Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity

Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu

PDF(5356 KB)
PDF(5356 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (4) : 43301. DOI: 10.1007/s11467-020-0957-5
REVIEW ARTICLE
REVIEW ARTICLE

Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity

Author information +
History +

Abstract

We review application of the SU(4) model of strongly-correlated electrons to cuprate and iron-based superconductors. A minimal self-consistent generalization of BCS theory to incorporate antiferromagnetism on an equal footing with pairing and strong Coulomb repulsion is found to account systematically for the major features of high-temperature superconductivity, with microscopic details of the parent compounds entering only parametrically. This provides a systematic procedure to separate essential from peripheral, suggesting that many features exhibited by the high-Tc data set are of interest in their own right but are not central to the superconducting mechanism. More generally, we propose that the surprisingly broad range of conventional and unconventional superconducting and superfluid behavior observed across many fields of physics results from the systematic appearance of similar algebraic structures for the emergent effective Hamiltonians, even though the microscopic Hamiltonians of the corresponding parent states may differ radically from each other.

Keywords

strongly-correlated electrons / SU(4) model / fermian dynamical symmetry / high-temperature superconductivity

Cite this article

Download citation ▾
Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity. Front. Phys., 2020, 15(4): 43301 https://doi.org/10.1007/s11467-020-0957-5

