N-cluster correlations in four- and five-dimensional percolation
Xiao-Jun Tan, You-Jin Deng, Jesper Lykke Jacobsen
N-cluster correlations in four- and five-dimensional percolation
We study N-cluster correlation functions in four- and five-dimensional (4D and 5D) bond percolation by extensive Monte Carlo simulation. We reformulate the transfer Monte Carlo algorithm for percolation [Phys. Rev. E72, 016126 (2005)] using the disjoint-set data structure, and simulate a cylindrical geometry Ld−1 × ∞, with the linear size up to L = 512 for 4D and 128 for 5D. We determine with a high precision all possible N-cluster exponents, for N =2 and 3, and the universal amplitude for a logarithmic correlation function. From the symmetric correlator with N=2, we obtain the correlationlength critical exponent as 1/ν=1.4610(12) for 4D and 1/ν=1.737(2) for 5D, significantly improving over the existing results. Estimates for the other exponents and the universal logarithmic amplitude have not been reported before to our knowledge. Our work demonstrates the validity of logarithmic conformal field theory and adds to the growing knowledge for high-dimensional percolation.
critical exponents / percolation / logarithmic conformal field theory / Monte Carlo algorithm
[1] |
S. R. Broadbent and J. M. Hammersley, Percolation processes, Proc. Camb. Philos. Soc. 53(3), 629 (1957)
CrossRef
ADS
Google scholar
|
[2] |
D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd Ed., London: Taylor Francis, 1994
|
[3] |
G. R. Grimmett, Percolation, 2nd Ed., Berlin: Springer, 1999
CrossRef
ADS
Google scholar
|
[4] |
B. Bollobás and O. Riordan, Percolation, Cambridge: Cambridge University Press, 2006
CrossRef
ADS
Google scholar
|
[5] |
P. W. Kasteleyn and C. M. Fortuin, Phase transitions in lattice systems with random local properties, J. Phys. Soc. Jpn. 26(Suppl.), 11 (1969)
|
[6] |
R. B. Potts, Some generalized order-disorder transformations, Proc. Camb. Philos. Soc. 48(1), 106 (1952)
CrossRef
ADS
Google scholar
|
[7] |
F. Y. Wu, The Potts model, Rev. Mod. Phys. 54(1), 235 (1982)
CrossRef
ADS
Google scholar
|
[8] |
H. A. Kramers and G. H. Wannier, Statistics of the twodimensional ferromagnet (Part I), Phys. Rev. 60(3), 252 (1941)
CrossRef
ADS
Google scholar
|
[9] |
E. H. Lieb, Exact solution of the problem of the entropy of two-dimensional ice, Phys. Rev. Lett. 18(17), 692 (1967)
CrossRef
ADS
Google scholar
|
[10] |
R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys. 70(1), 193 (1972)
CrossRef
ADS
Google scholar
|
[11] |
A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory,Nucl. Phys. B 241(2), 333 (1984)
CrossRef
ADS
Google scholar
|
[12] |
D. Friedan, Z. Qiu, and S. Shenker, Conformal invariance, unitarity, and critical exponents in two dimensions, Phys. Rev. Lett. 52(18), 1575 (1984)
CrossRef
ADS
Google scholar
|
[13] |
B. Nienhuis, in: Phase Transition and Critical Phenomena, edited by C. Domb, M. Green, and J. L. Lebowitz, Academic Press, London, 1987, Vol. 11
|
[14] |
J. L. Cardy, in: Phase Transition and Critical Phenomena, edited by C. Domb, M. Green, and J. L. Lebowitz, Academic Press, London, 1987, Vol. 11
|
[15] |
G. F. Lawler, O. Schramm, and W. Werner, The dimension of the planar Brownian frontier is 4/3, Math. Res. Lett. 8(4), 401 (2001)
CrossRef
ADS
Google scholar
|
[16] |
S. Smirnov and W. Werner, Critical exponents for twodimensional percolation, Math. Res. Lett. 8(6), 729 (2001)
CrossRef
ADS
Google scholar
|
[17] |
