N-cluster correlations in four- and five-dimensional percolation

Xiao-Jun Tan, You-Jin Deng, Jesper Lykke Jacobsen

PDF(1266 KB)
PDF(1266 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (4) : 41501. DOI: 10.1007/s11467-020-0972-6
RESEARCH ARTICLE
RESEARCH ARTICLE

N-cluster correlations in four- and five-dimensional percolation

Author information +
History +

Abstract

We study N-cluster correlation functions in four- and five-dimensional (4D and 5D) bond percolation by extensive Monte Carlo simulation. We reformulate the transfer Monte Carlo algorithm for percolation [Phys. Rev. E72, 016126 (2005)] using the disjoint-set data structure, and simulate a cylindrical geometry Ld−1 × ∞, with the linear size up to L = 512 for 4D and 128 for 5D. We determine with a high precision all possible N-cluster exponents, for N =2 and 3, and the universal amplitude for a logarithmic correlation function. From the symmetric correlator with N=2, we obtain the correlationlength critical exponent as 1/ν=1.4610(12) for 4D and 1/ν=1.737(2) for 5D, significantly improving over the existing results. Estimates for the other exponents and the universal logarithmic amplitude have not been reported before to our knowledge. Our work demonstrates the validity of logarithmic conformal field theory and adds to the growing knowledge for high-dimensional percolation.

Keywords

critical exponents / percolation / logarithmic conformal field theory / Monte Carlo algorithm

Cite this article

Download citation ▾
Xiao-Jun Tan, You-Jin Deng, Jesper Lykke Jacobsen. N-cluster correlations in four- and five-dimensional percolation. Front. Phys., 2020, 15(4): 41501 https://doi.org/10.1007/s11467-020-0972-6

