Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras

Qiong-Lin Dai, Xiao-Xuan Liu, Kai Yang, Hong-Yan Cheng, Hai-Hong Li, Fagen Xie, Jun-Zhong Yang

PDF(6812 KB)
PDF(6812 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 62501. DOI: 10.1007/s11467-020-0971-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras

Author information +
History +

Abstract

Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled identical dynamical units, have been identified in various systems and generalized to coupled nonidentical oscillators. It has been shown that strong heterogeneity in the frequencies of nonidentical oscillators might be harmful to chimera states. In this work, we consider a ring of nonlocally coupled bicomponent phase oscillators in which two types of oscillators are randomly distributed along the ring: some oscillators with natural frequency ω1 and others with ω2 . In this model, the heterogeneity in frequency is measured by frequency mismatch |ω1ω2| between the oscillators in these two subpopulations. We report that the nonlocally coupled bicomponent phase oscillators allow for chimera states no matter how large the frequency mismatch is. The bicomponent oscillators are composed of two chimera states, one supported by oscillators with natural frequency ω1 and the other by oscillators with natural frequency ω2. The two chimera states in two subpopulations are synchronized at weak frequency mismatch, in which the coherent oscillators in them share similar mean phase velocity, and are desynchronized at large frequency mismatch, in which the coherent oscillators in different subpopulations have distinct mean phase velocities. The synchronization–desynchronization transition between chimera states in these two subpopulations is observed with the increase in the frequency mismatch. The observed phenomena are theoretically analyzed by passing to the continuum limit and using the Ott-Antonsen approach.

Keywords

chimera states / bicomponent phase oscillators / nonlocal coupling / desynchronization transition

Cite this article

Download citation ▾
Qiong-Lin Dai, Xiao-Xuan Liu, Kai Yang, Hong-Yan Cheng, Hai-Hong Li, Fagen Xie, Jun-Zhong Yang. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras. Front. Phys., 2020, 15(6): 62501 https://doi.org/10.1007/s11467-020-0971-7

References

[1]
Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
[2]
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
CrossRef ADS Google scholar
[3]
C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569 (2009)
CrossRef ADS Google scholar
[4]
A. E. Motter, Nonlinear dynamics: Spontaneous synchrony breaking, Nat. Phys. 6(3), 164 (2010)
CrossRef ADS Google scholar
[5]
Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, EPL 97(1), 10009 (2012)
CrossRef ADS Google scholar
[6]
M. J. Panaggio and D. M. Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity 28(3), R67 (2015)
CrossRef ADS Google scholar
[7]
E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)
CrossRef ADS Google scholar
[8]
M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phasecluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
CrossRef ADS Google scholar
[9]
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)
CrossRef ADS Google scholar
[10]
H. Cheng, Q. Dai, N. Wu, Y. Feng, H. Li, and J. Yang, Chimera states in nonlocally coupled phase oscillators with biharmonic interaction, Commun. Nonlinear Sci. Numer. Simul. 56, 1 (2018)
CrossRef ADS Google scholar
[11]
S. S. Gavrilov, Polariton chimeras: Bose–Einstein condensates with intrinsic chaoticity and spontaneous long range ordering, Phys. Rev. Lett. 120(3), 033901 (2018)
CrossRef ADS Google scholar
[12]
H. Xu, G. Wang, L. Huang, and Y. Lai, Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera, Phys. Rev. Lett. 120(12), 124101 (2018)
CrossRef ADS Google scholar
[13]
Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, and M. Slavinec, Nonstationary chimeras in a neuronal network, EPL 123(4), 48003 (2018)
CrossRef ADS Google scholar
[14]
B. K. Bera, S. Rakshit, D. Ghosh, and J. Kurths, Spike chimera states and firing regularities in neuronal hypernetworks, Chaos 29(5), 053115 (2019)
CrossRef ADS Google scholar
[15]
S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
CrossRef ADS Google scholar
[16]
B. K. Bera, D. Ghosh, and T. Banerjee, Imperfect traveling chimera states induced by local synaptic gradient coupling, Phys. Rev. E 94(1), 012215 (2016)
CrossRef ADS Google scholar
[17]
I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)
CrossRef ADS Google scholar
[18]
I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, Nonlinearity of local dynamics promotes multichimeras, Chaos 25(8), 083104 (2015)
CrossRef ADS Google scholar
[19]
I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
CrossRef ADS Google scholar
[20]
J. Hizanidis, V. Kanas, A. Bezerianos, and T. Bountis, Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models, Int. J. Bifurcat. Chaos 24(03), 1450030 (2014)
CrossRef ADS Google scholar
[21]
H. Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E 73(3), 031907 (2006)
CrossRef ADS Google scholar
[22]
J. F. Totz, J. Rode, M. R. Tinsley, K. Showalter, and H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators, Nat. Phys. 14(3), 282 (2018)
CrossRef ADS Google scholar
[23]
A. Zakharova, M. Kapeller, and E. Schöll, Chimera death: Symmetry breaking in dynamical networks, Phys. Rev. Lett. 112(15), 154101 (2014)
CrossRef ADS Google scholar
[24]
Y. L. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, and V. L. Maistrenko, Cascades of multiheaded chimera states for coupled phase oscillators, Int. J. Bifurcat. Chaos 24(08), 1440014 (2014)
CrossRef ADS Google scholar
[25]
E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
CrossRef ADS Google scholar
[26]
C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
CrossRef ADS Google scholar
[27]
S. Guo, Q. Dai, H. Cheng, H. Li, F. Xie, and J. Yang, Spiral wave chimera in two-dimensional nonlocally coupled Fitzhugh–Nagumo systems, Chaos Solitons Fractals 114, 394 (2018)
CrossRef ADS Google scholar
[28]
W. Wang, Q. Dai, H. Cheng, H. Li, and J. Yang, Chimera dynamics in nonlocally coupled moving phase oscillators, Front. Phys. 14(4), 43605 (2019)
CrossRef ADS Google scholar
[29]
A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 112(14), 144103 (2014)
CrossRef ADS Google scholar
[30]
G. C. Sethia and A. Sen, Chimera states: The existence criteria revisited, Phys. Rev. Lett. 112(14), 144101 (2014)
CrossRef ADS Google scholar
[31]
V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M. Lakshmanan, Mechanism for intensity-induced chimera states in globally coupled oscillators, Phys. Rev. E 90(6), 062913 (2014)
CrossRef ADS Google scholar
[32]
K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, Impact of symmetry breaking in networks of globally coupled oscillators, Phys. Rev. E 91(5), 052915 (2015)
CrossRef ADS Google scholar
[33]
C. R. Laing, Chimeras in networks with purely local coupling, Phys. Rev. E 92, 050904(R) (2015)
CrossRef ADS Google scholar
[34]
B. K. Bera, D. Ghosh, and M. Lakshmanan, Chimera states in bursting neurons, Phys. Rev. E 93(1), 012205 (2016)
CrossRef ADS Google scholar
[35]
N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)
CrossRef ADS Google scholar
[36]
Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, and J. Yang, From collective oscillation to chimera state in a nonlocally coupled excitable system, Nonlinear Dyn. 91(3), 1723 (2018)
CrossRef ADS Google scholar
[37]
Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
CrossRef ADS Google scholar
[38]
E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E 79(2), 026204 (2009)
CrossRef ADS Google scholar
[39]
S. Ghosh, A. Kumar, A. Zakharova, and S. Jalan, Birth and death of chimera: Interplay of delay and multiplexing, EPL 115(6), 60005 (2016)
CrossRef ADS Google scholar
[40]
V. A. Maksimenko, V. V. Makarov, B. K. Bera, D. Ghosh, S. K. Dana, M. V. Goremyko, N. S. Frolov, A. A. Koronovskii, and A. E. Hramov, Excitation and suppression of chimera states by multiplexing, Phys. Rev. E 94(5), 052205 (2016)
CrossRef ADS Google scholar
[41]
Q. Dai, Q. Liu, H. Cheng, H. Li, and J. Yang, Chimera states in a bipartite network of phase oscillators, Nonlinear Dyn. 92(2), 741 (2018)
CrossRef ADS Google scholar
[42]
Z. Wu, H. Cheng, Y. Feng, H. Li, Q. Dai, and J. Yang, Chimera states in bipartite networks of FitzHugh–Nagumo oscillators, Front. Phys. 13(2), 130503 (2018)
CrossRef ADS Google scholar
[43]
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, Berlin: Springer-Verlag, 1984
CrossRef ADS Google scholar
[44]
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef ADS Google scholar
[45]
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)
CrossRef ADS Google scholar
[46]
O. E. Omel’chenko, Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators, Nonlinearity 26(9), 2469 (2013)
CrossRef ADS Google scholar
[47]
M. Wolfrum and O. E. Omel’chenko, Chimera states are chaotic transients, Phys. Rev. E 84(1), 015201 (2011)
CrossRef ADS Google scholar
[48]
B. Pietras, N. Deschle, and A. Daffertshofer, Equivalence of coupled networks and networks with multimodal frequency distributions: Conditions for the bimodal and trimodal case, Phys. Rev. E 94, 052211 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(6812 KB)

Accesses

Citations

Detail

Sections
Recommended

/