Some optimizations on detecting gravitational wave using convolutional neural network

Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, G. Jogesh Babu

PDF(1233 KB)
PDF(1233 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 54501. DOI: 10.1007/s11467-020-0966-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Some optimizations on detecting gravitational wave using convolutional neural network

Author information +
History +

Abstract

This work investigates the problem of detecting gravitational wave (GW) events based on simulated damped sinusoid signals contaminated with white Gaussian noise. It is treated as a classification problem with one class for the interesting events. The proposed scheme consists of the following two successive steps: decomposing the data using a wavelet packet, representing the GW signal and noise using the derived decomposition coefficients; and determining the existence of any GW event using a convolutional neural network (CNN) with a logistic regression output layer. The characteristic of this work is its comprehensive investigations on CNN structure, detection window width, data resolution, wavelet packet decomposition and detection window overlap scheme. Extensive simulation experiments show excellent performances for reliable detection of signals with a range of GW model parameters and signal-to-noise ratios. While we use a simple waveform model in this study, we expect the method to be particularly valuable when the potential GW shapes are too complex to be characterized with a template bank.

Keywords

gravitational waves / algorithms / astrostatistics techniques

Cite this article

Download citation ▾
Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, G. Jogesh Babu. Some optimizations on detecting gravitational wave using convolutional neural network. Front. Phys., 2020, 15(5): 54501 https://doi.org/10.1007/s11467-020-0966-4

References

[1]
B. P. Abbott, R. Abbott, T. D. Abbott, , Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)
[2]
B. P. Abbott, R. Abbott, and T. D. Abbott, Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6(4), 041015 (2016)
[3]
B. P. Abbott, R. Abbott, T. D. Abbott, , GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017)
[4]
B. P. Abbott, R. Abbott, T. D. Abbott, , GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
[5]
B. P. Abbott, R. Abbott, T. D. Abbott, , GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119(14), 141101 (2017)
[6]
B. P. Abbott, R. Abbott, and R. X. Adhikari, , Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett. 848(2), L12 (2017)
[7]
B. P. Abbott, R. Abbott, T. D. Abbott, , Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. Lett. 848(2), L13 (2017)
[8]
B. P. Abbott, , A gravitational-wave standard siren measurement of the Hubble constant, Nature 551(7678), 85 (2017)
CrossRef ADS Google scholar
[9]
S. Adrián-Martínez, M. G. Aartsen, B. Abbott, , High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube, Phys. Rev. D 93, 122010
[10]
B. Abbott, R. Abbott, T. D. Abbott, , All-sky search for short gravitational-wave bursts in the first advanced LIGO run, Phys. Rev. D 95, 042003 (2017)
[11]
B. P. Abbott, G. Cagnoli, J. Degallaix, , Observing gravitational-wave transient GW150914 with minimal assumptions, Phys. Rev. D 93, 122004 (2016)
CrossRef ADS Google scholar
[12]
C. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole, Nature 227, 936 (1970)
CrossRef ADS Google scholar
[13]
O. Benhar, V. Ferrari, and L. Gualtieri, Gravitational wave asteroseismology revisited, Phys. Rev. D 70, 124015 (2004)
CrossRef ADS Google scholar
[14]
J. Powell, D. Trifirò, E. Cuoco, , Classification methods for noise transients in advanced gravitational-wave detectors, Class. Quantum Grav. 32, 215012 (2015)
CrossRef ADS Google scholar
[15]
M. Zevin, S. Couǵhlin, , Gravity spy: Integrating advanced LIGO detector characterization, machine learning, and citizen science, Class. Quantum Grav. 34, 064003 (2017)
CrossRef ADS Google scholar
[16]
J. Powell, A. Torres-Forné, , Classification methods for noise transients in advanced gravitational-wave detectors II: Performance tests on advanced LIGO data, Class. Quantum Grav. 34, 034002 (2017)
CrossRef ADS Google scholar
[17]
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 85(12), 122006 (2012)
CrossRef ADS Google scholar
[18]
S. Babak, R. Biswas, , Searching for gravitational waves from binary coalescence, Phys. Rev. D 87, 024033 (2013)
CrossRef ADS Google scholar
[19]
K. Cannon, R. Cariou, A. Chapman, , Toward earlywarning detection of gravitational waves from compact binary coalescence, Astrophys. J. 748(2), 136 (2012)
CrossRef ADS Google scholar
[20]
S. A. Usman, A. H. Nitz, I. W. Harry, , The PyCBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33(21), 215004 (2016)
CrossRef ADS Google scholar
[21]
H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120(14), 141103 (2018)
CrossRef ADS Google scholar
[22]
D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data, Phys. Lett. B 778, 64 (2018)
CrossRef ADS Google scholar
[23]
B. J. Lin, X. R. Li, and W. L. Yu, Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks, Front. Phys. 15(2), 24602 (2020)
CrossRef ADS Google scholar
[24]
H. M. Luo, W. B. Lin, Z. C. Chen, and Q. G. Huang, Extraction of gravitational wave signals with optimized convolutional neural network, Front. Phys. 15(1), 14601 (2020)
CrossRef ADS Google scholar
[25]
D. George and E. A. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97, 044039 (2018)
CrossRef ADS Google scholar
[26]
T. D. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schlkopf, CONVWAVE: Searching for gravitational waves with fully convolutional Neural Nets, in: Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (NIPS), 2017
[27]
T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schlkopf, Convolutional neural networks: A magic bullet for gravitational-wave detection? Phys. Rev. D 100(6), 063015 (2019)
CrossRef ADS Google scholar
[28]
S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, Multiresolution techniques for the detection of gravitational-wave bursts, Class. Quantum Grav. 21(20), S1809 (2004)
CrossRef ADS Google scholar
[29]
P. J. Sutton, G. Jones, S. Chatterji, , X-Pipeline: An analysis package for autonomous gravitational-wave burst searches, New J. Phys. 12(5), 053034 (2010)
CrossRef ADS Google scholar
[30]
S. Bahaadini, N. Rohani, S. Coughlin, M. Zevin, V. Kalogera, and A. K. Katsaggelos, Deep multi-view models for glitch classification, IEEE ICASSP, 2931–2935 (2017)
CrossRef ADS Google scholar
[31]
S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M. Zevein, J. R. Smith, V. Kalogera, and A. Katsaggelos, Machine learning for Gravity Spy: Glitch classification and dataset, Information Sciences 444, pp 172–186 (2018)
CrossRef ADS Google scholar
[32]
D. George, H. Shen, and E. A. Huerta, Classification and unsupervised clustering of LIGO data with deep transfer learning, Phys. Rev. D 97, 101501 (2018)
CrossRef ADS Google scholar
[33]
N. Mukund, S. Abraham, S. Kandhasamy, and N. S. Philip, Transient classification in LIGO data using difference boosting neural network, Phys. Rev. D 95, 104059 (2017)
CrossRef ADS Google scholar
[34]
J. C. Brown, Calculation of a constant Q-spectral transform, J. Acoust. Soc. Am. 89(1), 425 (1991)
CrossRef ADS Google scholar
[35]
S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, Coherent method for detection of gravitational wave bursts, Class. Quantum Grav. 25, 114029 (2008)
CrossRef ADS Google scholar
[36]
S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro, S. Tiwari, F. Da Silva, and G. Mitselmakher, Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors, Phys. Rev. D 93, 042004 (2016)
CrossRef ADS Google scholar
[37]
R. S. Lynch, S. Vitale, R. C. Essick, E. Katsavounidis, and F. Robinet, An information-theoretic approach to the gravitational-wave burst detection problem, Phys. Rev. D 95, 104046 (2017)
CrossRef ADS Google scholar
[38]
N. J. Cornish and T. B. Littenberg, BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches, Class. Quantum Grav. 32, 135012 (2015)
CrossRef ADS Google scholar
[39]
T. B. Littenberg and N. J. Cornish, Bayesian inference for spectral estimation of gravitational wave detector noise, Phys. Rev. D 91, 084034 (2015)
CrossRef ADS Google scholar
[40]
S. Chatterji, A. Lazzarini, L. Stein, P. Sutton, A. Searle, and M. Tinto, Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise, Phys. Rev. D 74, 082005 (2006)
CrossRef ADS Google scholar
[41]
S. Bose, S. Dhurandhar, , Towards mitigating the effect of sine-Gaussian noise transients on searches for gravitational waves from compact binary coalescences, Phys. Rev. D 94, 122004 (2016)
CrossRef ADS Google scholar
[42]
B. J. Owen and B. S. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, Phys. Rev. D 60(2), 022002 (1999)
CrossRef ADS Google scholar
[43]
pwelch: Welch’s power spectral density estimate.
[44]
G. D. Meadors, K. Kawabe, and K. Riles, Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise, Class. Quantum Grav. 31, 105014 (2014)
CrossRef ADS Google scholar
[45]
P. D. Welch, The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Transactions on Audio and Electroacoustics 15(2), 70 (1967)
CrossRef ADS Google scholar
[46]
J. Abadie, B. P. Abbott, R. Abbott, , All-sky search for gravitational-wave bursts in the second joint LIGOVirgo run, Phys. Rev. D 85, 122007 (2012)
[47]
S. Mallat, A Wavelet Tour of Signal Processing, Boston: Academic Press, 2009
[48]
K. B. Howell, Principles of Fourier analysis, CRC Press, 2016
[49]
I. Daubechies, Ten Lectures on Wavelets, Philadelphia: Society for Industrial and Applied Mathematics, 1992
CrossRef ADS Google scholar
[50]
S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intel. 11(7), 674 (1989)
CrossRef ADS Google scholar
[51]
S. Rampone, V. Pierro, L. Troiano, , Neural network aided glitch-burst discrimination and glitch classification, Inter. J. Mod. Phys. 24(11), 1350084 (2013)
CrossRef ADS Google scholar
[52]
S. Vinciguerra, M. Drago, G. A. Prodi, , Enhancing the significance of gravitational wave bursts through signal classification, Class. Quantum Grav. 34, 094003 (2017)
CrossRef ADS Google scholar
[53]
MATLAB and Wavelet Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United States
[54]
X. R. Li, Y. Lu, G. Comte, AL. Luo, Y. H. Zhao, and Y. J. Wang, Linearly Supporting feature extraction for automated estimation of stellar atmospheric parameters, Astrophys. J. Suppl. S. 218(1), 3(2015)
CrossRef ADS Google scholar
[55]
Y. LeCun, B. E. Boser, J. S. Denker, , Handwritten digit recognition with a back-propagation network, in Advances in Neural Information Processing Systems, 396 (1990)
[56]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86, pp 2278–2324 (1998)
CrossRef ADS Google scholar
[57]
Y. LeCun, Y. Bengio, and G. E. Hinton, Deep learning, Nature 521(7553), 436(2015)
CrossRef ADS Google scholar
[58]
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature 323(6088), 533(1986)
CrossRef ADS Google scholar
[59]
I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, Cambridge: MIT Press, 2016
[60]
H. Wang, Z. J. Cao, X. L. Liu, S. C. Wu, and J. Y. Zhu, Gravitational wave signal recognition of O1 data by deep learning, arXiv: 1909.13442 (2019)

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1233 KB)

Accesses

Citations

Detail

Sections
Recommended

/