Multi-variable special polynomials using an operator ordering method

Xiang-Guo Meng, Kai-Cai Li, Ji-Suo Wang, Zhen-Shan Yang, Xiao-Yan Zhang, Zhen-Tao Zhang, Bao-Long Liang

PDF(1182 KB)
PDF(1182 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52501. DOI: 10.1007/s11467-020-0967-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Multi-variable special polynomials using an operator ordering method

Author information +
History +

Abstract

Using an operator ordering method for some commutative superposition operators, we introduce two new multi-variable special polynomials and their generating functions, and present some new operator identities and integral formulas involving the two special polynomials. Instead of calculating complicated partial differential, we use the special polynomials and their generating functions to concisely address the normalization, photocount distributions and Wigner distributions of several quantum states that can be realized physically, the results of which provide real convenience for further investigating the properties and applications of these states.

Keywords

multi-variable special polynomial / generating function / operator ordering method / new operator identity and integral formula / Wigner function

Cite this article

Download citation ▾
Xiang-Guo Meng, Kai-Cai Li, Ji-Suo Wang, Zhen-Shan Yang, Xiao-Yan Zhang, Zhen-Tao Zhang, Bao-Long Liang. Multi-variable special polynomials using an operator ordering method. Front. Phys., 2020, 15(5): 52501 https://doi.org/10.1007/s11467-020-0967-3