A. Aharony, Y. Gefen, and A. Kapitulnik, Scaling at the percolation threshold above six dimension, J. Phys. A 17, L197 (1984)
CrossRef
ADS
Google scholar
|
[18] |
T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions, Commun. Math. Phys. 128(2), 333 (1990)
CrossRef
ADS
Google scholar
|
[19] |
R. Fitzner and R. van der Hofstad, Mean-field behavior for nearest-neighbor percolation in d>10, Electron. J. Probab. 22(0), 22 (2017)
CrossRef
ADS
Google scholar
|
[20] |
J. A. Gracey, Four loop renormalization of ϕ3 theory in six dimensions, Phys. Rev. D 92(2), 025012 (2015)
CrossRef
ADS
Google scholar
|
[21] |
J. F. Wang, Z. Z. Zhou, W. Zhang, T. M. Garoni, and Y. J. Deng, Bond and site percolation in three dimensions, Phys. Rev. E 87(5), 052107 (2013)
CrossRef
ADS
Google scholar
|
[22] |
X. Xu, J. F. Wang, J. P. Lv, and Y. J. Deng, Simultaneous analysis of three-dimensional percolation models, Front. Phys. 9(1), 113 (2014)
CrossRef
ADS
Google scholar
|
[23] |
G. Paul, R. M. Ziff, and H. E. Stanley, Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions, Phys. Rev. E 64(2), 026115 (2001)
CrossRef
ADS
Google scholar
|
[24] |
H. E. Stanley, in: Percolation Theory and Ergodic Theory of Infinite Particle Systems, edited by H. Kesten, IMA Volumes in Mathematics and Its Applications Vol. 8, New York: Springer-Verlag, 1987
|
[25] |
V. Beffara and P. Nolin, On monochromatic arm exponents for 2D critical percolation, Ann. Probab. 39(4), 1286 (2011)
CrossRef
ADS
Google scholar
|
[26] |
M. Aizenman, B. Duplantier, and A. Aharony, Pathcrossing exponents and the external perimeter in 2D percolation, Phys. Rev. Lett. 83(7), 1359 (1999)
CrossRef
ADS
Google scholar
|
[27] |
R. Vasseur, J. L. Jacobsen, and H. Saleur, Logarithmic observables in critical percolation, J. Stat. Mech.: Theory Exp. 07, L07001 (2012)
CrossRef
ADS
Google scholar
|
[28] |
R. Vasseur and J. L. Jacobsen, Operator content of the critical Potts model in ddimensions and logarithmic correlations, Nucl. Phys. B 880, 435 (2014)
CrossRef
ADS
Google scholar
|
[29] |
R. Couvreur, J. Lykke Jacobsen, and R. Vasseur, Nonscalar operators for the Potts model in arbitrary dimension, J. Phys. A Math. Theor. 50(47), 474001 (2017)
CrossRef
ADS
Google scholar
|
[30] |
X. J. Tan, R. Couvreur, Y. J. Deng, and J. L. Jacobsen, Observation of nonscalar and logarithmic correlations in two- and three-dimensional percolation, Phys. Rev. E 99(5), 050103 (2019)
CrossRef
ADS
Google scholar
|
[31] |
V. Gurarie and A. W. W. Ludwig, Conformal field theory at central charge c= 0 and two-dimensional critical systems with quenched disorder, arXiv: hep-th/0409105 (2004)
CrossRef
ADS
Google scholar
|
[32] |
P. Mathieu and D. Ridout, From percolation to logarithmic conformal field theory, Phys. Lett. B 657(1–3), 120 (2007)
CrossRef
ADS
Google scholar
|
[33] |
R. Vasseur, J. L. Jacobsen, and H. Saleur, Indecomposability parameters in chiral logarithmic conformal field theory, Nucl. Phys. B 851(2), 314 (2011)
CrossRef
ADS
Google scholar
|
[34] |
V. Gurarie and A. W. W. Ludwig, Conformal algebras of two-dimensional disordered systems, J. Phys. Math. Gen. 35(27), L377 (2002)
CrossRef
ADS
Google scholar
|
[35] |
W. Huang, P. C. Hou, J. F. Wang, R. M. Ziff, and Y. J. Deng, Critical percolation clusters in seven dimensions and on a complete graph, Phys. Rev. E 97(2), 022107 (2018)
CrossRef
ADS
Google scholar
|
[36] |
Y. J. Deng and H. W. J. Blöte, Monte Carlo study of the site-percolation model in two and three dimensions, Phys. Rev. E 72(1), 016126 (2005)
CrossRef
ADS
Google scholar
|
[37] |
J. Hoshen and R. Kopelman, Percolation and cluster distribution (I): Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14(8), 3438 (1976)
CrossRef
ADS
Google scholar
|
[38] |
B. A. Galler and M. J. Fisher, An improved equivalence algorithm, Commun. ACM 7(5), 301 (1964)
CrossRef
ADS
Google scholar
|
[39] |
R. E. Tarjan and J. Van Leeuwen, Worst-case analysis of set union algorithms, J. Assoc. Comput. Mach. 31(2), 245 (1984)
CrossRef
ADS
Google scholar
|
[40] |
R. E. Tarjan, A class of algorithms which require nonlinear time to maintain disjoint sets, J. Comput. Syst. Sci. 18(2), 110 (1979)
CrossRef
ADS
Google scholar
|
[41] |
M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett. 85(19), 4104 (2000)
CrossRef
ADS
Google scholar
|
[42] |
M. E. J. Newman and R. M. Ziff, Fast Monte Carlo algorithm for site or bond percolation, Phys. Rev. E 64(1), 016706 (2001)
CrossRef
ADS
Google scholar
|
[43] |
M. M. Danziger, B. Gross, and S. V. Buldyrev, Faster calculation of the percolation correlation length on spatial networks, Phys. Rev. E 101(1), 013306 (2020)
CrossRef
ADS
Google scholar
|
[44] |
H. W. J. Blöte and M. P. Nightingale, Critical behaviour of the two-dimensional Potts model with a continuous number of states; A finite size scaling analysis, Physica A 112(3), 405 (1982)
CrossRef
ADS
Google scholar
|
[45] |
Z. Koza and J. Poła, From discrete to continuous percolation in dimensions 3 to 7, J. Stat. Mech.: Theory Exp 2016(10), 103206 (2016)
CrossRef
ADS
Google scholar
|
[46] |
M. Borinsky, J. A. Gracey, M. Kompaniets, and O. Schnetz (in preparation) (2020)
|
[47] |
S. Mertens and C. Moore, Percolation thresholds and Fisher exponents in hypercubic lattices, Phys. Rev. E 98(2), 022120 (2018)
CrossRef
ADS
Google scholar
|
[48] |
Z. P. Xun and R. M. Ziff, Precise bond percolation thresholds on several four-dimensional lattices, Phys. Rev. Research 2(1), 013067 (2020)
CrossRef
ADS
Google scholar
|
[49] |
J. Cardy, Finite-size Scaling, Vol. 2, Elsevier, 2012
|
[50] |
H. E. Stanley, Cluster shapes at the percolation threshold: and effective cluster dimensionality and its connection with critical-point exponents, J. Phys. Math. Gen. 10(11), L211 (1977)
CrossRef
ADS
Google scholar
|
[51] |
X. Xu, J. F. Wang, Z. Z. Zhou, T. M. Garoni, and Y. J. Deng, Geometric structure of percolation clusters, Phys. Rev. E 89(1), 012120 (2014)
CrossRef
ADS
Google scholar
|
[52] |
H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Measures of critical exponents in the four-dimensional site percolation, Phys. Lett. B 400(3–4), 346 (1997)
CrossRef
ADS
Google scholar
|
[53] |
Z. J. Zhang, P. C. Hou, S. Fang, H. Hu, and Y. J. Deng, Critical exponents and universal excess cluster number of percolation in four and five dimensions, arXiv: 2004.11289 (2020)
|
[54] |
N. A. M. Araújo, P. Grassberger, B. Kahng, K. J. Schrenk, and R. M. Ziff, Recent advances and open challenges in percolation, Eur. Phys. J. Spec. Top. 223, 2307 (2014)
CrossRef
ADS
Google scholar
|
[55] |
M. Luczak and T. Luczak, The phase transition in the cluster-scaled model of a random graph, Random Structures Algorithms 28(2), 215 (2006)
CrossRef
ADS
Google scholar
|
[56] |
A. J. Guttmann and J. L. Jacobsen, Lattice models and integrability: A special issue in honour of F. Y. Wu, J. Phys. A Math. Theor. 45(49), 490301 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |