Multi-variable special polynomials using an operator ordering method

Xiang-Guo Meng , Kai-Cai Li , Ji-Suo Wang , Zhen-Shan Yang , Xiao-Yan Zhang , Zhen-Tao Zhang , Bao-Long Liang

Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52501

PDF (1182KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52501 DOI: 10.1007/s11467-020-0967-3
RESEARCH ARTICLE

Multi-variable special polynomials using an operator ordering method

Author information +
History +
PDF (1182KB)

Abstract

Using an operator ordering method for some commutative superposition operators, we introduce two new multi-variable special polynomials and their generating functions, and present some new operator identities and integral formulas involving the two special polynomials. Instead of calculating complicated partial differential, we use the special polynomials and their generating functions to concisely address the normalization, photocount distributions and Wigner distributions of several quantum states that can be realized physically, the results of which provide real convenience for further investigating the properties and applications of these states.

Keywords

multi-variable special polynomial / generating function / operator ordering method / new operator identity and integral formula / Wigner function

Cite this article

Download citation ▾
Xiang-Guo Meng, Kai-Cai Li, Ji-Suo Wang, Zhen-Shan Yang, Xiao-Yan Zhang, Zhen-Tao Zhang, Bao-Long Liang. Multi-variable special polynomials using an operator ordering method. Front. Phys., 2020, 15(5): 52501 DOI:10.1007/s11467-020-0967-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. E. Hoffmann, V. Hussin, I. Marquette, and Y. Z. Zhang, Nonclassical behaviour of coherent states for systems constructed using exceptional orthogonal polynomials, J. Phys. A Math. Theor. 51(8), 085202 (2018)

[2]

K. W. Hwang and C. S. Ryoo, Differential equations associated with two variable degenerate Hermite polynomial, Mathematics 8(2), 228 (2020)

[3]

H. Y. Fan and Y. Fan, New eigenmodes of propagation in quadratic graded index media and complex fractional fourier transform, Commum. Theor. Phys. 39(1), 97 (2003)

[4]

H. Y. Fan and J. R. Klauder, Weyl correspondence and Prepresentation as operator Fredholm equations and their solutions,J. Phys. Math. Gen. 39(34), 10849 (2006)

[5]

H. Y. Fan and J. Chen, Atomic coherent states studied by virtue of the EPR entangled state and their Wigner functions, Eur. Phys. J. D 23(3), 437 (2003)

[6]

X. G. Meng, J. S. Wang, and H. Y. Fan, Atomic coherent state as the eigenstates of a two-dimensional anisotropic harmonic oscillator in a uniform magnetic field, Mod. Phys. Lett. A 24(38), 3129 (2009)

[7]

H. Y. Fan, Z. L. Wan, Z. Wu, and P. F. Zhang, A new kind of special function and its application, Chin. Phys. B 24(10), 100302 (2015)

[8]

J. S. Wang, X. G. Meng, and H. Y. Fan, Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem, Chin. Phys. B 28(10), 100301 (2019)

[9]

X. G. Meng, J. M. Liu, J. S. Wang, and H. Y. Fan, New generalized binomial theorems involving twovariable Hermite polynomials via quantum optics approach and their applications, Eur. Phys. J. D 73(2), 32 (2019)

[10]

H. Y. Fan and T. F. Jiang, Two-variable Hermite polynomials as time-evolutional transition amplitude for driven harmonic oscillator, Mod. Phys. Lett. B 21(08), 475 (2007)

[11]

H. Y. Fan and Y. Fan, New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform, Commun. Theor. Phys. 39(1), 97 (2003)

[12]

H. Y. Fan and X. F. Xu, Talbot effect in a quadraticindex medium studied with two-variable Hermite polynomials and entangled states, Opt. Lett. 29(10), 1048 (2004)

[13]

V. V. Dodonov, Asymptotic formulae for two-variable Hermite polynomials, J. Phys. Math. Gen. 27(18), 6191 (1994)

[14]

H. Y. Fan and Y. Fan, New bosonic operator ordering identities gained by the entangled state representation and two-variable Hermite polynomials, Commum. Theor. Phys. 38(3), 297 (2002)

[15]

X. G. Meng, J. S. Wang, Z. S. Yang, X. Y. Zhang, Z. T. Zhang, B. L. Liang, and K. C. Li, Squeezed Hermite polynomial state: Nonclassical features and decoherence behavior, J. Opt. 22(1), 015201 (2020)

[16]

H. Y. Fan and X. Ye, Hermite polynomial states in twomode Fock space, Phys. Lett. A 175(6), 387 (1993)

[17]

J. A. Bergou, M. Hillery, and D. Q. Yu, Minimum uncertainty states for amplitude-squared squeezing: Hermite polynomial states, Phys. Rev. A 43(1), 515 (1991)

[18]

H. L. Zhang, H. C. Yuan, L. Y. Hu, and X. X. Xu, Synthesis of Hermite polynomial excited squeezed vacuum states from two separate single-mode squeezed vacuum states, Opt. Commun. 356(23), 223 (2015)

[19]

K. Górska, A. Horzela, and F. H. Szafraniec, Holomorphic Hermite polynomials in two variables, J. Math. Anal. Appl. 470(2), 750 (2019)

[20]

W. R. Casper, S. Kolb, and M. Yakimov, Bivariate continuous q-Hermite polynomials and deformed quantum Serre relations, arXiv: 2002.07895 (2020)

[21]

H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2), 480 (2006)

[22]

H. Y. Fan, Entanged states, squeezed states gained via the route of developing Dirac’s sybmolic method and their applications, Int. J. Mod. Phys. B 18 (10n11), 1387 (2004)

[23]

X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)

[24]

X. G. Meng, Z. Wang, H. Y. Fan, and J. S. Wang, Nonclassicality and decoherence of photon-subtracted squeezed vacuum states, J. Opt. Soc. Am. B 29(11), 3141 (2012)

[25]

X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Du, Optical tomograms of multiple-photon-added Gaussian states via the intermediate state representation theory, J. Exp. Theor. Phys. 127(3), 383 (2018)

[26]

H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A 49(2), 704 (1994)

[27]

H. Y. Fan, H. R. Zaidi, and J. R. Klauder, New approach for calculating the normally ordered form of squeeze operators, Phys. Rev. D 35(6), 1831 (1987)

[28]

J. S. Wang, X. G. Meng, and H. Y. Fan, s-parameterized Weyl transformation and the corresponding quantization scheme, Chin. Phys. B 24(1), 014203 (2015)

[29]

C. X. Du, X. G. Meng, R. Zhang, and J. S. Wang, Analytical and numerical investigations of displaced thermal state evolutions in a laser process, Chin. Phys. B 26(12), 120301 (2017)

[30]

J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photon–phonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)

[31]

C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)

[32]

V. V. Dodonov, “Nonclassical” states in quantum optics: A “squeezed” review of the first 75 years, J. Opt. B: Quantum Semiclass. Opt. 4(1), R1 (2002)

[33]

J. Wenger, R. Tualle-Brouri, and P. Grangier, Non-Gaussian statistics from individual pulses of squeezed light, Phys. Rev. Lett. 92(15), 153601 (2004)

[34]

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Photon subtracted squeezed states generated with periodically poled KTiOPO4, Opt. Express 15(6), 3568 (2007)

[35]

H. Y. Fan, New antinormal ordering expansion for density operators, Phys. Lett. A 161(1), 1 (1991)

[36]

J. R. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131(6), 2766 (1963)

[37]

L. Y. Hu and H. Y. Fan, Statistical properties of photonsubtracted squeezed vacuum in thermal environment,J. Opt. Soc. Am. B 25(12), 1955 (2008)

[38]

H. Y. Fan, X. G. Meng, and J. S. Wang, New form of Legendre polynomials obtained by virtue of excited squeezed state and IWOP technique in quantum optics, Commum. Theor. Phys. 46(5), 845 (2006)

[39]

S. Y. Lee and H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. 82(5), 053812 (2010)

[40]

Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)

[41]

T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)

[42]

H. C. Yuan, X. X. Xu, and Y. J. Xu, Generating two variable Hermite polynomial excited squeezed vacuum states by conditional measurement on beam splitters, Optik 172(21), 1034 (2018)

[43]

P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136(2A), A316 (1964)

[44]

H. Y. Fan and L. Y. Hu, Two quantum-mechanical photocount formulas,Opt. Lett. 33(5), 443 (2008)

[45]

M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1182KB)

831

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/