanoribbons: A first-principles study, ACS Omega 3(8), 8777 (2018)
CrossRef
ADS
Google scholar
|
[27] |
M. Dürr and U. Höfer, Molecular beam investigation of hydrogen dissociation on Si(001) and Si(111) surfaces, J. Chem. Phys. 121(16), 8058 (2004)
CrossRef
ADS
Google scholar
|
[28] |
J. Shi, H. C. Kang, E. S. Tok, and J. Zhang, Evidence for hydrogen desorption through both interdimer and intradimer paths from Si(100)-(2×1), J. Chem. Phys. 123, 34701 (2005)
CrossRef
ADS
Google scholar
|
[29] |
G. Kresse and J. Furthmuller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[30] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Erratum: Generalized gradient approximation made simple (Phys. Rev. Lett.(1996) 77 (3865)), Phys. Rev. Lett. 78, 1396 (1997)
CrossRef
ADS
Google scholar
|
[31] |
A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125(22), 224106 (2006)
CrossRef
ADS
Google scholar
|
[32] |
P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, Intrinsic n-type behavior in transparent conducting oxides: A comparative hybrid-functional study of In2O3, SnO2, and ZnO, Phys. Rev. Lett. 103(24), 245501 (2009)
CrossRef
ADS
Google scholar
|
[33] |
F. Oba, M. Choi, A. Togo, and I. Tanaka, Point defects in ZnO: An approach from first principles, Sci. Technol. Adv. Mater. 12(3), 034302 (2011)
CrossRef
ADS
Google scholar
|
[34] |
J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors, Phys. Rev. X 4(3), 031005 (2014)
CrossRef
ADS
Google scholar
|
[35] |
L. Liu, D. A. Siegel, W. Chen, P. Liu, J. Guo, G. Duscher, C. Zhao, H. Wang, W. Wang, X. Bai, K. F. McCarty, Z. Zhang, and G. Gu, Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy, Proc. Natl. Acad. Sci. USA 111(47), 16670 (2014)
CrossRef
ADS
Google scholar
|
[36] |
Y. Gao, S. Kim, S. Zhou, H.C. Chiu, D. Nélias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, Elastic coupling between layers in two-dimensional materials, Nat. Mater. 14(7), 714 (2015)
CrossRef
ADS
Google scholar
|
[37] |
T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Structure, stability, edge states, and aromaticity of graphene ribbons, Phys. Rev. Lett. 101(9), 096402 (2008)
CrossRef
ADS
Google scholar
|
[38] |
A. P. Seitsonen, A. M. Saitta, T. Wassmann, M. Lazzeri, and F. Mauri, Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia, Phys. Rev. B 82(11), 115425 (2010)
CrossRef
ADS
Google scholar
|
[39] |
M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. Hwan Lee, P. Kim, J. Hone, and W. Jong Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun. 4(1), 1624 (2013)
CrossRef
ADS
Google scholar
|
[40] |
Y. C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M. Y. Li, X. Peng, M. J. Kim, L. J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures, Nat. Commun. 6(1), 7311 (2015)
CrossRef
ADS
Google scholar
|
[41] |
M. Birowska, K. Milowska, and J. A. Majewski, Van der Waals density functionals for graphene layers and graphite, Acta Phys. Pol. A 120(5), 845 (2011)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |