Multi-variable special polynomials using an operator ordering method
Xiang-Guo Meng, Kai-Cai Li, Ji-Suo Wang, Zhen-Shan Yang, Xiao-Yan Zhang, Zhen-Tao Zhang, Bao-Long Liang
Multi-variable special polynomials using an operator ordering method
Using an operator ordering method for some commutative superposition operators, we introduce two new multi-variable special polynomials and their generating functions, and present some new operator identities and integral formulas involving the two special polynomials. Instead of calculating complicated partial differential, we use the special polynomials and their generating functions to concisely address the normalization, photocount distributions and Wigner distributions of several quantum states that can be realized physically, the results of which provide real convenience for further investigating the properties and applications of these states.
multi-variable special polynomial / generating function / operator ordering method / new operator identity and integral formula / Wigner function
[1] |
S. E. Hoffmann, V. Hussin, I. Marquette, and Y. Z. Zhang, Nonclassical behaviour of coherent states for systems constructed using exceptional orthogonal polynomials, J. Phys. A Math. Theor. 51(8), 085202 (2018)
CrossRef
ADS
Google scholar
|
[2] |
K. W. Hwang and C. S. Ryoo, Differential equations associated with two variable degenerate Hermite polynomial, Mathematics 8(2), 228 (2020)
CrossRef
ADS
Google scholar
|
[3] |
H. Y. Fan and Y. Fan, New eigenmodes of propagation in quadratic graded index media and complex fractional fourier transform, Commum. Theor. Phys. 39(1), 97 (2003)
CrossRef
ADS
Google scholar
|
[4] |
H. Y. Fan and J. R. Klauder, Weyl correspondence and Prepresentation as operator Fredholm equations and their solutions,J. Phys. Math. Gen. 39(34), 10849 (2006)
CrossRef
ADS
Google scholar
|
[5] |
H. Y. Fan and J. Chen, Atomic coherent states studied by virtue of the EPR entangled state and their Wigner functions, Eur. Phys. J. D 23(3), 437 (2003)
CrossRef
ADS
Google scholar
|
[6] |
X. G. Meng, J. S. Wang, and H. Y. Fan, Atomic coherent state as the eigenstates of a two-dimensional anisotropic harmonic oscillator in a uniform magnetic field, Mod. Phys. Lett. A 24(38), 3129 (2009)
CrossRef
ADS
Google scholar
|
[7] |
H. Y. Fan, Z. L. Wan, Z. Wu, and P. F. Zhang, A new kind of special function and its application, Chin. Phys. B 24(10), 100302 (2015)
CrossRef
ADS
Google scholar
|
[8] |
J. S. Wang, X. G. Meng, and H. Y. Fan, Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem, Chin. Phys. B 28(10), 100301 (2019)
CrossRef
ADS
Google scholar
|
[9] |
X. G. Meng, J. M. Liu, J. S. Wang, and H. Y. Fan, New generalized binomial theorems involving twovariable Hermite polynomials via quantum optics approach and their applications, Eur. Phys. J. D 73(2), 32 (2019)
CrossRef
ADS
Google scholar
|
[10] |
H. Y. Fan and T. F. Jiang, Two-variable Hermite polynomials as time-evolutional transition amplitude for driven harmonic oscillator, Mod. Phys. Lett. B 21(08), 475 (2007)
CrossRef
ADS
Google scholar
|
[11] |
H. Y. Fan and Y. Fan, New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform, Commun. Theor. Phys. 39(1), 97 (2003)
CrossRef
ADS
Google scholar
|
[12] |
H. Y. Fan and X. F. Xu, Talbot effect in a quadraticindex medium studied with two-variable Hermite polynomials and entangled states, Opt. Lett. 29(10), 1048 (2004)
CrossRef
ADS
Google scholar
|
[13] |
V. V. Dodonov, Asymptotic formulae for two-variable Hermite polynomials, J. Phys. Math. Gen. 27(18), 6191 (1994)
CrossRef
ADS
Google scholar
|
[14] |
H. Y. Fan and Y. Fan, New bosonic operator ordering identities gained by the entangled state representation and two-variable Hermite polynomials, Commum. Theor. Phys. 38(3), 297 (2002)
CrossRef
ADS
Google scholar
|
[15] |
X. G. Meng, J. S. Wang, Z. S. Yang, X. Y. Zhang, Z. T. Zhang, B. L. Liang, and K. C. Li, Squeezed Hermite polynomial state: Nonclassical features and decoherence behavior, J. Opt. 22(1), 015201 (2020)
CrossRef
ADS
Google scholar
|
[16] |
H. Y. Fan and X. Ye, Hermite polynomial states in twomode Fock space, Phys. Lett. A 175(6), 387 (1993)
CrossRef
ADS
Google scholar
|
[17] |
J. A. Bergou, M. Hillery, and D. Q. Yu, Minimum uncertainty states for amplitude-squared squeezing: Hermite polynomial states, Phys. Rev. A 43(1), 515 (1991)
CrossRef
ADS
Google scholar
|
[18] |
H. L. Zhang, H. C. Yuan, L. Y. Hu, and X. X. Xu, Synthesis of Hermite polynomial excited squeezed vacuum states from two separate single-mode squeezed vacuum states, Opt. Commun. 356(23), 223 (2015)
CrossRef
ADS
Google scholar
|
[19] |
K. Górska, A. Horzela, and F. H. Szafraniec, Holomorphic Hermite polynomials in two variables, J. Math. Anal. Appl. 470(2), 750 (2019)
CrossRef
ADS
Google scholar
|
[20] |
W. R. Casper, S. Kolb, and M. Yakimov, Bivariate continuous q-Hermite polynomials and deformed quantum Serre relations, arXiv: 2002.07895 (2020)
|
[21] |
H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2), 480 (2006)
CrossRef
ADS
Google scholar
|
[22] |
H. Y. Fan, Entanged states, squeezed states gained via the route of developing Dirac’s sybmolic method and their applications, Int. J. Mod. Phys. B 18 (10n11), 1387 (2004)
CrossRef
ADS
Google scholar
|
[23] |
X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)
CrossRef
ADS
Google scholar
|
[24] |
X. G. Meng, Z. Wang, H. Y. Fan, and J. S. Wang, Nonclassicality and decoherence of photon-subtracted squeezed vacuum states, J. Opt. Soc. Am. B 29(11), 3141 (2012)
CrossRef
ADS
Google scholar
|
[25] |
X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Du, Optical tomograms of multiple-photon-added Gaussian states via the intermediate state representation theory, J. Exp. Theor. Phys. 127(3), 383 (2018)
CrossRef
ADS
Google scholar
|
[26] |
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A 49(2), 704 (1994)
CrossRef
ADS
Google scholar
|
[27] |
H. Y. Fan, H. R. Zaidi, and J. R. Klauder, New approach for calculating the normally ordered form of squeeze operators, Phys. Rev. D 35(6), 1831 (1987)
CrossRef
ADS
Google scholar
|
[28] |
J. S. Wang, X. G. Meng, and H. Y. Fan, s-parameterized Weyl transformation and the corresponding quantization scheme, Chin. Phys. B 24(1), 014203 (2015)
CrossRef
ADS
Google scholar
|
[29] |
C. X. Du, X. G. Meng, R. Zhang, and J. S. Wang, Analytical and numerical investigations of displaced thermal state evolutions in a laser process, Chin. Phys. B 26(12), 120301 (2017)
CrossRef
ADS
Google scholar
|
[30] |
J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photon–phonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)
CrossRef
ADS
Google scholar
|
[31] |
C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
CrossRef
ADS
Google scholar
|
[32] |
V. V. Dodonov, “Nonclassical” states in quantum optics: A “squeezed” review of the first 75 years, J. Opt. B: Quantum Semiclass. Opt. 4(1), R1 (2002)
CrossRef
ADS
Google scholar
|
[33] |
J. Wenger, R. Tualle-Brouri, and P. Grangier, Non-Gaussian statistics from individual pulses of squeezed light, Phys. Rev. Lett. 92(15), 153601 (2004)
CrossRef
ADS
Google scholar
|
[34] |
K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Photon subtracted squeezed states generated with periodically poled KTiOPO4, Opt. Express 15(6), 3568 (2007)
CrossRef
ADS
Google scholar
|
[35] |
H. Y. Fan, New antinormal ordering expansion for density operators, Phys. Lett. A 161(1), 1 (1991)
CrossRef
ADS
Google scholar
|
[36] |
J. R. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131(6), 2766 (1963)
CrossRef
ADS
Google scholar
|
[37] |
L. Y. Hu and H. Y. Fan, Statistical properties of photonsubtracted squeezed vacuum in thermal environment,J. Opt. Soc. Am. B 25(12), 1955 (2008)
CrossRef
ADS
Google scholar
|
[38] |
H. Y. Fan, X. G. Meng, and J. S. Wang, New form of Legendre polynomials obtained by virtue of excited squeezed state and IWOP technique in quantum optics, Commum. Theor. Phys. 46(5), 845 (2006)
CrossRef
ADS
Google scholar
|
[39] |
S. Y. Lee and H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. 82(5), 053812 (2010)
CrossRef
ADS
Google scholar
|
[40] |
Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)
CrossRef
ADS
Google scholar
|
[41] |
T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
CrossRef
ADS
Google scholar
|
[42] |
H. C. Yuan, X. X. Xu, and Y. J. Xu, Generating two variable Hermite polynomial excited squeezed vacuum states by conditional measurement on beam splitters, Optik 172(21), 1034 (2018)
CrossRef
ADS
Google scholar
|
[43] |
P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136(2A), A316 (1964)
CrossRef
ADS
Google scholar
|
[44] |
H. Y. Fan and L. Y. Hu, Two quantum-mechanical photocount formulas,Opt. Lett. 33(5), 443 (2008)
CrossRef
ADS
Google scholar
|
[45] |
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |