Investigation into the improved axial compressibility of a spinning non-ideal gas

Yi-Wen Zhang, Shi-Long Su, Shu-Bin Xie, Wei-Min Zhou, Hao Liu

PDF(955 KB)
PDF(955 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (4) : 42501. DOI: 10.1007/s11467-020-0962-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Investigation into the improved axial compressibility of a spinning non-ideal gas

Author information +
History +

Abstract

Using theoretical analysis and numerical calculation method, the axial adiabatic compression of a spinning non-ideal gas in a cylinder with a smooth surface is investigated. We show that the axial pressure of a spinning gas will gradually become lower than that of a stationary gas during continuous compression, even though the initial axial pressure of the spinning gas is larger than that of the stationary gas at the same initial temperature and average density. This phenomenon indicates that the axial compressibility of gas is improved in a rotating system. In addition, the effect of different forms of virial coefficient B(T) on pressure and temperature changes in spinning and stationary gases are investigated. Research on the axial compressibility of spinning non-ideal gas can provide useful references for fields that require high compression of gases, such as laser fusion, laboratory astrophysics, and Z-pinch experiments.

Keywords

compressibility / spinning system / non-ideal gas / virial EOS

Cite this article

Download citation ▾
Yi-Wen Zhang, Shi-Long Su, Shu-Bin Xie, Wei-Min Zhou, Hao Liu. Investigation into the improved axial compressibility of a spinning non-ideal gas. Front. Phys., 2020, 15(4): 42501 https://doi.org/10.1007/s11467-020-0962-8

References

[1]
Z. Fan, Y. Liu, B. Liu, C. Yu, K. Lan, and J. Liu, Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments, Matter and Radiation at Extremes 2(1), 3 (2017) (I)
[2]
E. M. Campbell, V. N. Goncharov, T. C. Sangster, S. P. Regan, P. B. Radha, R. Betti, J. F. Myatt, D. H. Froula, M. J. Rosenberg, I. V. Igumenshchev, W. Seka, A. A. Solodov, A. V. Maximov, J. A. Marozas, T. J. B. Collins, D. Turnbull, F. J. Marshall, A. Shvydky, J. P. Knauer, R. L. McCrory, A. B. Sefkow, M. Hohenberger, P. A. Michel, T. Chapman, L. Masse, C. Goyon, S. Ross, J. W. Bates, M. Karasik, J. Oh, J. Weaver, A. J. Schmitt, K. Obenschain, S. P. Obenschain, S. Reyes, and B. Van Wonterghem, Laser-direct-drive program: Promise, challenge, and path forward, Matter and Radiation at Extremes 2(2), 37 (2017)
[3]
B. Y. Sharkov, D. H. Hoffmann, A. A. Golubev, and Y. Zhao, High energy density physics with intense ion beams, Matter and Radiation at Extremes 1(1), 28 (2016)
[4]
D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher, S. Frydrych, E. Galtier, E. J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, M. Roth, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, T. Döppner, and R. W. Falcone, Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions, Nature Astronomy 1(9), 606 (2017)
[5]
S. V. Lebedev, I. H. Mitchell, R. Aliaga-Rossel, S. N. Bland, J. P. Chittenden, A. E. Dangor, and M. G. Haines, Azimuthal structure and global instability in the implosion phase of wire array Z-pinch experiments, Phys. Rev. Lett. 81(19), 4152 (1998)
[6]
A. J. Harvey-Thompson, S. V. Lebedev, G. Burdiak, E. M. Waisman, G. N. Hall, F. Suzuki-Vidal, S. N. Bland, J. P. Chittenden, P. De Grouchy, E. Khoory, L. Pickworth, J. Skidmore, and G. Swadling, Suppression of the ablation phase in wire array Z pinches using a tailored current prepulse, Phys. Rev. Lett. 106(20), 205002 (2011)
[7]
R. P. Drake, High-energy-density physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics, Springer Science & Business Media, 2006
[8]
B. L. Holian, Atomistic computer simulations of shock waves, Shock Waves 5(3), 149 (1995)
[9]
H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
[10]
H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)
[11]
V. I. Geyko and N. J. Fisch, Reduced compressibility and an inverse problem for a spinning gas, Phys. Rev. Lett. 110(15), 150604 (2013)
[12]
J. Wang, Y. Shi, L. P. Wang, Z. Xiao, X. He, and S. Chen, Scaling and statistics in three-dimensional compressible turbulence, Phys. Rev. Lett. 108(21), 214505 (2012)
[13]
A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. J. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
[14]
A. G. Xu, G. C. Zhang, Y. D. Zhang, P. Wang, and Y. J. Ying, Discrete Boltzmann model for implosion- and explosionrelated compressible flow with spherical symmetry, Front. Phys. 13(5), 135102 (2018)
[15]
Y. Gan, A. Xu, G. Zhang, Y. Zhang, and S. Succi, Discrete Boltzmann trans-scale modeling of high-speed compressible flows, Phys. Rev. E 97(5), 053312 (2018)
[16]
Y. B. Gan, A. G. Xu, G. C. Zhang, C. D. Lin, H. L. Lai, and Z. P. Liu, Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)
[17]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
[18]
L. D. Landau and E. M. Lifshitz, Course of theoretical physics, Vol. 5, Statistical Physics, Elsevier, 2013
[19]
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W-function, Adv. Comput. Math. 5(1), 329 (1996)

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(955 KB)

Accesses

Citations

Detail

Sections
Recommended

/