Universal correlations in percolation
Robert M. Ziff
Universal correlations in percolation
[1] |
J. L. Cardy, Critical percolation in finite geometries, J. Phys. Math. Gen. 25(4), L201 (1992)
CrossRef
ADS
Google scholar
|
[2] |
S. Smirnov and W. Werner, Critical exponents for twodimensional percolation, Math. Res. Lett. 8(6), 729 (2001)
CrossRef
ADS
Google scholar
|
[3] |
H. Saleur and B. Duplantier, Exact determination of the percolation hull exponent in two dimensions, Phys. Rev. Lett. 58(22), 2325 (1987)
CrossRef
ADS
Google scholar
|
[4] |
D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd Ed., CRC Press, 1994
|
[5] |
R. P. Langlands, C. Pichet, P. Pouliot, and Y. Saint-Aubin, On the universality of crossing probabilities in two-dimensional percolation, J. Stat. Phys. 67(3–4), 553 (1992)
CrossRef
ADS
Google scholar
|
[6] |
J. J. H. Simmons, R. M. Ziff, and P. Kleban, Factorization of percolation density correlation functions for clusters touching the sides of a rectangle, J. Stat. Mech. Th. Exp. 2009, P02067 (2009)
CrossRef
ADS
Google scholar
|
[7] |
G. Delfino and J. Viti, On three-point connectivity in two-dimensional percolation, J. Phys. A Math. Theor. 44(3), 032001 (2011)
CrossRef
ADS
Google scholar
|
[8] |
R. Vasseur, J. L. Jacobsen, and H. Saleur, Logarithmic observables in critical percolation, J. Stat. Mech. 2012(07), L07001 (2012)
CrossRef
ADS
Google scholar
|
[9] |
X. Tan, R. Couvreur, Y. Deng, and J. L. Jacobsen, Observation of nonscalar and logarithmic correlations in twoand three-dimensional percolation, Phys. Rev. E 99(5), 050103 (2019)
CrossRef
ADS
Google scholar
|
[10] |
X. Tan, Y. Deng, and J. L. Jacobsen, N-cluster correlations in four- and five-dimensional percolation, Front. Phys. 15(4), 41501 (2020)
CrossRef
ADS
Google scholar
|
[11] |
M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett. 85(19), 4104 (2000)
CrossRef
ADS
Google scholar
|
[12] |
Z. Zhang, P. Hou, S. Fang, H. Hu, and Y. Deng, Critical exponents and universal excess cluster number of percolation in four and five dimensions, arXiv: 2004.11289 (2020)
|
[13] |
H. Hu, H. W. J. Blöte, R. M. Ziff, and Y. Deng, Shortrange correlations in percolation at criticality, Phys. Rev. E 90(4), 042106 (2014)
CrossRef
ADS
Google scholar
|
[14] |
Z. Koza and J. Poła, From discrete to continuous percolation in dimensions 3 to 7, J. Stat. Mech. 2016(10), 103206 (2016)
CrossRef
ADS
Google scholar
|
[15] |
J. Adler, Y. Meir, A. Aharony, and A. B. Harris, Series study of percolation moments in general dimension, Phys. Rev. B 41(13), 9183 (1990)
CrossRef
ADS
Google scholar
|
[16] |
H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Measures of critical exponents in the four-dimensional site percolation, Phys. Lett. B 400(3–4), 346 (1997)
CrossRef
ADS
Google scholar
|
[17] |
J. A. Gracey, Four loop renormalization of ϕ3 theory in six dimensions, Phys. Rev. D 92(2), 025012 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |