Stanene: A good platform for topological insulator and topological superconductor

Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋)

PDF(6335 KB)
PDF(6335 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 53201. DOI: 10.1007/s11467-020-0965-5
TOPICAL REVIEW
TOPICAL REVIEW

Stanene: A good platform for topological insulator and topological superconductor

Author information +
History +

Abstract

Two dimensional (2D) topological insulators (TIs) and topological superconductors (TSCs) have been intensively studied for recent years due to their great potential for dissipationless electron transportation and fault-tolerant quantum computing, respectively. Here we focus on stanene, the tin analogue of graphene, to give a brief review of their development as a candidate for both 2D TI and TSC. Stanene is proposed to be a TI with a large gap of 0.3 eV, and its topological properties are sensitive to various factors, e.g., the lattice constants, chemical functionalization and layer thickness, which offer various methods for phase tunning. Experimentally, the inverted gap and edge states are observed recently, which are strong evidences for TI. In addition, stanene is also predicted to be a time reversal invariant TSC by breaking inversion symmetry, supporting helical Majorana edge modes. The layer-dependent superconductivity of stanene is recently confirmed by both transport and scanning tunneling microscopy measurements. This review gives a detailed introduction to stanene and its topological properties and some prospects are also discussed.

Keywords

topological insulator / topological superconductor / stanene

Cite this article

Download citation ▾
Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor. Front. Phys., 2020, 15(5): 53201 https://doi.org/10.1007/s11467-020-0965-5

References

[1]
C. L. Kane and E. J. Z. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
CrossRef ADS Google scholar
[2]
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef ADS Google scholar
[3]
M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007)
CrossRef ADS Google scholar
[4]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[5]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[6]
Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in thin films, Phys. Rev. Lett. 111(13), 136804 (2013)
CrossRef ADS Google scholar
[7]
Y. Xu, P. Tang, and S. C. Zhang, Large-gap quantum spin Hall states in decorated stanene grown on a substrate, Phys. Rev. B 92(8), 081112 (2015)
CrossRef ADS Google scholar
[8]
D. Wang, L. Chen, X. Wang, G. Cui, and P. Zhang, The effect of substrate and external strain on electronic structures of stanene film, Phys. Chem. Chem. Phys. 17(40), 26979 (2015)
CrossRef ADS Google scholar
[9]
Z. Ni, E. Minamitani, Y. Ando, and S. Watanabe, Germanene and stanene on two-dimensional substrates: Dirac cone and Z2 invariant, Phys. Rev. B 96(7), 075427 (2017)
CrossRef ADS Google scholar
[10]
R. Zhang, W. Ji, C. Zhang, P. Li, and P. Wang, Prediction of flatness-driven quantum spin Hall effect in functionalized germanene and stanene, Phys. Chem. Chem. Phys. 18(40), 28134 (2016)
CrossRef ADS Google scholar
[11]
B. H. Chou, Z. Q. Huang, C. H. Hsu, F. C. Chuang, Y. T. Liu, H. Lin, and A. Bansil, Hydrogenated ultra-thin tin films predicted as two-dimensional topological insulators, New J. Phys. 16(11), 115008 (2014)
CrossRef ADS Google scholar
[12]
Y. Zang, T. Jiang, Y. Gong, Z. Guan, C. Liu, M. Liao, K. Zhu, Z. Li, L. Wang, W. Li, C. Song, D. Zhang, Y. Xu, K. He, X. Ma, S. C. Zhang, and Q. K. Xue, Realizing an epitaxial decorated stanene with an insulating bandgap, Adv. Funct. Mater. 28(35), 1802723 (2018)
CrossRef ADS Google scholar
[13]
C. Z. Xu, Y. H. Chan, P. Chen, X. Wang, D. Flötotto, J. A. Hlevyack, G. Bian, S. K. Mo, M. Y. Chou, and T. C. Chiang, Gapped electronic structure of epitaxial stanene on InSb(111), Phys. Rev. B 97(3), 035122 (2018)
CrossRef ADS Google scholar
[14]
F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. C. Zhang, and J. Jia, Epitaxial growth of twodimensional stanene, Nat. Mater. 14(10), 1020 (2015)
CrossRef ADS Google scholar
[15]
C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017)
CrossRef ADS Google scholar
[16]
J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S. C. Zhang, B. Wang, and J. G. Hou, Epitaxial growth of ultraflat stanene with topological band inversion, Nat. Mater. 17(12), 1081 (2018)
CrossRef ADS Google scholar
[17]
X. Zheng, J.-F. Zhang, B. Tong, and R.-R. Du, Epitaxial growth and electronic properties of few-layer stanene on InSb(1 1 1), 2D Mater. 7, 011001 (2019)
CrossRef ADS Google scholar
[18]
C. X. Zhao, J. Qin, B. Xia, B. Yang, H. Zheng, S. Y. Wang, C. H. liu, Y. Y. Li, D. D. Guan, and J. F. Jia, Combining quantum spin hall effect and superconductivity in few-layer stanene, arXiv: 2006.09834 (2020)
[19]
C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013)
CrossRef ADS Google scholar
[20]
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
CrossRef ADS Google scholar
[21]
J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011)
CrossRef ADS Google scholar
[22]
X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions, Phys. Rev. Lett. 102(18), 187001 (2009)
CrossRef ADS Google scholar
[23]
J. Wang, Y. Xu, and S. C.Zhang, Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin-Hall insulator, Phys. Rev. B 90(5), 054503 (2014)
CrossRef ADS Google scholar
[24]
M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong, K. Zhu, X. P. Hu, D. Zhang, Y. Xu, Y. Y. Wang, K. He, X. C. Ma, S. C. Zhang, and Q. K. Xue, Superconductivity in few-layer stanene, Nat. Phys. 14(4), 344 (2018)
CrossRef ADS Google scholar
[25]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[26]
J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater. 1(5), 054004 (2017)
CrossRef ADS Google scholar
[27]
J. Gao, G. Zhang, and Y. W. Zhang, Exploring Ag(111) substrate for epitaxially growing monolayer stanene: A first-principles study, Sci. Rep. 6(1), 29107 (2016)
CrossRef ADS Google scholar
[28]
J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, and G. Le Lay, Large area planar stanene epitaxially grown on Ag(111), 2D Mater. 5, 025002 (2018)
CrossRef ADS Google scholar
[29]
Y. H. Song, Z. W. Wang, Z. Y. Jia, and X. Y. Zhu, Highbuckled R3 stanene with topologically nontrivial energy gap, arXiv: 1707.08657 (2017)
[30]
B. A. Bernevig and S. C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96(10), 106802 (2006)
CrossRef ADS Google scholar
[31]
Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spinorbit gap of graphene: First-principles calculations, Phys. Rev. B 75(4), 041401 (2007)
CrossRef ADS Google scholar
[32]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
CrossRef ADS Google scholar
[33]
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
CrossRef ADS Google scholar
[34]
X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014)
CrossRef ADS Google scholar
[35]
S. C. Zhang and X. L. Qi, A fine point on topological insulators, Phys. Today 63(8), 12 (2010)
CrossRef ADS Google scholar
[36]
S. Liu, M. X. Wang, C. Chen, X. Xu, J. Jiang, L. X. Yang, H. F. Yang, Y. Y. Lv, J. Zhou, Y. B. Chen, S. H. Yao, M. H. Lu, Y. F. Chen, C. Felser, B. H. Yan, Z. K. Liu, and Y. L. Chen, Experimental observation of conductive edge states in weak topological insulator candidate HfTe5, APL Mater. 6(12), 121111 (2018)
CrossRef ADS Google scholar
[37]
F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science 357(6348), 287 (2017)
CrossRef ADS Google scholar
[38]
S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H. Z. Tsai, C. Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore, C. C. Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie, T. P. Devereaux, M. F. Crommie, S. K. Mo, and Z. X. Shen, Quantum spin Hall state in monolayer 1T′- WTe2, Nat. Phys. 13(7), 683 (2017)
CrossRef ADS Google scholar
[39]
P. Chen, W. W. Pai, Y. H. Chan, W. L. Sun, C. Z. Xu, D. S. Lin, M. Y. Chou, A. V. Fedorov, and T. C. Chiang, Large quantum-spin-Hall gap in single-layer 1T′-WSe2, Nat. Commun. 9(1), 2003 (2018)
CrossRef ADS Google scholar
[40]
F. Zheng, C. Cai, S. Ge, X. Zhang, X. Liu, H. Lu, Y. Zhang, J. Qiu, T. Taniguchi, K. Watanabe, S. Jia, J. Qi, J. H. Chen, D. Sun, and J. Feng, On the quantum spin Hall gap of monolayer 1T′-WTe2, Adv. Mater. 28(24), 4845 (2016)
CrossRef ADS Google scholar
[41]
L. Peng, Y. Yuan, G. Li, X. Yang, J. J. Xian, C. J. Yi, Y. G. Shi, and Y. S. Fu, Observation of topological states residing at step edges of WTe2, Nat. Commun. 8(1), 659 (2017)
CrossRef ADS Google scholar
[42]
Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, and D. H. Cobden, Edge conduction in monolayer WTe2, Nat. Phys. 13(7), 677 (2017)
CrossRef ADS Google scholar
[43]
S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal, Science 359(6371), 76 (2018)
CrossRef ADS Google scholar
[44]
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
CrossRef ADS Google scholar
[45]
S. Murakami, N. Nagaosa, and S. C. Zhang, Spin-Hall insulator, Phys. Rev. Lett. 93(15), 156804 (2004)
CrossRef ADS Google scholar
[46]
M. Cardona, S. C. Zhang, and X. L. Qi, A fine point on topological insulators, Phys. Today 63(8), 10 (2010)
CrossRef ADS Google scholar
[47]
S. Groves and W. Paul, Band structure of gray tin, Phys. Rev. Lett. 11(5), 194 (1963)
CrossRef ADS Google scholar
[48]
S. Groves, R. Brown, and C. Pidgeon, Interband magnetoreflection and band structure of HgTe, Phys. Rev. 161(3), 779 (1967)
CrossRef ADS Google scholar
[49]
P. Tang, P. Chen, W. Cao, H. Huang, S. Cahangirov, L. Xian, Y. Xu, S. C. Zhang, W. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)
CrossRef ADS Google scholar
[50]
F. F. Yun, D. L. Cortie, and X. Wang, Tuning the electronic structure in stanene/graphene bilayers using strain and gas adsorption, Phys. Chem. Chem. Phys. 19(37), 25574 (2017)
CrossRef ADS Google scholar
[51]
M. Maniraj, B. Stadtmüller, D. Jungkenn, M. Düvel, S. Emmerich, W. Shi, J. Stöckl, L. Lyu, J. Kollamana, Z. Wei, A. Jurenkow, S. Jakobs, B. Yan, S. Steil, M. Cinchetti, S. Mathias, and M. Aeschlimann, A case study for the formation of stanene on a metal surface, Commun. Phys. 2(1), 12 (2019)
CrossRef ADS Google scholar
[52]
Y. Liu, N. Gao, J. Zhuang, C. Liu, J. Wang, W. Hao, S. X. Dou, J. Zhao, and Y. Du, Realization of strained stanene by interface engineering, J. Phys. Chem. Lett. 10(7), 1558 (2019)
CrossRef ADS Google scholar
[53]
Y. Ding and Y. Wang, Quasi-free-standing features of stanene/stanane on InSe and GaTe nanosheets: A computational study, J. Phys. Chem. C 119(49), 27848 (2015)
CrossRef ADS Google scholar
[54]
R. W. Zhang, C. W. Zhang, W. X. Ji, S. S. Li, S. J. Hu, S. S. Yan, P. Li, P. J. Wang, and F. Li, Ethynylfunctionalized stanene film: A promising candidate as large-gap quantum spin Hall insulator, New J. Phys. 17(8), 083036 (2015)
CrossRef ADS Google scholar
[55]
R. Zhang, C. Zhang, W. Ji, S. Li, S. Yan, S. Hu, P. Li, P. Wang, and F. Li, Room temperature quantum spin Hall insulator in ethynyl-derivative functionalized stanene films, Sci. Rep. 6(1), 18879 (2016)
CrossRef ADS Google scholar
[56]
Y. Wang, W. Ji, C. Zhang, P. Li, F. Li, P. Wang, S. Li, and S. Yan, Large-gap quantum spin Hall state in functionalized dumbbell stanene, Appl. Phys. Lett. 108(7), 073104 (2016)
CrossRef ADS Google scholar
[57]
