Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain

Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma

PDF(2576 KB)
PDF(2576 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 63502. DOI: 10.1007/s11467-020-0980-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain

Author information +
History +

Abstract

MoS2 is a promising candidate for hydrogen evolution reaction (HER), while its active sites are mainly distributed on the edge sites rather than the basal plane sites. Herein, a strategy to overcome the inertness of the MoS2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory (DFT) computations. The ab initio molecular dynamics (AIMD) simulation on B@MoS2 suggests high thermodynamic and kinetic stability. We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering. The optimal stress of −7% can achieve a nearly zero value of ΔGH (~ −0.084 eV), which is close to that of the ideal Pt–SACs for HER. The novel HER activity is attributed to (i) the B– doping brings the active site to the basal plane of MoS2 and reduces the band-gap, thereby increasing the conductivity; (ii) the compressive stress regulates the number of charge transfer between (H)–(B)–(MoS2), weakening the adsorption energy of hydrogen on B@MoS2. Moreover, we constructed a SiN/B@MoS2 heterojunction, which introduces an 8.6% compressive stress for B@MoS2 and yields an ideal ΔGH. This work provides an effective means to achieve high intrinsic HER activity for MoS2.

Keywords

MoS2 / stress engineering / single-atom catalyst / HER / charge transfer / DFT / heterojunctions

Cite this article

Download citation ▾
Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Front. Phys., 2020, 15(6): 63502 https://doi.org/10.1007/s11467-020-0980-6

References

[1]
Q. Ding, B. Song, P. Xu, and S. Jin, Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds, Chem. 1(5), 699 (2016)
CrossRef ADS Google scholar
[2]
J. R. McKone, N. S. Lewis, and H. B. Gray, Will solardriven water-splitting devices see the light of day? Chem. Mater. 26(1), 407 (2014)
CrossRef ADS Google scholar
[3]
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)
CrossRef ADS Google scholar
[4]
A. J. Bard and M. A. Fox, Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen, Acc. Chem. Res. 28(3), 141 (1995)
CrossRef ADS Google scholar
[5]
Z. Wang, J. Qin, Q. Hu, D. Wang, F. Wang, Y. Zhong, J. Zhang, H. Zhou, M. Dong, and C. Hu, Theoretical investigation of molybdenum/tungsten-vanadium solid solution alloy membranes: Thermodynamic stability and hydrogen permeation, J. Membrane Sci. 608, 118200 (2020)
CrossRef ADS Google scholar
[6]
Y. Zhao, F. Liu, J. Tan, P. Li, Z. Wang, K. Zhu, X. Mai, H. Liu, X. Wang, and Y. Ma, Preparation and hydrogen storage of Pd/MIL-101 nanocomposites, J. Alloys Compounds 772, 186 (2019)
CrossRef ADS Google scholar
[7]
Q. Chen, Q. Yin, A. Dong, Y. Gao, Y. Qian, D. Wang, M. Dong, Q. Shao, H. Liu, and B.-H. Han, Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis, J. Polymer 169, 255 (2019)
CrossRef ADS Google scholar
[8]
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)
CrossRef ADS Google scholar
[9]
J. O’M. Bockris and E. C. Potter, The mechanism of the cathodic hydrogen evolution reaction, J. Electrochem. Soc. 99, 169 (1952)
CrossRef ADS Google scholar
[10]
B. Lin, Z. Lin, S. Chen, M. Yu, W. Li, Q. Gao, M. Dong, Q. Shao, S. Wu, T. Ding, and Z. Guo, Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions, Dalton Trans. 48(23), 8279 (2019)
CrossRef ADS Google scholar
[11]
Z. Lin, B. Lin, Z. Wang, S. Chen, C. Wang, M. Dong, Q. Gao, Q. Shao, T. Ding, H. Liu, S. Wu, and Z. Guo, Facile preparation of 1T/2H-Mo (S1−xSex)2 nanoparticles for boosting hydrogen evolution reaction, ChemCatChem 11(8), 2217 (2019)
CrossRef ADS Google scholar
[12]
T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, Solar energy supply and storage for the legacy and Nonlegacy worlds, Chem. Rev. 110(11), 6474 (2010)
CrossRef ADS Google scholar
[13]
B. You, M. T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng, and H. Li, Enhancing electrocatalytic water splitting by strain Engineering, Adv. Mater. 31(17), 1807001 (2019)
CrossRef ADS Google scholar
[14]
D. Y. Chung, S. K. Park, Y. H. Chung, S. H. Yu, D. H. Lim, N. Jung, H. C. Ham, H. Y. Park, Y. Piao, S. J. Yoo, and Y. E. Sung, Edge-exposed MoS2 nanoassembled structures as efficient electrocatalysts for hydrogen evolution reaction, Nanoscale 6(4), 2131 (2014)
CrossRef ADS Google scholar
[15]
H. T. Du, R. M. Kong, X. X. Guo, F. L. Qu, and J. H. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution, Nanoscale 10(46), 21617 (2018)
CrossRef ADS Google scholar
[16]
Y. Hong, E. L. Liu, J. Y. Shi, X. Lin, L. Z. Sheng, M. Zhang, L. Y. Wang, and J. H. Chen, A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution, Int. J. Hydrogen Energy 44(14), 7194 (2019)
CrossRef ADS Google scholar
[17]
C. B. Ma, X. Y. Qi, B. Chen, S. Y. Bao, Z. Y. Yin, X. J. Wu, Z. M. Luo, J. Wei, H. L. Zhang, and H. Zhang, MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction, Nanoscale 6(11), 5624 (2014)
CrossRef ADS Google scholar
[18]
Z. J. Ma, Z. T. Cui, Y. H. Lv, R. J. Sa, K. C. Wu, and Q. H. Li, Three-in-one: Opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S Co-doping, Int. J. Hydrogen Energy 45(7), 4534 (2020)
CrossRef ADS Google scholar
[19]
Z. J. Ma, R. J. Sa, Q. H. Li, and K. C. Wu, Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: Insights into high efficiency for photocatalytic solar water splitting,Phys. Chem. Chem. Phys. 18(2), 1050 (2016)
CrossRef ADS Google scholar
[20]
Y. Pan and M. Wen, Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction, Int. J. Hydrogen Energy 43(49), 22055 (2018)
CrossRef ADS Google scholar
[21]
Z. H. Pu, I. S. Amiinu, M. Wang, Y. S. Yang, and S. C. Mu, Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range, Nanoscale 8(16), 8500 (2016)
CrossRef ADS Google scholar
[22]
Y. Q. Sun, L. F. Hang, Q. Shen, T. Zhang, H. L. Li, X. M. Zhang, X. J. Lyu, and Y. Li, Mo doped Ni2P nanowire arrays: An efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values, Nanoscale 9(43), 16674 (2017)
CrossRef ADS Google scholar
[23]
S. Zhou, X. W. Yang, W. Pei, N. S. Liu, and J. J. Zhao, Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts, Nanoscale 10(23), 10876 (2018)
CrossRef ADS Google scholar
[24]
X. Li, P. Wang, Y. Q. Wu, Z. H. Liu, Q. Q. Zhang, T. T. Zhang, Z. Y. Wang, Y. Y. Liu, Z. K. Zheng, and B. B. Huang, ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production, Front. Phys. 15(2), 23604 (2020)
CrossRef ADS Google scholar
[25]
X. Zhang, X. Li, F. Jiang, W. Du, C. Hou, Z. Xu, L. Zhu, Z. Wang, H. Liu, W. Zhou, and H. Yuan, Improved electrochemical performance of 2D accordion-like MnV2O6 nanosheets as anode materials for Li-ion batteries, Dalton Trans. 49(6), 1794 (2020)
CrossRef ADS Google scholar
[26]
C. Hou, Y. Hou, Y. Fan, Y. Zhai, Y. Wang, Z. Sun, R. Fan, F. Dang, and J. Wang, Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries, J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6967 (2018)
CrossRef ADS Google scholar
[27]
C. Hou, J. Wang, W. Du, J. Wang, Y. Du, C. Liu, J. Zhang, H. Hou, F. Dang, L. Zhao, and Z. Guo, One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage, J. Mater. Chem. A Mater. Energy Sustain. 7(22), 13460 (2019)
CrossRef ADS Google scholar
[28]
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
CrossRef ADS Google scholar
[29]
M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)
CrossRef ADS Google scholar
[30]
R. R. Chianelli, M. H. Siadati, M. P. De la Rosa, G. Berhault, J. P. Wilcoxon, R. Jr Bearden, and B. L. Abrams, Catalytic properties of single layers of transition metal sulfide catalytic materials, Catal. Rev. 48(1), 1 (2006)
CrossRef ADS Google scholar
[31]
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef ADS Google scholar
[32]
H. M. Dong, S. D. Guo, Y. F. Duan, F. Huang, W. Xu, and J. Zhang, Electronic and optical properties of singlelayer MoS2, Front. Phys. 13(4), 137307 (2018)
CrossRef ADS Google scholar
[33]
J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
CrossRef ADS Google scholar
[34]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically Thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[35]
P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat, Ab initiostudy of the H2+–H2 S/MoS2 gas–solid interface: The nature of the catalytically active sites, J. Catal. 189(1), 129 (2000)
CrossRef ADS Google scholar
[36]
H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(1), 48 (2016)
CrossRef ADS Google scholar
[37]
D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett. 13(3), 1341 (2013)
CrossRef ADS Google scholar
[38]
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 Nanoparticles Grown on Graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)
CrossRef ADS Google scholar
[39]
Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, and T. F. Jaramillo, Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials, Nano Lett. 11(10), 4168 (2011)
CrossRef ADS Google scholar
[40]
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. D. Lou, and Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Adv. Mater. 25(40), 5807 (2013)
CrossRef ADS Google scholar
[41]
J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11(11), 963 (2012)
CrossRef ADS Google scholar
[42]
H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, and Y. Cui, Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution, Nano Res. 8(2), 566 (2015)
CrossRef ADS Google scholar
[43]
R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y. T. Cui, Y. Tan, B. Qiao, L. Li, A. Wang, X. Wang, and T. Zhang, Hydroformylation of olefins by a rhodium singleatom catalyst with activity comparable to RhCl(PPh3)3, Angew. Chem. Int. Ed. 55(52), 16054 (2016)
CrossRef ADS Google scholar
[44]
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, and N. Zheng, Photochemical route for synthesizing atomically dispersed palladium catalysts, Science 352(6287), 797 (2016)
CrossRef ADS Google scholar
[45]
F. Chen, X. Jiang, L. Zhang, R. Lang, and B. Qiao, Single-atom catalysis: Bridging the homo- and heterogeneous catalysis, Chin. J. Catal. 39(5), 893 (2018)
CrossRef ADS Google scholar
[46]
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, and Y. Li, Single-atom catalysts: Synthetic strategies and electrochemical applications, Joule 2(7), 1242 (2018)
CrossRef ADS Google scholar
[47]
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Sci 355(6321), eaad4998 (2017)
CrossRef ADS Google scholar
[48]
L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, and X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis, Nat. Commun. 7(1), 10667 (2016)
CrossRef ADS Google scholar
[49]
H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, and P. Zelenay, Direct atomic-level insight into the active sites of a high-performance PGMfree ORR catalyst, Science 357(6350), 479 (2017)
CrossRef ADS Google scholar
[50]
Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, and Y. Li, Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction, Angew. Chem. Int. Ed. 56(24), 6937 (2017)
CrossRef ADS Google scholar
[51]
A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia, S. Stamatin, G. F. Harrington, S. M. Lyth, P. Krtil, S. Mukerjee, E. Fonda, and F. Jaouen, Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction, Nat. Mater. 8, 957 (2017)
CrossRef ADS Google scholar
[52]
Z. Ma, Z. Cui, C. Xiao, W. Dai, Y. Lv, Q. Li, and R. Sa, Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer, Nanoscale 12(3), 1541 (2020)
CrossRef ADS Google scholar
[53]
J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R. S. Liu, C. P. Han, Y. Li, Y. Gogotsi, and G. Wang, Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction, Nat. Catal. 1(12), 985 (2018)
CrossRef ADS Google scholar
[54]
T. He, S. M. Chen, B. Ni, Y. Gong, Z. Wu, L. Song, L. Gu, W. P. Hu, and X. Wang, Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms, Angew. Chem. Int. Ed. 57(13), 3493 (2018)
CrossRef ADS Google scholar
[55]
Y. Guo, S. Mei, K. Yuan, D. J. Wang, H. C. Liu, C. H. Yan, and Y. W. Zhang, Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metalsupport interactions and H-spillover effect, ACS Catal. 8(7), 6203 (2018)
CrossRef ADS Google scholar
[56]
C. H. Zhang, J. W. Sha, H. L. Fei, M. J. Liu, S. Yazdi, J. B. Zhang, Q. F. Zhong, X. L. Zou, N. Q. Zhao, H. S. Yu, Z. Jiang, E. Ringe, B. I. Yakobson, J. C. Dong, D. L. Chen, and J. M. Tour, Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium, ACS Nano 11(7), 6930 (2017)
CrossRef ADS Google scholar
[57]
T. Yang, T. T. Song, J. Zhou, S. J. Wang, D. Z. Chi, L. Shen, M. Yang, and Y. P. Feng, High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation, Nano Energy 68, 104304 (2020)
CrossRef ADS Google scholar
[58]
L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lue, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, and H. L. Xin, Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation, Angew. Chem. Int. Ed. 58(8), 2321 (2019)
CrossRef ADS Google scholar
[59]
Y. T. Qu, Z. J. Li, W. X. Chen, Y. Lin, T. W. Yuan, Z. K. Yang, C. M. Zhao, J. Wang, C. Zhao, X. Wang, F. Y. Zhou, Z. B. Zhuang, Y. Wu, and Y. D. Li, Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms, Nat. Catal. 1(10), 781 (2018)
