ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production

Xin Li, Peng Wang, Ya-Qiang Wu, Zhen-Hua Liu, Qian-Qian Zhang, Ting-Ting Zhang, Ze-Yan Wang, Yuan-Yuan Liu, Zhao-Ke Zheng, Bai-Biao Huang

PDF(4208 KB)
PDF(4208 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 23604. DOI: 10.1007/s11467-020-0958-4
RESEARCH ARTICLE
RESEARCH ARTICLE

ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production

Author information +
History +

Abstract

In this work, we prepared ZnGeP2 (ZGP) photocatalyst using single flat temperature zone (SFT) method in a vacuum quartz ampoule. The XRD, SEM, EDS, DRS and XPS were used to characterize the crystal structure, morphology, elemental content, optical absorption and band gap structure of ZGP. The results of photocatalytic hydrogen evolution and apparent quantum efficiency show that ZGP is a promising photocatalyst for hydrogen production both under visible and near-infrared light irradiation. In addition, it is also found that adding the common stabilizer H3PO2 and ultrasonic treatment can efficiently improve the photocatalytic activity and stability of ZGP.

Keywords

ZnGeP2 / near-infrared-activated photocatalyst / H2 production

Cite this article

Download citation ▾
Xin Li, Peng Wang, Ya-Qiang Wu, Zhen-Hua Liu, Qian-Qian Zhang, Ting-Ting Zhang, Ze-Yan Wang, Yuan-Yuan Liu, Zhao-Ke Zheng, Bai-Biao Huang. ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production. Front. Phys., 2020, 15(2): 23604 https://doi.org/10.1007/s11467-020-0958-4

References

[1]
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
CrossRef ADS Google scholar
[2]
Q. T. Liu, D. Y. Liu, J. M. Li, and Y. B. Kuang, The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting, Front. Phys. 14(5), 53403 (2019)
CrossRef ADS Google scholar
[3]
S. Q. Luo, J. F. Wang, B. Yang, and Y. B. Yuan, Recent advances in controlling the crystallization of twodimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)
CrossRef ADS Google scholar
[4]
Y. H. Lui, B. W. Zhang, and S. Hu, Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction, Front. Phys. 14(5), 53402 (2019)
CrossRef ADS Google scholar
[5]
J. Mao, Y. Wang, Z. L. Zheng, and D. H. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef ADS Google scholar
[6]
J. Q. Pan, Z. J. Dong, B. B. Wang, Z. Y. Jiang, C. Zhao, J. J. Wang, C. S. Song, Y. Y. Zheng, and C. R. Li, The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction, Appl. Catal. B 242, 92 (2019)
CrossRef ADS Google scholar
[7]
X. Li, X. S. Lv, Q. Q. Zhang, B. B. Huang, P. Wang, X. Y. Qin, X. Y. Zhang, and Y. Dai, Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production, J. Colloid Interface Sci. 525, 136 (2018)
CrossRef ADS Google scholar
[8]
H. Q. Zhuang, Z. P. Cai, W. T. Xu, X. Y. Zhang, M. L. Huang, and X. X. Wang, Constructing 1D CdS nanorod composites with high photocatalytic hydrogen production by introducing the Ni-based cocatalysts, Catal. Commun. 120, 51 (2019)
CrossRef ADS Google scholar
[9]
L. L. Zhang, H. W. Zhang, B. Wang, X. Y. Huang, Y. Ye, R. Lei, W. H. Feng, and P. Liu, A facile method for regulating the charge transfer route of WO3/CdS in highefficiency hydrogen production, Appl. Catal. B 244, 529 (2019)
CrossRef ADS Google scholar
[10]
P. Zhou, Y. Y. Liu, Z. Y. Wang, P. Wang, X. Y. Qin, X. Y. Zhang, B. B. Huang, and Y. Dai, Efficient photocatalytic hydrogen generation from water over CdS nanoparticles confined within an alumina matrix, ChemPhotoChem 1(11), 518 (2017)
CrossRef ADS Google scholar
[11]
X. Z. Liang, P. Wang, M. M. Li, Q. Q. Zhang, Z. Y. Wang, Y. Dai, X. Y. Zhang, Y. Y. Liu, M. H. Whangbo, and B. B. Huang, Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation, Appl. Catal. B 220, 356 (2018)
CrossRef ADS Google scholar
[12]
K. C. Christoforidis, Z. Syrgiannis, V. La Parola, T. Montini, C. Petit, E. Stathatos, R. Godin, J. R. Durrant, M. Prato, and P. Fornasiero, Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production, Nano Energy 50, 468 (2018)
CrossRef ADS Google scholar
[13]
J. Y. Chu, X. J. Han, Z. Yu, Y. C. Du, B. Song, and P. Xu, Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures, ACS Appl. Mater. Interfaces 10(24), 20404 (2018)
CrossRef ADS Google scholar
[14]
Y. Q. Wu, P. Wang, X. L. Zhu, Q. Q. Zhang, Z. Y. Wang, Y. Y. Liu, G. Z. Zou, Y. Dai, M. H. Whangbo, and B. B. Huang, Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visiblelight photocatalyst for hydrogen evolution in aqueous HI solution, Adv. Mater. 30(7), 1704342 (2018)
CrossRef ADS Google scholar
[15]
Z. H. Guan, Y. Q. Wu, P. Wang, Q. Q. Zhang, Z. Y. Wang, Z. K. Zheng, Y. Y. Liu, Y. Dai, M. H. Whangbo, and B. B. Huang, Perovskite photocatalyst CsPbBr3–xIx with a bandgap funnel structure for H2 evolution under visible light, Appl. Catal. B 245, 522 (2019)
CrossRef ADS Google scholar
[16]
T. Jing, Y. Dai, W. Wei, X. D. Ma, and B. B. Huang, Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M=W, Mo), Phys. Chem. Chem. Phys. 16(34), 18596 (2014)
CrossRef ADS Google scholar
[17]
J. Li, X. Y. Wu, W. F. Pan, G. K. Zhang, and H. Chen, Vacancy-rich monolayer BiO2–x as a highly efficient UV, visible, and near-infrared responsive photocatalyst, Angew. Chem. Int. Ed. 57(2), 491 (2018)
CrossRef ADS Google scholar
[18]
J. Tian, Y. H. Sang, G. W. Yu, H. D. Jiang, X. N. Mu, and H. Liu, A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Adv. Mater. 25(36), 5075 (2013)
CrossRef ADS Google scholar
[19]
Q. H. Liang, Z. Li, Z. H. Huang, F. Kang, and Q. H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production, Adv. Funct. Mater. 25(44), 6885 (2015)
CrossRef ADS Google scholar
[20]
X. Y. Kong, Y. Y. Choo, S. P. Chai, A. K. Soh, and A. R. Mohamed, Oxygen vacancy induced Bi2WO6 for the realization of photocatalytic CO2 reduction over the full solar spectrum: From the UV to the NIR region, Chem. Commun. 52(99), 14242 (2016)
CrossRef ADS Google scholar
[21]
N. Manfredi, M. Monai, T. Montini, F. Peri, F. De Angelis, P. Fornasiero, and A. Abbotto, Dye-sensitized photocatalytic hydrogen generation: Efficiency enhancement by organic photosensitizer–coadsorbent intermolecular interaction, ACS Energy Lett. 3(1), 85 (2018)
CrossRef ADS Google scholar
[22]
Q. Y. Tian, W. J. Yao, W. Wu, J. Liu, Z. H. Wu, L. Liu, Z. G. Dai, and C. Z. Jiang, Efficient UV–Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag, ACS Sustain. Chem. & Eng. 5(11), 10889 (2017)
CrossRef ADS Google scholar
[23]
A. Kumar, K. L. Reddy, S. Kumar, A. Kumar, V. Sharma, and V. Krishnan, Rational design and development of lanthanide-doped NaYF4 @CdS–Au–RGO as quaternary plasmonic photocatalysts for harnessing visible– near-infrared broadband spectrum, ACS Appl. Mater. Interfaces 10(18), 15565 (2018)
CrossRef ADS Google scholar
[24]
W. N. Wang, C. X. Huang, C. Y. Zhang, M. L. Zhao, J. Zhang, H. J. Chen, Z. B. Zha, T. T. Zhao, and H. S. Qian, Controlled synthesis of upconverting nanoparticles/ ZnxCd1–xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light, Appl. Catal. B 224, 854 (2018)
CrossRef ADS Google scholar
[25]
K. L. Reddy, S. Kumar, A. Kumar, and V. Krishnan, Wide spectrum photocatalytic activity in lanthanidedoped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles,J. Hazard. Mater. 367, 694 (2019)
CrossRef ADS Google scholar
[26]
Q. Y. Tian, W. J. Yao, W. Wu, and C. Z. Jiang, NIR light-activated upconversion semiconductor photocatalysts, Nanoscale Horiz. 4(1), 10 (2019)
CrossRef ADS Google scholar
[27]
M. S. Zhu, Y. Osakada, S. Kim, M. Fujitsuka, and T. Majima, Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution, Appl. Catal. B 217, 285 (2017)
CrossRef ADS Google scholar
[28]
Z. J. Zhang and W. Z. Wang, Infrared-light-induced photocatalysis on BiErWO6, Dalton Trans. 42(34), 12072 (2013)
CrossRef ADS Google scholar
[29]
G. C. Xi, S. X. Ouyang, P. Li, J. H. Ye, Q. Ma, N. Su, H. Bai, and C. Wang, Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide, Angew. Chem. Int. Ed. 51(10), 2395 (2012)
CrossRef ADS Google scholar
[30]
L. Wei, X. S. Lv, Y. G. Yang, J. H. Xu, H. J. Yu, H. D. Zhang, X. P. Wang, B. Liu, C. Zhang, and J. X. Zhou, Theoretical investigation on the microscopic mechanism of lattice thermal conductivity of ZnXP2 (X=Si, Ge, and Sn), Inorg. Chem. 58(7), 4320 (2019)
CrossRef ADS Google scholar
[31]
K. S. Rao, D. Ganesh, and A. K. Chaudhary, Generation of terahertz from ZnGeP2 crystal and its application to record the time-resolved photoacoustic spectra of nitromethane, Opt. Laser Technol. 103, 126 (2018)
CrossRef ADS Google scholar
[32]
A. D. Martinez, A. N. Fioretti, E. S. Toberer, and A. C. Tamboli, Synthesis, structure, and optoelectronic properties of II–IV–V2 materials, J. Mater. Chem. A 5(23), 11418 (2017)
CrossRef ADS Google scholar
[33]
M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source, Opt. Lett. 31(12), 1878 (2006)
CrossRef ADS Google scholar
[34]
M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system, Opt. Lett. 39(5), 1212 (2014)
CrossRef ADS Google scholar
[35]
M. W. Haakestad, H. Fonnum, and E. Lippert, Midinfrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2, Opt. Express 22(7), 8556 (2014)
CrossRef ADS Google scholar
[36]
Z. X. Qin, F. Xue, Y. B. Chen, S. H. Shen, and L. J. Guo, Spatial charge separation of one-dimensional Ni2PCd0.9Zn0.1S/g-C3N4 heterostructure for high-quantumyield photocatalytic hydrogen production, Appl. Catal. B 217, 551 (2017)
CrossRef ADS Google scholar
[37]
J. Zeng, H. Wang, Y. C. Zhang, M. K. Zhu, and H. Yan, Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes, J. Phys. Chem. C 111(32), 11879 (2007)
CrossRef ADS Google scholar
[38]
S. R. Zhang, D. P. Zeng, H. J. Hou, and Y. Yu, Firstprinciples prediction on elastic anisotropic, optical, lattice dynamical properties of ZnGeP2, Indian J. Phys. (2019), doi:10.1007/s12648-019-01575-8
CrossRef ADS Google scholar
[39]
F. Herman and S. Skillman, Atomic Structure Calculations, Prentice Hall, Englewood Cliffs, New Jersey,1966
[40]
R. R. Reddy, K. R. Gopal, K. Narasimhulu, L. S. S. Reddy, K. R. Kumar, G. Balakrishnaiah, and M. R. Kumar, Interrelationship between structural, optical, electronic and elastic properties of materials, J. Alloys Compd. 473(1-2), 28 (2009)
CrossRef ADS Google scholar
[41]
S. K. Tripathy and V. Kumar, Electronic, elastic and optical properties of ZnGeP2 semiconductor under hydrostatic pressures, Mater. Sci. Eng. B 182, 52 (2014)
CrossRef ADS Google scholar
[42]
S. N. Rashkeev, S. Limpijumnong, and W. R. L. Lambrecht, Second-harmonic generation and birefringence of some ternary pnictide semiconductors, Phys. Rev. B 59(4), 2737 (1999)
CrossRef ADS Google scholar
[43]
F. Chiker, B. Abbar, S. Bresson, B. Khelifa, C. Mathieu, and A. Tadjer, The reflectivity spectra of ZnXP2 (X=Si, Ge, and Sn) compounds, J. Solid State Chem. 177(11), 3859 (2004)
CrossRef ADS Google scholar
[44]
J. E. Jaffe and A. Zunger, Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, Zn-SnP2, ZnSiAs2, and MgSiP2, Phys. Rev. B 30(2), 741 (1984)
CrossRef ADS Google scholar
[45]
G. Kalpana, B. Palanivel, R. M. Thomas, and M. Rajagopalan, Electronic and structural properties of MgS and MgSe, Physica B 222(1-3), 223 (1996)
CrossRef ADS Google scholar
[46]
R. W. Godby, M. Schlüter, and L. J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Phys. Rev. B 37(17), 10159 (1988)
CrossRef ADS Google scholar
[47]
X. Zhang, L. Z. Zhang, T. F. Xie, and D. J. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C 113(17), 7371 (2009)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4208 KB)

Accesses

Citations

Detail

Sections
Recommended

/