Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes

Wen Tong, Qun Wei, Hai-Yan Yan, Mei-Guang Zhang, Xuan-Min Zhu

Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 63501.

PDF(5306 KB)
Front. Phys. All Journals
PDF(5306 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 63501. DOI: 10.1007/s11467-020-0970-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes

Author information +
History +

Abstract

Based on structure prediction method, the machine learning method is used instead of the density functional theory (DFT) method to predict the material properties, thereby accelerating the material search process. In this paper, we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database. We then trained a machine learning (ML) model that specifically predicts the elastic modulus (bulk modulus, shear modulus, and the Young’s modulus) and confirmed that the accuracy is better than that of AFLOW–ML in predicting the elastic modulus of a carbon allotrope. We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young’s modulus. A new carbon allotrope not included in the Samara Carbon Allotrope Database, named Cmcm–C24, which exhibits a hardness greater than 80 GPa, was firstly revealed. The Cmcm–C24 phase was identified as a semiconductor with a direct bandgap. The structural stability, elastic modulus, and electronic properties of the new carbon allotrope were systematically studied, and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.

Keywords

machine learning / crystal structure prediction / carbon

Cite this article

Download citation ▾
Wen Tong, Qun Wei, Hai-Yan Yan, Mei-Guang Zhang, Xuan-Min Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys., 2020, 15(6): 63501 https://doi.org/10.1007/s11467-020-0970-8

References

[1]
V. L. Deringer, G. Csányi, and D. M. Proserpio, Extracting crystal chemistry from amorphous carbon structures, ChemPhysChem 18(8), 873 (2017)
CrossRef ADS Google scholar
[2]
Y. Zhuo, A. Mansouri Tehrani, and J. Brgoch, Predicting the band gaps of inorganic solids by machine learning, J. Phys. Chem. Lett. 9(7), 1668 (2018)
CrossRef ADS Google scholar
[3]
J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques, Phys. Rev. B 93(11), 115104 (2016)
CrossRef ADS Google scholar
[4]
P. Dey, J. Bible, S. Datta, S. Broderick, J. Jasinski, M. Sunkara, M. Menon, and K. Rajan, Informatics-aided bandgap engineering for solar materials, Comput. Mater. Sci. 83, 185 (2014)
CrossRef ADS Google scholar
[5]
A. O. Oliynyk, L. A. Adutwum, B. W. Rudyk, H. Pisavadia, S. Lotfi, V. Hlukhyy, J. J. Harynuk, A. Mar, and J. Brgoch, Disentangling structural confusion through machine learning: Structure prediction and polymorphism of equiatomic ternary phases ABC, J. Am. Chem. Soc. 139(49), 17870 (2017)
CrossRef ADS Google scholar
[6]
A. O. Oliynyk, L. A. Adutwum, J. J. Harynuk, and A. Mar, Classifying crystal structures of binary compounds AB through cluster resolution feature selection and support vector machine analysis, Chem. Mater. 28(18), 6672 (2016)
CrossRef ADS Google scholar
[7]
F. Legrain, J. Carrete, A. van Roekeghem, S. Curtarolo, and N. Mingo, How the chemical composition alone can predict vibrational free energies and entropies of solids, Chem. Mater. 29(15), 6220 (2017)
CrossRef ADS Google scholar
[8]
G. Pilania, P. V. Balachandran, C. Kim, and T. Lookman, Finding new perovskite halides via machine learning, Front. Mater. 3, 19 (2016)
CrossRef ADS Google scholar
[9]
O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, and A. Tropsha, Universal fragment descriptors for predicting properties of inorganic crystals, Nat. Commun. 8(1), 15679 (2017)
CrossRef ADS Google scholar
[10]
Y. Zhang and C. Ling, A strategy to apply machine learning to small datasets in materials science, npj Comput. Mater. 4, 25 (2018)
CrossRef ADS Google scholar
[11]
A. Mansouri Tehrani, A. O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T. D. Sparks, and J. Brgoch, Machine learning directed search for ultraincompressible, superhard materials, J. Am. Chem. Soc. 140(31), 9844 (2018)
CrossRef ADS Google scholar
[12]
Y. W. Zhang, H. Wang, Y. C. Wang, L. J. Zhang, and Y. M. Ma, Computer-assisted inverse design of inorganic electrides, Phys. Rev. X 7(1), 011017 (2017)
CrossRef ADS Google scholar
[13]
X. X. Zhang, Y. C. Wang, J. Lv, C. Y. Zhu, Q. Li, M. Zhang, Q. Li, and Y. M. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138(11), 114101 (2013)
CrossRef ADS Google scholar
[14]
Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
CrossRef ADS Google scholar
[15]
Y. Sun, J. Lv, Y. Xie, H. Y. Liu, and Y. M. Ma, Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure, Phys. Rev. Lett. 123(9), 097001 (2019)
CrossRef ADS Google scholar
[16]
Q. Wei, Q. Zhang, M. Zhang, H. Yan, L. Guo, and B. Wei, A novel hybrid sp-sp2 metallic carbon allorope, Front. Phys. 13(5), 136105 (2018)
CrossRef ADS Google scholar
[17]
H. Yan, Z. Wei, M. Zhang, and Q. Wei, Exploration of stable stoichiometries, ground-state structures, and mechanical properties of the W–Si system, Ceram. Int. 46(10), 17034 (2020)
CrossRef ADS Google scholar
[18]
J. Lin, Z. Y. Zhao, C. Y. Liu, J. Zhang, X. Du, G. C. Yang, and Y. M. Ma, IrF8 molecular crystal under high pressure, J. Am. Chem. Soc. 141(13), 5409 (2019)
CrossRef ADS Google scholar
[19]
Z. Y. Zhao, S. T. Zhang, T. Yu, H. Y. Xu, A. Bergara, and G. C. Yang, Predicted pressure-induced superconducting transition in electride Li6P, Phys. Rev. Lett. 122(9), 097002 (2019)
CrossRef ADS Google scholar
[20]
Q. Wei, W. Tong, R. K. Yang, H. Y. Yan, B. Wei, M. G. Zhang, X. C. Yang, and R. Zhang, Orthorhombic C10: A new superdense carbon allotrope, Phys. Lett. A 383(28), 125861 (2019)
CrossRef ADS Google scholar
[21]
Q. C. Tong, L. T. Xue, J. Lv, Y. C. Wang, and Y. M. Ma, Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface, Faraday Discuss. 211, 31 (2018)
CrossRef ADS Google scholar
[22]
K. Xia, H. Gao, C. Liu, J. N. Yuan, J. Sun, H. T. Wang, and D. Y. Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Sci. Bull. (Beijing)63(13), 817 (2018)
CrossRef ADS Google scholar
[23]
R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem. Int. Ed. 55(37), 10962 (2016)
CrossRef ADS Google scholar
[24]
M. Gajdoš, K. Hummer, G. Kresse, J. Furthmuller, and F. Bechstedt, Linear optical properties in the projectoraugmented wave methodology, Phys. Rev. B 73(4), 045112 (2006)
CrossRef ADS Google scholar
[25]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[26]
M. G. Zhang, H. Y. Yan, and Q. Wei, Unexpected ground-state crystal structures and mechanical properties of transition metal pernitrides MN2 (M= Ti, Zr, and Hf), J. Alloys Compd. 774, 918 (2019)
CrossRef ADS Google scholar
[27]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 78(7), 1396 (1997) [Phys. Rev. Lett. 77, 3865 (1996)]
CrossRef ADS Google scholar
[28]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[29]
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef ADS Google scholar
[30]
L. Ward, A. Dunn, A. Faghaninia, N. E. R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, and A. Jain, Matminer: An open source toolkit for materials data mining, Comput. Mater. Sci. 152, 60 (2018)
CrossRef ADS Google scholar
[31]
E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A. Tropsha, and S. Curtarolo, AFLOW-ML: A RESTful API for machine-learning predictions of materials properties, Comput. Mater. Sci. 152, 134 (2018)
CrossRef ADS Google scholar
[32]
A. R. Supka, T. E. Lyons, L. Liyanage, P. D’Amico, R. Al Rahal Al Orabi, S. Mahatara, P. Gopal, C. Toher, D. Ceresoli, A. Calzolari, S. Curtarolo, M. B. Nardelli, and M. Fornari, AFLOW: A minimalist approach to highthroughput ab initio calculations including the generation of tight-binding hamiltonians, Comput. Mater. Sci. 136, 76 (2017)
CrossRef ADS Google scholar
[33]
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW library of crystallographic prototypes(Part 1), Comput. Mater. Sci. 136, S1 (2017)
CrossRef ADS Google scholar
[34]
W. L. Mao, H. K. Mao, P. J. Eng, T. P. Trainor, M. Newville, et al., Bonding changes in compressed superhard graphite, Science 302(5644), 425 (2003)
CrossRef ADS Google scholar
[35]
Y. J. Wang, J. E. Panzik, B. Kiefer, and K. K. M. Lee, Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep. 2(1), 520 (2012)
CrossRef ADS Google scholar
[36]
Q. Li, Y. M. Ma, A. R. Oganov, H. B. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102(17), 175506 (2009)
CrossRef ADS Google scholar
[37]
E. Stavrou, S. Lobanov, H. F. Dong, A. R. Oganov, V. B. Prakapenka, Z. Konopkovaa, A. F. Goncharov, Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1:1 stoichiometry, Chem. Mater. 28(19), 6925 (2016)
CrossRef ADS Google scholar
[38]
M. Zhang, H. Liu, Q. Li, B. Gao, Y. C. Wang, H. D. Li, C. F. Chen, and Y. M. Ma, Superhard BC3 in cubic diamond structure, Phys. Rev. Lett. 114(1), 015502 (2015)
CrossRef ADS Google scholar
[39]
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond. 65(5), 349 (1952)
CrossRef ADS Google scholar
[40]
A. Lyakhov and A. Oganov, Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2, Phys. Rev. B 84(9), 092103 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(5306 KB)

1592

Accesses

18

Citations

1

Altmetric

Detail

Sections
Recommended

/