References

[1]
S. R. Broadbent and J. M. Hammersley, Percolation processes, Proc. Camb. Philos. Soc. 53(3), 629 (1957)
CrossRef ADS Google scholar
[2]
D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd Ed., London: Taylor Francis, 1994
[3]
G. R. Grimmett, Percolation, 2nd Ed., Berlin: Springer, 1999
CrossRef ADS Google scholar
[4]
B. Bollobás and O. Riordan, Percolation, Cambridge: Cambridge University Press, 2006
CrossRef ADS Google scholar
[5]
P. W. Kasteleyn and C. M. Fortuin, Phase transitions in lattice systems with random local properties, J. Phys. Soc. Jpn. 26(Suppl.), 11 (1969)
[6]
R. B. Potts, Some generalized order-disorder transformations, Proc. Camb. Philos. Soc. 48(1), 106 (1952)
CrossRef ADS Google scholar
[7]
F. Y. Wu, The Potts model, Rev. Mod. Phys. 54(1), 235 (1982)
CrossRef ADS Google scholar
[8]
H. A. Kramers and G. H. Wannier, Statistics of the twodimensional ferromagnet (Part I), Phys. Rev. 60(3), 252 (1941)
CrossRef ADS Google scholar
[9]
E. H. Lieb, Exact solution of the problem of the entropy of two-dimensional ice, Phys. Rev. Lett. 18(17), 692 (1967)
CrossRef ADS Google scholar
[10]
R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys. 70(1), 193 (1972)
CrossRef ADS Google scholar
[11]
A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory,Nucl. Phys. B 241(2), 333 (1984)
CrossRef ADS Google scholar
[12]
D. Friedan, Z. Qiu, and S. Shenker, Conformal invariance, unitarity, and critical exponents in two dimensions, Phys. Rev. Lett. 52(18), 1575 (1984)
CrossRef ADS Google scholar
[13]
B. Nienhuis, in: Phase Transition and Critical Phenomena, edited by C. Domb, M. Green, and J. L. Lebowitz, Academic Press, London, 1987, Vol. 11
[14]
J. L. Cardy, in: Phase Transition and Critical Phenomena, edited by C. Domb, M. Green, and J. L. Lebowitz, Academic Press, London, 1987, Vol. 11
[15]
G. F. Lawler, O. Schramm, and W. Werner, The dimension of the planar Brownian frontier is 4/3, Math. Res. Lett. 8(4), 401 (2001)
CrossRef ADS Google scholar
[16]
S. Smirnov and W. Werner, Critical exponents for twodimensional percolation, Math. Res. Lett. 8(6), 729 (2001)
CrossRef ADS Google scholar
[17]
A. Aharony, Y. Gefen, and A. Kapitulnik, Scaling at the percolation threshold above six dimension, J. Phys. A 17, L197 (1984)
CrossRef ADS Google scholar
[18]
T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions, Commun. Math. Phys. 128(2), 333 (1990)
CrossRef ADS Google scholar
[19]
R. Fitzner and R. van der Hofstad, Mean-field behavior for nearest-neighbor percolation in d>10, Electron. J. Probab. 22(0), 22 (2017)
CrossRef ADS Google scholar
[20]
J. A. Gracey, Four loop renormalization of ϕ3 theory in six dimensions, Phys. Rev. D 92(2), 025012 (2015)
CrossRef ADS Google scholar
[21]
J. F. Wang, Z. Z. Zhou, W. Zhang, T. M. Garoni, and Y. J. Deng, Bond and site percolation in three dimensions, Phys. Rev. E 87(5), 052107 (2013)
CrossRef ADS Google scholar
[22]
X. Xu, J. F. Wang, J. P. Lv, and Y. J. Deng, Simultaneous analysis of three-dimensional percolation models, Front. Phys. 9(1), 113 (2014)
CrossRef ADS Google scholar
[23]
G. Paul, R. M. Ziff, and H. E. Stanley, Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions, Phys. Rev. E 64(2), 026115 (2001)
CrossRef ADS Google scholar
[24]
H. E. Stanley, in: Percolation Theory and Ergodic Theory of Infinite Particle Systems, edited by H. Kesten, IMA Volumes in Mathematics and Its Applications Vol. 8, New York: Springer-Verlag, 1987
[25]
V. Beffara and P. Nolin, On monochromatic arm exponents for 2D critical percolation, Ann. Probab. 39(4), 1286 (2011)
CrossRef ADS Google scholar
[26]
M. Aizenman, B. Duplantier, and A. Aharony, Pathcrossing exponents and the external perimeter in 2D percolation, Phys. Rev. Lett. 83(7), 1359 (1999)
CrossRef ADS Google scholar
[27]
R. Vasseur, J. L. Jacobsen, and H. Saleur, Logarithmic observables in critical percolation, J. Stat. Mech.: Theory Exp. 07, L07001 (2012)
CrossRef ADS Google scholar
[28]
R. Vasseur and J. L. Jacobsen, Operator content of the critical Potts model in ddimensions and logarithmic correlations, Nucl. Phys. B 880, 435 (2014)
CrossRef ADS Google scholar
[29]
R. Couvreur, J. Lykke Jacobsen, and R. Vasseur, Nonscalar operators for the Potts model in arbitrary dimension, J. Phys. A Math. Theor. 50(47), 474001 (2017)
CrossRef ADS Google scholar
[30]
X. J. Tan, R. Couvreur, Y. J. Deng, and J. L. Jacobsen, Observation of nonscalar and logarithmic correlations in two- and three-dimensional percolation, Phys. Rev. E 99(5), 050103 (2019)
CrossRef ADS Google scholar
[31]
V. Gurarie and A. W. W. Ludwig, Conformal field theory at central charge c= 0 and two-dimensional critical systems with quenched disorder, arXiv: hep-th/0409105 (2004)
CrossRef ADS Google scholar
[32]
P. Mathieu and D. Ridout, From percolation to logarithmic conformal field theory, Phys. Lett. B 657(1–3), 120 (2007)
CrossRef ADS Google scholar
[33]
R. Vasseur, J. L. Jacobsen, and H. Saleur, Indecomposability parameters in chiral logarithmic conformal field theory, Nucl. Phys. B 851(2), 314 (2011)
CrossRef ADS Google scholar
[34]
V. Gurarie and A. W. W. Ludwig, Conformal algebras of two-dimensional disordered systems, J. Phys. Math. Gen. 35(27), L377 (2002)
CrossRef ADS Google scholar
[35]
W. Huang, P. C. Hou, J. F. Wang, R. M. Ziff, and Y. J. Deng, Critical percolation clusters in seven dimensions and on a complete graph, Phys. Rev. E 97(2), 022107 (2018)
CrossRef ADS Google scholar
[36]
Y. J. Deng and H. W. J. Blöte, Monte Carlo study of the site-percolation model in two and three dimensions, Phys. Rev. E 72(1), 016126 (2005)
CrossRef ADS Google scholar
[37]
J. Hoshen and R. Kopelman, Percolation and cluster distribution (I): Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14(8), 3438 (1976)
CrossRef ADS Google scholar
[38]
B. A. Galler and M. J. Fisher, An improved equivalence algorithm, Commun. ACM 7(5), 301 (1964)
CrossRef ADS Google scholar
[39]
R. E. Tarjan and J. Van Leeuwen, Worst-case analysis of set union algorithms, J. Assoc. Comput. Mach. 31(2), 245 (1984)
CrossRef ADS Google scholar
[40]
R. E. Tarjan, A class of algorithms which require nonlinear time to maintain disjoint sets, J. Comput. Syst. Sci. 18(2), 110 (1979)
CrossRef ADS Google scholar
[41]
M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett. 85(19), 4104 (2000)
CrossRef ADS Google scholar
[42]
M. E. J. Newman and R. M. Ziff, Fast Monte Carlo algorithm for site or bond percolation, Phys. Rev. E 64(1), 016706 (2001)
CrossRef ADS Google scholar
[43]
M. M. Danziger, B. Gross, and S. V. Buldyrev, Faster calculation of the percolation correlation length on spatial networks, Phys. Rev. E 101(1), 013306 (2020)
CrossRef ADS Google scholar
[44]
H. W. J. Blöte and M. P. Nightingale, Critical behaviour of the two-dimensional Potts model with a continuous number of states; A finite size scaling analysis, Physica A 112(3), 405 (1982)
CrossRef ADS Google scholar
[45]
Z. Koza and J. Poła, From discrete to continuous percolation in dimensions 3 to 7, J. Stat. Mech.: Theory Exp 2016(10), 103206 (2016)
CrossRef ADS Google scholar
[46]
M. Borinsky, J. A. Gracey, M. Kompaniets, and O. Schnetz (in preparation) (2020)
[47]
S. Mertens and C. Moore, Percolation thresholds and Fisher exponents in hypercubic lattices, Phys. Rev. E 98(2), 022120 (2018)
CrossRef ADS Google scholar
[48]
Z. P. Xun and R. M. Ziff, Precise bond percolation thresholds on several four-dimensional lattices, Phys. Rev. Research 2(1), 013067 (2020)
CrossRef ADS Google scholar
[49]
J. Cardy, Finite-size Scaling, Vol. 2, Elsevier, 2012
[50]
H. E. Stanley, Cluster shapes at the percolation threshold: and effective cluster dimensionality and its connection with critical-point exponents, J. Phys. Math. Gen. 10(11), L211 (1977)
CrossRef ADS Google scholar
[51]
X. Xu, J. F. Wang, Z. Z. Zhou, T. M. Garoni, and Y. J. Deng, Geometric structure of percolation clusters, Phys. Rev. E 89(1), 012120 (2014)
CrossRef ADS Google scholar
[52]
H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Measures of critical exponents in the four-dimensional site percolation, Phys. Lett. B 400(3–4), 346 (1997)
CrossRef ADS Google scholar
[53]
Z. J. Zhang, P. C. Hou, S. Fang, H. Hu, and Y. J. Deng, Critical exponents and universal excess cluster number of percolation in four and five dimensions, arXiv: 2004.11289 (2020)
[54]
N. A. M. Araújo, P. Grassberger, B. Kahng, K. J. Schrenk, and R. M. Ziff, Recent advances and open challenges in percolation, Eur. Phys. J. Spec. Top. 223, 2307 (2014)
CrossRef ADS Google scholar
[55]
M. Luczak and T. Luczak, The phase transition in the cluster-scaled model of a random graph, Random Structures Algorithms 28(2), 215 (2006)
CrossRef ADS Google scholar
[56]
A. J. Guttmann and J. L. Jacobsen, Lattice models and integrability: A special issue in honour of F. Y. Wu, J. Phys. A Math. Theor. 45(49), 490301 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1266 KB)

Accesses

Citations

Detail

Sections
Recommended

/