CrossRef ADS Google scholar
[60]
M. D. Marcinkowski, M. T. Darby, J. L. Liu, J. M. Wimble, F. R. Lucci, S. Lee, A. Michaelides, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation, Nat. Chem. 10(3), 325 (2018)
CrossRef ADS Google scholar
[61]
Y. Zhou, G. Gao, Y. Li, W. Chu, and L. W. Wang, Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: A theoretical study, Phys. Chem. Chem. Phys. 21(6), 3024 (2019)
CrossRef ADS Google scholar
[62]
L. Yang, D. Cheng, X. Zeng, X. Wan, J. Shui, Z. Xiang, and D. Cao, Unveiling the high-activity origin of singleatom iron catalysts for oxygen reduction reaction, Proc. Natl. Acad. Sci. USA 115(26), 6626 (2018)
CrossRef ADS Google scholar
[63]
X. X. Wang, D. A. Cullen, Y. T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K. L. More, J. S. Spendelow, and G. Wu, Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells, Adv. Mater. 30(11), 1706758 (2018)
CrossRef ADS Google scholar
[64]
X. J. Cui, J. P. Xiao, Y. H. Wu, P. P. Du, R. Si, H. X. Yang, H. F. Tian, J. Q. Li, W. H. Zhang, D. H. Deng, and X. H. Bao, A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells, Angew. Chem. Int. Ed. 55(23), 6708 (2016)
CrossRef ADS Google scholar
[65]
Q. Tang and D. E. Jiang, Phosphorene-supported transition-metal dimer for effective N2 electroreduction, ChemPhysChem 20(22), 3141 (2019)
CrossRef ADS Google scholar
[66]
Y. Cao, S. Deng, Q. Fang, X. Sun, C. Zhao, J. Zheng, Y. Gao, H. Zhuo, Y. Li, Z. Yao, Z. Wei, X. Zhong, G. Zhuang, and J. Wang, Single and double boron atoms doped nanoporous C2N-h2D electrocatalysts for highly efficient N2 reduction reaction: A density functional theory study, Nanotechnology 30(33), 335403 (2019)
CrossRef ADS Google scholar
[67]
M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, and H. Braunschweig, Nitrogen fixation and reduction at boron, Science 359(6378), 896 (2018)
CrossRef ADS Google scholar
[68]
S. Zheng, S. Li, Z. Mei, Z. Hu, M. Chu, J. Liu, X. Chen, and F. Pan, Electrochemical nitrogen reduction reaction performance of single-boron catalysts tuned by MXene substrates, J. Phys. Chem. Lett. 10(22), 6984 (2019)
CrossRef ADS Google scholar
[69]
C. Ling, X. Niu, Q. Li, A. Du, and J. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light, J. Am. Chem. Soc. 140(43), 14161 (2018)
CrossRef ADS Google scholar
[70]
K. Bhattacharyya and A. Datta, Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation, Phys. Chem. Chem. Phys. 21(23), 12346 (2019)
CrossRef ADS Google scholar
[71]
Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff, Y. Jiao, L. Song, J. Luo, and S. Z. Qiao, Non-metal single-iodineatom electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed. 58(35), 12252 (2019)
CrossRef ADS Google scholar
[72]
C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D. R. MacFarlane, and C. Sun, Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. 141(7), 2884 (2019)
CrossRef ADS Google scholar
[73]
B. T. Sneed, A. P. Young, and C. K. Tsung, Building up strain in colloidal metal nanoparticle catalysts, Nanoscale 7(29), 12248 (2015)
CrossRef ADS Google scholar
[74]
M. Luo and S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater. 2(11), 17059 (2017)
CrossRef ADS Google scholar
[75]
M. Tang, L. Liu, Y. Cheng, and G. F. Ji, First-principles study of structural, elastic, and electronic properties of CeB6 under pressure, Front. Phys. 10(6), 107104 (2015)
CrossRef ADS Google scholar
[76]
X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, and W. Du, Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application, J. Chem. Eng. 396, 125205 (2020)
CrossRef ADS Google scholar
[77]
E. L. Clark, C. Hahn, T. F. Jaramillo, and A. T. Bell, Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity, J. Am. Chem. Soc. 139(44), 15848 (2017)
CrossRef ADS Google scholar
[78]
Z. Lu, G. Chen, Y. Li, H. Wang, J. Xie, L. Liao, C. Liu, Y. Liu, T. Wu, Y. Li, A. C. Luntz, M. Bajdich, and Y. Cui, Identifying the active surfaces of electrochemically tuned LiCoO2 for oxygen evolution reaction, J. Am. Chem. Soc. 139(17), 6270 (2017)
CrossRef ADS Google scholar
[79]
T. A. Maark and A. A. Peterson, Understanding strain and ligand effects in hydrogen evolution over Pd(111) surfaces,J. Phys. Chem. C 118(8), 4275 (2014)
CrossRef ADS Google scholar
[80]
J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, and H. N. Lee, Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites, J. Am. Chem. Soc. 138(8), 2488 (2016)
CrossRef ADS Google scholar
[81]
B. T. Sneed, C. N. Brodsky, C. H. Kuo, L. K. Lamontagne, Y. Jiang, Y. Wang, F. Tao, W. Huang, and C. K. Tsung, Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: An archetype for studying lattice strain and composition effects in electrocatalysis, J. Am. Chem. Soc. 135(39), 14691 (2013)
CrossRef ADS Google scholar
[82]
P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, and A. Nilsson, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts, Nat. Chem. 2(6), 454 (2010)
CrossRef ADS Google scholar
[83]
H. A. Tahini, X. Tan, U. Schwingenschlogl, and S. C. Smith, Formation and migration of oxygen vacancies in SrCoO3 and their effect on oxygen evolution reactions, ACS Catal. 6(8), 5565 (2016)
CrossRef ADS Google scholar
[84]
M. Mavrikakis, B. Hammer, and J. K. Nørskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81(13), 2819 (1998)
CrossRef ADS Google scholar
[85]
S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen, Nat. Mater. 7(4), 333 (2008)
CrossRef ADS Google scholar
[86]
M. Du, L. Cui, Y. Cao, and A. J. Bard, Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate, J. Am. Chem. Soc. 137(23), 7397 (2015)
CrossRef ADS Google scholar
[87]
M. Escudero-Escribano, A. Verdaguer-Casadevall, P. Malacrida, U. Gronbjerg, B. P. Knudsen, A. K. Jepsen, J. Rossmeisl, I. E. Stephens, and I. Chorkendorff, Pt5Gd as a highly active and stable catalyst for oxygen electroreduction, J. Am. Chem. Soc. 134(40), 16476 (2012)
CrossRef ADS Google scholar
[88]
H. Shi, H. Pan, Y. W. Zhang, and B. I. Yakobson, Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2, Phys. Rev. B 87(15), 155304 (2013)
CrossRef ADS Google scholar
[89]
E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Res. 5(1), 43 (2012)
CrossRef ADS Google scholar
[90]
H. Pan and Y. W. Zhang, Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering, J. Phys. Chem. C 116(21), 11752 (2012)
CrossRef ADS Google scholar
[91]
P. E. Blochl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[92]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[93]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[94]
A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. Zhu, R. Amal, and S. C. Smith, Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response, J. Am. Chem. Soc. 134(9), 4393 (2012)
CrossRef ADS Google scholar
[95]
S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25(12), 1463 (2004)
CrossRef ADS Google scholar
[96]
F. Li and Q. Tang, A di-boron pair doped MoS2 (B2@MoS2) single-layer shows superior catalytic performance for electrochemical nitrogen activation and reduction, Nanoscale 11(40), 18769 (2019)
CrossRef ADS Google scholar
[97]
D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Z. Lu, and Z. Yang, The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A firstprinciples study, Appl. Surf. Sci. 383, 98 (2016)
CrossRef ADS Google scholar
[98]
J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 5(11), 909 (2006)
CrossRef ADS Google scholar
[99]
B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127(15), 5308 (2005)
CrossRef ADS Google scholar
[100]
Á. Valdés, Z.-W. Qu, G.-J. Kroes, J. Rossmeisl, and J. K. Nørskov, Oxidation and photo-oxidation of water on TiO2 surface, J. Phys. Chem. C 112(26), 9872 (2008)
CrossRef ADS Google scholar
[101]
J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, and J. K. Norskov, Electrolysis of water on oxide surfaces, J. Electroanal. Chem. 607(1–2), 83 (2007)
CrossRef ADS Google scholar
[102]
NIST Standard Reference Database 13, https://janaf. nist.gov
[103]
L. Peng, X. Zheng, L. Li, L. Zhang, N. Yang, K. Xiong, H. Chen, J. Li, and Z. Wei, Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction, Appl. Catal. B 245, 122 (2019)
CrossRef ADS Google scholar
[104]
X. Lin, W. Li, Y. Dong, C. Wang, Q. Chen, and H. Zhang, Two-dimensional metallic MoS2: A DFT study, Comput. Mater. Sci. 124, 49 (2016)
CrossRef ADS Google scholar
[105]
X. Wen, S. Yu, Y. Wang, Y. Liu, H. Wang, and J. Zhao, Doping MoS2 monolayer with nonmetal atoms to tune its electronic and magnetic properties, and chemical activity: A computational study, New J. Chem. 43(15), 5766 (2019)
CrossRef ADS Google scholar
[106]
D. Yang, S. J. Sandoval, W. M. Divigalpitiya, J. C. Irwin, and R. F. Frindt, Structure of single-molecular-layer MoS2, Phys. Rev. B 43(14), 12053 (1991)
CrossRef ADS Google scholar
[107]
H. Cui, X. Zhang, G. Zhang, and J. Tang, Pd-doped MoS2 monolayer: A promising candidate for DGA in transformer oil based on DFT method, Appl. Surf. Sci. 470, 1035 (2019)
CrossRef ADS Google scholar
[108]
D. Ma, Y. Tang, G. Yang, J. Zeng, C. He, and Z. Lu, CO catalytic oxidation on iron-embedded monolayer MoS2, Appl. Surf. Sci. 328, 32871 (2015)
CrossRef ADS Google scholar
[109]
D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Y. Tang, Z. Lu, and Z. Yang, Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals, Appl. Surf. Sci. 364, 181 (2016)
CrossRef ADS Google scholar
[110]
S. Bertolazzi, J. Brivio, and A. Kis, Stretching and Breaking of Ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
CrossRef ADS Google scholar
[111]
A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets, Adv. Mater. 24(6), 772 (2012)
CrossRef ADS Google scholar
[112]
J. K. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci. USA 108(3), 937 (2011)
CrossRef ADS Google scholar
[113]
B. Liu, Y. Jin, G. Xie, Z. Wang, H. Wen, N. Ren, and D. Xing, Simultaneous photo catalysis of SiC/Fe3O4 nanoparticles and photo-fermentation of rhodopseudomonas sp. nov. strain A7 for enhancing hydrogen production under visible light irradiation, ES Energy and Environment 1, 56 (2018)
[114]
P. Yang, H. Zhao, Y. Yang, P. Zhao, X. Zhao, and L. Yang, Fabrication of N, P-codoped Mo2C/carbon nanofibers via electrospinning as electrocatalyst for hydrogen evolution reaction, ES Materials & Manufacturing 7, 34 (2020)
CrossRef ADS Google scholar
[115]
N. Singh, S. Jana, G. P. Singh, and R. Dey, Graphenesupported TiO2: Study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation, Adv. Compos. Hybrid Mater 3, 127 (2020)
CrossRef ADS Google scholar
[116]
Q. Yuan, R. Wang, Q. Wang, P. Sun, R. Nie, and X. Wang, Ultrathin MoSe2 nanosheets coated on hollow carbon spheres as efficient hybrid catalyst for hydrogen evolution reaction, ES Mater. Manuf. 2(8), 5087 (2018)
[117]
D. Lloyd, X. Liu, N. Boddeti, L. Cantley, R. Long, M. L. Dunn, and J. S. Bunch, Adhesion, stiffness, and instability in atomically thin MoS2 bubbles, Nano Lett. 17(9), 5329 (2017)
CrossRef ADS Google scholar
[118]
J. H. Lin, H. Zhang, X. L. Cheng, and Y. Miyamoto, Single-layer group IV–V and group V–IV–III–VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis, Phys. Rev. B 96(3), 035438 (2017)
CrossRef ADS Google scholar
[119]
H. R. Jappor, Electronic structure of novel GaS/GaSe heterostructures based on GaS and GaSe monolayers, Physica B 524, 109 (2017)
CrossRef ADS Google scholar
[120]
Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initiostudy, Nanoscale 3(9), 3883 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2576 KB)

Accesses

Citations

Detail

Sections
Recommended

/