Some optimizations on detecting gravitational wave using convolutional neural network
Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, G. Jogesh Babu
Some optimizations on detecting gravitational wave using convolutional neural network
This work investigates the problem of detecting gravitational wave (GW) events based on simulated damped sinusoid signals contaminated with white Gaussian noise. It is treated as a classification problem with one class for the interesting events. The proposed scheme consists of the following two successive steps: decomposing the data using a wavelet packet, representing the GW signal and noise using the derived decomposition coefficients; and determining the existence of any GW event using a convolutional neural network (CNN) with a logistic regression output layer. The characteristic of this work is its comprehensive investigations on CNN structure, detection window width, data resolution, wavelet packet decomposition and detection window overlap scheme. Extensive simulation experiments show excellent performances for reliable detection of signals with a range of GW model parameters and signal-to-noise ratios. While we use a simple waveform model in this study, we expect the method to be particularly valuable when the potential GW shapes are too complex to be characterized with a template bank.
gravitational waves / algorithms / astrostatistics techniques
[1] |
B. P. Abbott, R. Abbott, T. D. Abbott,
|
[2] |
B. P. Abbott, R. Abbott, and T. D. Abbott, Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6(4), 041015 (2016)
|
[3] |
B. P. Abbott, R. Abbott, T. D. Abbott,
|
[4] |
B. P. Abbott, R. Abbott, T. D. Abbott,
|
[5] |
B. P. Abbott, R. Abbott, T. D. Abbott,
|
[6] |
B. P. Abbott, R. Abbott, and R. X. Adhikari,
|
[7] |
B. P. Abbott, R. Abbott, T. D. Abbott,
|
[8] |
B. P. Abbott,
CrossRef
ADS
Google scholar
|
[9] |
S. Adrián-Martínez, M. G. Aartsen, B. Abbott,
|
[10] |
B. Abbott, R. Abbott, T. D. Abbott,
|
[11] |
B. P. Abbott, G. Cagnoli, J. Degallaix,
CrossRef
ADS
Google scholar
|
[12] |
C. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole, Nature 227, 936 (1970)
CrossRef
ADS
Google scholar
|
[13] |
O. Benhar, V. Ferrari, and L. Gualtieri, Gravitational wave asteroseismology revisited, Phys. Rev. D 70, 124015 (2004)
CrossRef
ADS
Google scholar
|
[14] |
J. Powell, D. Trifirò, E. Cuoco,
CrossRef
ADS
Google scholar
|
[15] |
M. Zevin, S. Couǵhlin,
CrossRef
ADS
Google scholar
|
[16] |
J. Powell, A. Torres-Forné,
CrossRef
ADS
Google scholar
|
[17] |
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 85(12), 122006 (2012)
CrossRef
ADS
Google scholar
|
[18] |
S. Babak, R. Biswas,
CrossRef
ADS
Google scholar
|
[19] |
K. Cannon, R. Cariou, A. Chapman,
CrossRef
ADS
Google scholar
|
[20] |
S. A. Usman, A. H. Nitz, I. W. Harry,
CrossRef
ADS
Google scholar
|
[21] |
H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120(14), 141103 (2018)
CrossRef
ADS
Google scholar
|
[22] |
D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data, Phys. Lett. B 778, 64 (2018)
CrossRef
ADS
Google scholar
|
[23] |
B. J. Lin, X. R. Li, and W. L. Yu, Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks, Front. Phys. 15(2), 24602 (2020)
CrossRef
ADS
Google scholar
|
[24] |
H. M. Luo, W. B. Lin, Z. C. Chen, and Q. G. Huang, Extraction of gravitational wave signals with optimized convolutional neural network, Front. Phys. 15(1), 14601 (2020)
CrossRef
ADS
Google scholar
|
[25] |
D. George and E. A. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97, 044039 (2018)
CrossRef
ADS
Google scholar
|
[26] |
T. D. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schlkopf, CONVWAVE: Searching for gravitational waves with fully convolutional Neural Nets, in: Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (NIPS), 2017
|
[27] |
T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schlkopf, Convolutional neural networks: A magic bullet for gravitational-wave detection? Phys. Rev. D 100(6), 063015 (2019)
CrossRef
ADS
Google scholar
|
[28] |
S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, Multiresolution techniques for the detection of gravitational-wave bursts, Class. Quantum Grav. 21(20), S1809 (2004)
CrossRef
ADS
Google scholar
|
[29] |
P. J. Sutton, G. Jones, S. Chatterji,
CrossRef
ADS
Google scholar
|
[30] |
S. Bahaadini, N. Rohani, S. Coughlin, M. Zevin, V. Kalogera, and A. K. Katsaggelos, Deep multi-view models for glitch classification, IEEE ICASSP, 2931–2935 (2017)
CrossRef
ADS
Google scholar
|
[31] |
S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M. Zevein, J. R. Smith, V. Kalogera, and A. Katsaggelos, Machine learning for Gravity Spy: Glitch classification and dataset, Information Sciences 444, pp 172–186 (2018)
CrossRef
ADS
Google scholar
|
[32] |
D. George, H. Shen, and E. A. Huerta, Classification and unsupervised clustering of LIGO data with deep transfer learning, Phys. Rev. D 97, 101501 (2018)
CrossRef
ADS
Google scholar
|
[33] |
N. Mukund, S. Abraham, S. Kandhasamy, and N. S. Philip, Transient classification in LIGO data using difference boosting neural network, Phys. Rev. D 95, 104059 (2017)
CrossRef
ADS
Google scholar
|
[34] |
J. C. Brown, Calculation of a constant Q-spectral transform, J. Acoust. Soc. Am. 89(1), 425 (1991)
CrossRef
ADS
Google scholar
|
[35] |
S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, Coherent method for detection of gravitational wave bursts, Class. Quantum Grav. 25, 114029 (2008)
CrossRef
ADS
Google scholar
|
[36] |
S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro, S. Tiwari, F. Da Silva, and G. Mitselmakher, Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors, Phys. Rev. D 93, 042004 (2016)
CrossRef
ADS
Google scholar
|
[37] |
R. S. Lynch, S. Vitale, R. C. Essick, E. Katsavounidis, and F. Robinet, An information-theoretic approach to the gravitational-wave burst detection problem, Phys. Rev. D 95, 104046 (2017)
CrossRef
ADS
Google scholar
|
[38] |
N. J. Cornish and T. B. Littenberg, BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches, Class. Quantum Grav. 32, 135012 (2015)
CrossRef
ADS
Google scholar
|
[39] |
T. B. Littenberg and N. J. Cornish, Bayesian inference for spectral estimation of gravitational wave detector noise, Phys. Rev. D 91, 084034 (2015)
CrossRef
ADS
Google scholar
|
[40] |
S. Chatterji, A. Lazzarini, L. Stein, P. Sutton, A. Searle, and M. Tinto, Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise, Phys. Rev. D 74, 082005 (2006)
CrossRef
ADS
Google scholar
|
[41] |
S. Bose, S. Dhurandhar,
CrossRef
ADS
Google scholar
|
[42] |
B. J. Owen and B. S. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, Phys. Rev. D 60(2), 022002 (1999)
CrossRef
ADS
Google scholar
|
[43] |
pwelch: Welch’s power spectral density estimate.
|
[44] |
G. D. Meadors, K. Kawabe, and K. Riles, Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise, Class. Quantum Grav. 31, 105014 (2014)
CrossRef
ADS
Google scholar
|
[45] |
P. D. Welch, The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Transactions on Audio and Electroacoustics 15(2), 70 (1967)
CrossRef
ADS
Google scholar
|
[46] |
J. Abadie, B. P. Abbott, R. Abbott,
|
[47] |
S. Mallat, A Wavelet Tour of Signal Processing, Boston: Academic Press, 2009
|
[48] |
K. B. Howell, Principles of Fourier analysis, CRC Press, 2016
|
[49] |
I. Daubechies, Ten Lectures on Wavelets, Philadelphia: Society for Industrial and Applied Mathematics, 1992
CrossRef
ADS
Google scholar
|
[50] |
S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intel. 11(7), 674 (1989)
CrossRef
ADS
Google scholar
|
[51] |
S. Rampone, V. Pierro, L. Troiano,
CrossRef
ADS
Google scholar
|
[52] |
S. Vinciguerra, M. Drago, G. A. Prodi,
CrossRef
ADS
Google scholar
|
[53] |
MATLAB and Wavelet Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United States
|
[54] |
X. R. Li, Y. Lu, G. Comte, AL. Luo, Y. H. Zhao, and Y. J. Wang, Linearly Supporting feature extraction for automated estimation of stellar atmospheric parameters, Astrophys. J. Suppl. S. 218(1), 3(2015)
CrossRef
ADS
Google scholar
|
[55] |
Y. LeCun, B. E. Boser, J. S. Denker,
|
[56] |
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86, pp 2278–2324 (1998)
CrossRef
ADS
Google scholar
|
[57] |
Y. LeCun, Y. Bengio, and G. E. Hinton, Deep learning, Nature 521(7553), 436(2015)
CrossRef
ADS
Google scholar
|
[58] |
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature 323(6088), 533(1986)
CrossRef
ADS
Google scholar
|
[59] |
I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, Cambridge: MIT Press, 2016
|
[60] |
H. Wang, Z. J. Cao, X. L. Liu, S. C. Wu, and J. Y. Zhu, Gravitational wave signal recognition of O1 data by deep learning, arXiv: 1909.13442 (2019)
|
/
〈 | 〉 |