M. Houssa, B. van den Broek, K. Iordanidou, A. K. A. Lu, G. Pourtois, J. P. Locquet, V. Afanas’ev, and A. Stesmans, Topological to trivial insulating phase transition in stanene, Nano Res. 9(3), 774 (2016)
CrossRef ADS Google scholar
[58]
Z. Liu, C. X. Liu, Y. S. Wu, W. H. Duan, F. Liu, and J. Wu, Stable nontrivial Z2 topology in ultrathin Bi(111) films: A first-principles study, Phys. Rev. Lett. 107(13), 136805 (2011)
CrossRef ADS Google scholar
[59]
T. Zhang, J. Ha, N. Levy, Y. Kuk, and J. Stroscio, Electric-field tuning of the surface band structure of topological insulator Sb2Te3 thin films, Phys. Rev. Lett. 111(5), 056803 (2013)
CrossRef ADS Google scholar
[60]
J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and L. Fu, Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator, Nat. Mater. 13(2), 178 (2014)
CrossRef ADS Google scholar
[61]
F. Qu, A. J. A. Beukman, S. Nadj-Perge, M. Wimmer, B. M. Nguyen, W. Yi, J. Thorp, M. Sokolich, A. A. Kiselev, M. J. Manfra, C. M. Marcus, and L. P. Kouwenhoven, Electric and magnetic tuning between the trivial and topological phases in InAs/GaSb double quantum wells, Phys. Rev. Lett. 115(3), 036803 (2015)
CrossRef ADS Google scholar
[62]
E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J. A. Folk, and D. H. Cobden, Gate-induced superconductivity in a monolayer topological insulator, Science 362(6417), 922 (2018)
CrossRef ADS Google scholar
[63]
V. Fatemi, S. Wu, Y. Cao, L. Bretheau, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Electrically tunable low-density superconductivity in a monolayer topological insulator, Science 362(6417), 926 (2018)
CrossRef ADS Google scholar
[64]
S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1(1), 15001 (2015)
CrossRef ADS Google scholar
[65]
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. D. Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
CrossRef ADS Google scholar
[66]
Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
CrossRef ADS Google scholar
[67]
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices, Science 336(6084), 1003 (2012)
CrossRef ADS Google scholar
[68]
S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
CrossRef ADS Google scholar
[69]
S. Jeon, Y. Xie, J. Li, Z. Wang, B. A. Bernevig, and A. Yazdani, Distinguishing a Majorana zero mode using spin-resolved measurements, Science 358(6364), 772 (2017)
CrossRef ADS Google scholar
[70]
X. L. Qi, T. L. Hughes, and S. C. Zhang, Chiral topological superconductor from the quantum Hall state, Phys. Rev. B 82(18), 184516 (2010)
CrossRef ADS Google scholar
[71]
Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Chiral Majorana fermion modes in a quantum anomalous Hall insulatorsuperconductor structure, Science 357(6348), 294 (2017)
CrossRef ADS Google scholar
[72]
L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
CrossRef ADS Google scholar
[73]
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Robustness of Majorana fermions in proximity-induced superconductors, Phys. Rev. B 82(9), 094522 (2010)
CrossRef ADS Google scholar
[74]
J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator–superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015)
CrossRef ADS Google scholar
[75]
K. Bartkowski, A. Gladun, C. Gladun, J. Rafalowicz, and H. Vinzelberg, Thermal conductivity anisotropy of tin monocrystals in the temperature range 0.1 to 7 K, physica status solidi (a) 62, 207 (1980)
CrossRef ADS Google scholar
[76]
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
CrossRef ADS Google scholar
[77]
K. He, Y. Wang, and Q. K. Xue, Topological materials: Quantum anomalous Hall system, Annu. Rev. Condens. Matter Phys. 9(1), 329 (2018)
CrossRef ADS Google scholar
[78]
H. Jiang, Z. Qiao, H. Liu, and Q. Niu, Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film, Phys. Rev. B 85(4), 045445 (2012)
CrossRef ADS Google scholar
[79]
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
CrossRef ADS Google scholar
[80]
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
CrossRef ADS Google scholar
[81]
H. Zhang, J. Zhang, B. Zhao, T. Zhou, and Z. Yang, Quantum anomalous Hall effect in stable dumbbell stanene, Appl. Phys. Lett. 108(8), 082104 (2016)
CrossRef ADS Google scholar
[82]
S. C. Wu, G. Shan, and B. Yan, Prediction of near-roomtemperature quantum anomalous Hall effect on honeycomb materials, Phys. Rev. Lett. 113(25), 256401 (2014)
CrossRef ADS Google scholar
[83]
C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017)
CrossRef ADS Google scholar
[84]
Z. Y. Wang, J. O. Rodriguez, M. Graham, and G. D. Gu, Signature of dispersing 1D Majorana channels in an iron-based superconductor, arXiv: 1903.00515 (2019)

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6335 KB)

Accesses

Citations

Detail

Sections
Recommended

/