Universal correlations in percolation

Robert M. Ziff

PDF(556 KB)
PDF(556 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (4) : 41502. DOI: 10.1007/s11467-020-0975-3
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

Universal correlations in percolation

Author information +
History +

Cite this article

Download citation ▾
Robert M. Ziff. Universal correlations in percolation. Front. Phys., 2020, 15(4): 41502 https://doi.org/10.1007/s11467-020-0975-3

References

[1]
J. L. Cardy, Critical percolation in finite geometries, J. Phys. Math. Gen. 25(4), L201 (1992)
CrossRef ADS Google scholar
[2]
S. Smirnov and W. Werner, Critical exponents for twodimensional percolation, Math. Res. Lett. 8(6), 729 (2001)
CrossRef ADS Google scholar
[3]
H. Saleur and B. Duplantier, Exact determination of the percolation hull exponent in two dimensions, Phys. Rev. Lett. 58(22), 2325 (1987)
CrossRef ADS Google scholar
[4]
D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd Ed., CRC Press, 1994
[5]
R. P. Langlands, C. Pichet, P. Pouliot, and Y. Saint-Aubin, On the universality of crossing probabilities in two-dimensional percolation, J. Stat. Phys. 67(3–4), 553 (1992)
CrossRef ADS Google scholar
[6]
J. J. H. Simmons, R. M. Ziff, and P. Kleban, Factorization of percolation density correlation functions for clusters touching the sides of a rectangle, J. Stat. Mech. Th. Exp. 2009, P02067 (2009)
CrossRef ADS Google scholar
[7]
G. Delfino and J. Viti, On three-point connectivity in two-dimensional percolation, J. Phys. A Math. Theor. 44(3), 032001 (2011)
CrossRef ADS Google scholar
[8]
R. Vasseur, J. L. Jacobsen, and H. Saleur, Logarithmic observables in critical percolation, J. Stat. Mech. 2012(07), L07001 (2012)
CrossRef ADS Google scholar
[9]
X. Tan, R. Couvreur, Y. Deng, and J. L. Jacobsen, Observation of nonscalar and logarithmic correlations in twoand three-dimensional percolation, Phys. Rev. E 99(5), 050103 (2019)
CrossRef ADS Google scholar
[10]
X. Tan, Y. Deng, and J. L. Jacobsen, N-cluster correlations in four- and five-dimensional percolation, Front. Phys. 15(4), 41501 (2020)
CrossRef ADS Google scholar
[11]
M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett. 85(19), 4104 (2000)
CrossRef ADS Google scholar
[12]
Z. Zhang, P. Hou, S. Fang, H. Hu, and Y. Deng, Critical exponents and universal excess cluster number of percolation in four and five dimensions, arXiv: 2004.11289 (2020)
[13]
H. Hu, H. W. J. Blöte, R. M. Ziff, and Y. Deng, Shortrange correlations in percolation at criticality, Phys. Rev. E 90(4), 042106 (2014)
CrossRef ADS Google scholar
[14]
Z. Koza and J. Poła, From discrete to continuous percolation in dimensions 3 to 7, J. Stat. Mech. 2016(10), 103206 (2016)
CrossRef ADS Google scholar
[15]
J. Adler, Y. Meir, A. Aharony, and A. B. Harris, Series study of percolation moments in general dimension, Phys. Rev. B 41(13), 9183 (1990)
CrossRef ADS Google scholar
[16]
H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Measures of critical exponents in the four-dimensional site percolation, Phys. Lett. B 400(3–4), 346 (1997)
CrossRef ADS Google scholar
[17]
J. A. Gracey, Four loop renormalization of ϕ3 theory in six dimensions, Phys. Rev. D 92(2), 025012 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(556 KB)

Accesses

Citations

Detail

Sections
Recommended

/