References

[1]
S. E. Hoffmann, V. Hussin, I. Marquette, and Y. Z. Zhang, Nonclassical behaviour of coherent states for systems constructed using exceptional orthogonal polynomials, J. Phys. A Math. Theor. 51(8), 085202 (2018)
CrossRef ADS Google scholar
[2]
K. W. Hwang and C. S. Ryoo, Differential equations associated with two variable degenerate Hermite polynomial, Mathematics 8(2), 228 (2020)
CrossRef ADS Google scholar
[3]
H. Y. Fan and Y. Fan, New eigenmodes of propagation in quadratic graded index media and complex fractional fourier transform, Commum. Theor. Phys. 39(1), 97 (2003)
CrossRef ADS Google scholar
[4]
H. Y. Fan and J. R. Klauder, Weyl correspondence and Prepresentation as operator Fredholm equations and their solutions,J. Phys. Math. Gen. 39(34), 10849 (2006)
CrossRef ADS Google scholar
[5]
H. Y. Fan and J. Chen, Atomic coherent states studied by virtue of the EPR entangled state and their Wigner functions, Eur. Phys. J. D 23(3), 437 (2003)
CrossRef ADS Google scholar
[6]
X. G. Meng, J. S. Wang, and H. Y. Fan, Atomic coherent state as the eigenstates of a two-dimensional anisotropic harmonic oscillator in a uniform magnetic field, Mod. Phys. Lett. A 24(38), 3129 (2009)
CrossRef ADS Google scholar
[7]
H. Y. Fan, Z. L. Wan, Z. Wu, and P. F. Zhang, A new kind of special function and its application, Chin. Phys. B 24(10), 100302 (2015)
CrossRef ADS Google scholar
[8]
J. S. Wang, X. G. Meng, and H. Y. Fan, Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem, Chin. Phys. B 28(10), 100301 (2019)
CrossRef ADS Google scholar
[9]
X. G. Meng, J. M. Liu, J. S. Wang, and H. Y. Fan, New generalized binomial theorems involving twovariable Hermite polynomials via quantum optics approach and their applications, Eur. Phys. J. D 73(2), 32 (2019)
CrossRef ADS Google scholar
[10]
H. Y. Fan and T. F. Jiang, Two-variable Hermite polynomials as time-evolutional transition amplitude for driven harmonic oscillator, Mod. Phys. Lett. B 21(08), 475 (2007)
CrossRef ADS Google scholar
[11]
H. Y. Fan and Y. Fan, New eigenmodes of propagation in quadratic graded index media and complex fractional Fourier transform, Commun. Theor. Phys. 39(1), 97 (2003)
CrossRef ADS Google scholar
[12]
H. Y. Fan and X. F. Xu, Talbot effect in a quadraticindex medium studied with two-variable Hermite polynomials and entangled states, Opt. Lett. 29(10), 1048 (2004)
CrossRef ADS Google scholar
[13]
V. V. Dodonov, Asymptotic formulae for two-variable Hermite polynomials, J. Phys. Math. Gen. 27(18), 6191 (1994)
CrossRef ADS Google scholar
[14]
H. Y. Fan and Y. Fan, New bosonic operator ordering identities gained by the entangled state representation and two-variable Hermite polynomials, Commum. Theor. Phys. 38(3), 297 (2002)
CrossRef ADS Google scholar
[15]
X. G. Meng, J. S. Wang, Z. S. Yang, X. Y. Zhang, Z. T. Zhang, B. L. Liang, and K. C. Li, Squeezed Hermite polynomial state: Nonclassical features and decoherence behavior, J. Opt. 22(1), 015201 (2020)
CrossRef ADS Google scholar
[16]
H. Y. Fan and X. Ye, Hermite polynomial states in twomode Fock space, Phys. Lett. A 175(6), 387 (1993)
CrossRef ADS Google scholar
[17]
J. A. Bergou, M. Hillery, and D. Q. Yu, Minimum uncertainty states for amplitude-squared squeezing: Hermite polynomial states, Phys. Rev. A 43(1), 515 (1991)
CrossRef ADS Google scholar
[18]
H. L. Zhang, H. C. Yuan, L. Y. Hu, and X. X. Xu, Synthesis of Hermite polynomial excited squeezed vacuum states from two separate single-mode squeezed vacuum states, Opt. Commun. 356(23), 223 (2015)
CrossRef ADS Google scholar
[19]
K. Górska, A. Horzela, and F. H. Szafraniec, Holomorphic Hermite polynomials in two variables, J. Math. Anal. Appl. 470(2), 750 (2019)
CrossRef ADS Google scholar
[20]
W. R. Casper, S. Kolb, and M. Yakimov, Bivariate continuous q-Hermite polynomials and deformed quantum Serre relations, arXiv: 2002.07895 (2020)
[21]
H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2), 480 (2006)
CrossRef ADS Google scholar
[22]
H. Y. Fan, Entanged states, squeezed states gained via the route of developing Dirac’s sybmolic method and their applications, Int. J. Mod. Phys. B 18 (10n11), 1387 (2004)
CrossRef ADS Google scholar
[23]
X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)
CrossRef ADS Google scholar
[24]
X. G. Meng, Z. Wang, H. Y. Fan, and J. S. Wang, Nonclassicality and decoherence of photon-subtracted squeezed vacuum states, J. Opt. Soc. Am. B 29(11), 3141 (2012)
CrossRef ADS Google scholar
[25]
X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Du, Optical tomograms of multiple-photon-added Gaussian states via the intermediate state representation theory, J. Exp. Theor. Phys. 127(3), 383 (2018)
CrossRef ADS Google scholar
[26]
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A 49(2), 704 (1994)
CrossRef ADS Google scholar
[27]
H. Y. Fan, H. R. Zaidi, and J. R. Klauder, New approach for calculating the normally ordered form of squeeze operators, Phys. Rev. D 35(6), 1831 (1987)
CrossRef ADS Google scholar
[28]
J. S. Wang, X. G. Meng, and H. Y. Fan, s-parameterized Weyl transformation and the corresponding quantization scheme, Chin. Phys. B 24(1), 014203 (2015)
CrossRef ADS Google scholar
[29]
C. X. Du, X. G. Meng, R. Zhang, and J. S. Wang, Analytical and numerical investigations of displaced thermal state evolutions in a laser process, Chin. Phys. B 26(12), 120301 (2017)
CrossRef ADS Google scholar
[30]
J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photon–phonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)
CrossRef ADS Google scholar
[31]
C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
CrossRef ADS Google scholar
[32]
V. V. Dodonov, “Nonclassical” states in quantum optics: A “squeezed” review of the first 75 years, J. Opt. B: Quantum Semiclass. Opt. 4(1), R1 (2002)
CrossRef ADS Google scholar
[33]
J. Wenger, R. Tualle-Brouri, and P. Grangier, Non-Gaussian statistics from individual pulses of squeezed light, Phys. Rev. Lett. 92(15), 153601 (2004)
CrossRef ADS Google scholar
[34]
K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Photon subtracted squeezed states generated with periodically poled KTiOPO4, Opt. Express 15(6), 3568 (2007)
CrossRef ADS Google scholar
[35]
H. Y. Fan, New antinormal ordering expansion for density operators, Phys. Lett. A 161(1), 1 (1991)
CrossRef ADS Google scholar
[36]
J. R. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131(6), 2766 (1963)
CrossRef ADS Google scholar
[37]
L. Y. Hu and H. Y. Fan, Statistical properties of photonsubtracted squeezed vacuum in thermal environment,J. Opt. Soc. Am. B 25(12), 1955 (2008)
CrossRef ADS Google scholar
[38]
H. Y. Fan, X. G. Meng, and J. S. Wang, New form of Legendre polynomials obtained by virtue of excited squeezed state and IWOP technique in quantum optics, Commum. Theor. Phys. 46(5), 845 (2006)
CrossRef ADS Google scholar
[39]
S. Y. Lee and H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. 82(5), 053812 (2010)
CrossRef ADS Google scholar
[40]
Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)
CrossRef ADS Google scholar
[41]
T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
CrossRef ADS Google scholar
[42]
H. C. Yuan, X. X. Xu, and Y. J. Xu, Generating two variable Hermite polynomial excited squeezed vacuum states by conditional measurement on beam splitters, Optik 172(21), 1034 (2018)
CrossRef ADS Google scholar
[43]
P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136(2A), A316 (1964)
CrossRef ADS Google scholar
[44]
H. Y. Fan and L. Y. Hu, Two quantum-mechanical photocount formulas,Opt. Lett. 33(5), 443 (2008)
CrossRef ADS Google scholar
[45]
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1182 KB)

Accesses

Citations

Detail

Sections
Recommended

/