References

[1]
J. G. Bednorz and K. A. Muller, Possible high Tcsuperconductivity in the Ba–La–Cu–O system, Z. Phys. B 64(2), 189 (1986)
CrossRef ADS Google scholar
[2]
See: D. A. Bonn, Are high-temperature superconductors exotic? Nat. Phys. 2, 159 (2006); M. R. Norman and C. Pépin, The electronic nature of high temperature cuprate superconductors, Rep. Prog. Phys. 66(10), 1547 (2003) (and Refs. therein)
CrossRef ADS Google scholar
[3]
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor LaO1–xFxFeAs (x= 0.05–0.12) with Tc= 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
CrossRef ADS Google scholar
[4]
Y. Sun, M. W. Guidry, and C. L. Wu, A new family of high Tccompounds—Stepping stones toward understanding unconventional superconductivity, Chin. Sci. Bull. 53, 1617 (2009)
CrossRef ADS Google scholar
[5]
J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Superconductivity in the iron selenide KxFe2Se2, Phys. Rev. B 82(18), 180520 (2010)
CrossRef ADS Google scholar
[6]
D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys. 59(6), 803 (2010)
CrossRef ADS Google scholar
[7]
J. Paglione and R. L. Greene, High-temperature superconductivity in iron-based materials, Nat. Phys. 6(9), 645 (2010)
CrossRef ADS Google scholar
[8]
D. Mou, L. Zhao, and X. Zhou, Structural, magnetic and electronic properties of the iron-chalcogenide AxFe2–ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors, Front. Phys. 6(4), 410 (2011)
CrossRef ADS Google scholar
[9]
H. Oh, J. Moon, D. Shin, C. Moon, and H. J. Choi, Brief review on iron-based superconductors: Are there clues for unconventional superconductivity? Progress in Superconductivity 13, 65 (2011)
[10]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)
CrossRef ADS Google scholar
[11]
L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104(4), 1189 (1956)
CrossRef ADS Google scholar
[12]
For example, see M. R. Norman, The challenge of unconventional superconductivity, Science 332(6026), 196 (2011) (and references cited there)
CrossRef ADS Google scholar
[13]
D. Jérome, Organic superconductors: When correlations and magnetism walk in, arXiv: 1201.5796 (2012)
[14]
See, for example, P. Ring, and P. Schuck, The Nuclear Many-Body Problem, Springer–Verlag, 1980
[15]
D. Page, M. Prakash, J. M. Lattimer, and A. W. Steiner, Superfluid Neutrons in the core of the neutron star in cassiopeia A, arXiv: 1110.5116 (2011)
CrossRef ADS Google scholar
[16]
T. Noda, M. Hashimoto, N. Yasutake, T. Maruyama, T. Tatsumi, and M. Fujimoto, Cooling of compact stars with color superconducting phase in quark hadron mixed phase, Astrophys. J. 765(1), 1 (2012)
CrossRef ADS Google scholar
[17]
M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80(4), 1455 (2008)
CrossRef ADS Google scholar
[18]
C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model, Adv. Nucl. Phys. 21, 227 (1994)
CrossRef ADS Google scholar
[19]
F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge, 1987
CrossRef ADS Google scholar
[20]
R. Bijker, F. Iachello, and A. Leviatan, Algebraic models of hadron structure (I): Nonstrange baryons, Ann. Phys. 236(1), 69 (1994)
CrossRef ADS Google scholar
[21]
F. Iachello and R. D. Levine, Algebraic Theory of Molecules, Oxford University Press, Oxford, 1995
[22]
F. Iachello and P. Truini, Algebraic model of anharmonic polymer chains, Ann. Phys. 276(1), 120 (1999)
CrossRef ADS Google scholar
[23]
P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)
CrossRef ADS Google scholar
[24]
R. J. Glauber, Photon correlations, Phys. Rev. Lett. 10(3), 277 (1963)
CrossRef ADS Google scholar
[25]
For a review, see, Ref. [6] and P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74, 124508 (2011)
CrossRef ADS Google scholar
[26]
T. Timusk and B. Statt, The pseudogap in hightemperature superconductors: An experimental survey, Rep. Prog. Phys. 62(1), 61 (1999)
CrossRef ADS Google scholar
[27]
M. Norman, D. Pines, and C. Kollin, The pseudogap: Friend or foe of high Tc? Adv. Phys. 54(8), 715 (2005)
CrossRef ADS Google scholar
[28]
G. Sheet, M. Mehta, D. A. Dikin, S. Lee, C. W. Bark, J. Jiang, J. D. Weiss, E. E. Hellstrom, M. S. Rzchowski, C. B. Eom, and V. Chandrasekhar, Phaseincoherent superconducting pairs in the normal state of Ba(Fe1–xCox)2As2, Phys. Rev. Lett. 105(16), 167003 (2010)
CrossRef ADS Google scholar
[29]
T. Mertelj, V. V. Kabanov, C. Gadermaier, N. D. Zhigadlo, S. Katrych, J. Karpinski, and D. Mihailovic, Distinct pseudogap and quasiparticle relaxation dynamics in the superconducting state of nearly optimally doped Sm- FeAsO0.8F0.2 single crystals, Phys. Rev. Lett. 102(11), 117002 (2009)
CrossRef ADS Google scholar
[30]
K. Ahilan, F. L. Ning, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, 19F NMR investigation of the iron pnictide superconductor LaFeAsO0.89F0.11, Phys. Rev. B 78, 100501(R) (2008)
CrossRef ADS Google scholar
[31]
T. Sato, K. Nakayama, Y. Sekiba, T. Arakane, K. Terashima, S. Souma, T. Takahashi, Y. Kamihara, M. Hirano, and H. Hosono, Doping dependence of pseudogap in LaFeAsO1–xFx, J. Phys. Soc. Jpn. C 77(Suppl.), 65 (2008)
CrossRef ADS Google scholar
[32]
F. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, 59Co and 75As NMR investigation of electron-doped high Tc superconductor BaFe1.8Co0.2As2 (Tc= 22 K), J. Phys. Soc. Jpn. 77(10), 103705 (2008)
CrossRef ADS Google scholar
[33]
S. M. Hayden, H. A. Mook, P. Dai, T. G. Perring, and F. Doğan, The structure of the high-energy spin excitations in a high-transition-temperature superconductor, Nature 429(6991), 531 (2004)
CrossRef ADS Google scholar
[34]
J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, Quantum magnetic excitations from stripes in copper oxide superconductors, Nature 429(6991), 534 (2004)
CrossRef ADS Google scholar
[35]
J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ, Science 295(5554), 466 (2002)
CrossRef ADS Google scholar
[36]
M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Local ordering in the pseudogap state of the high-Tcsuperconductor Bi2Sr2CaCu2O8+δ, Science 303(5666), 1995 (2004)
CrossRef ADS Google scholar
[37]
T. Hanaguri, C. Lupien, Y. Kohsaka, D. H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, A “checkerboard” electronic crystal state in lightly holedoped Ca2–xNaxCuO2Cl2, Nature 430(7003), 1001 (2004)
CrossRef ADS Google scholar
[38]
K. McElroy, J. Lee, J. A. Slezak, D. -H. Lee, H. Eisaki, S. Uchida, and J. C. Davis, Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ, Science 309(5737), 1048 (2005)
CrossRef ADS Google scholar
[39]
V. J. Emery and S. A. Kivelson, Importance of phase fluctuations in superconductors with small superfluid density, Nature 374(6521), 434(1995)
CrossRef ADS Google scholar
[40]
J. L. Tallon and J. W. Loram, The doping dependence of T* What is the real high-Tc phase diagram? Physica C 349(1-2), 53(2001)
CrossRef ADS Google scholar
[41]
P. W. Anderson, Spin-charge separation is the key to the high Tccuprates, Physica C 341–348, 9(2000)
CrossRef ADS Google scholar
[42]
D. Pines, Quantum protectorates in the cuprate superconductors, Physica C 341–348, 59(2000)
CrossRef ADS Google scholar
[43]
R. B. Laughlin and D. Pines, The theory of everything, Proc. Natl. Acad. Sci. USA 97(1), 28(2000)
CrossRef ADS Google scholar
[44]
A. Bohr and B. R. Mottelson, Nuclear Structure, Vols. I and II, W. A. Benjamin, 1969 and 1975
[45]
However the standard methodologies in the elementary particle physics case differ from the ones used here, partially because a relativistic quantum field theory is required there but non-relativistic fields are adequate for the present discussion. An accessible introduction to non- Abelian gauge fields may be found in Gauge Field Theories, An Introduction with Applications, Mike Guidry, Wiley, 1992.
[46]
M. W. Guidry, L. A. Wu, Y. Sun, and C. L. Wu, SU(4) model of high-temperature superconductivity and antiferromagnetism, Phys. Rev. B 63(13), 134516(2001)
CrossRef ADS Google scholar
[47]
M. W. Guidry, A fermion dynamical symmetry model of high-temperature superconductivity and antiferromagnetic order, Rev. Mex. Fís. 45(S2), 132 (1999)
[48]
L. A. Wu, M. W. Guidry, Y. Sun, and C. L. Wu, SO(5) as a critical dynamical symmetry in the SU(4) model of high-temperature superconductivity, Phys. Rev. B 67(1), 014515 (2003)
CrossRef ADS Google scholar
[49]
M. W. Guidry, Y. Sun, and C. L. Wu, Mott insulators, no-double-occupancy, and non-Abelian superconductivity, Phys. Rev. B 70(18), 184501 (2004)
CrossRef ADS Google scholar
[50]
Y. Sun, M. W. Guidry, and C. L. Wu, Temperaturedependent gap equations and their solutions in the SU(4) model of high-temperature superconductivity, Phys. Rev. B 73(13), 134519 (2006)
CrossRef ADS Google scholar
[51]
Y. Sun, M. W. Guidry, and C. L. Wu, Pairing Gaps, Pseudogaps, and Phase Diagrams for Cuprate Superconductors, Phys. Rev. B 75(13), 134511 (2007)
CrossRef ADS Google scholar
[52]
Y. Sun, M. W. Guidry, and C. L. Wu, k-dependent SU(4) model of high-temperature superconductivity and its coherent state solutions, Phys. Rev. B 78(17), 174524 (2008)
CrossRef ADS Google scholar
[53]
M. W. Guidry, Y. Sun, and C. L. Wu, Instabilities of doped Mott insulators and the properties of hightemperature superconductors, published in Nuclei and Mesoscopic Physics, p. 160, P. Danielewicz, P. Piecuch, and V. Zelevinsky (Eds.), AIP Conference Proceedings, 2008.
CrossRef ADS Google scholar
[54]
M. W. Guidry, Y. Sun, and C. L. Wu, A unified description of cuprate and iron arsenide superconductors, Front. Phys. China 4(4), 433 (2009)
CrossRef ADS Google scholar
[55]
M. W. Guidry, Y. Sun, and C. L. Wu, Strong anisotropy of cupratepseudogap correlations: Implications for Fermi arcs and Fermi pockets, New J. Phys. 11(12), 123023 (2009)
CrossRef ADS Google scholar
[56]
M. Guidry, Y. Sun, and C. L. Wu, Generalizing the Cooper pair instability to doped Mott insulators, Front. Phys. China 5(2), 171 (2010)
CrossRef ADS Google scholar
[57]
M. W. Guidry, Y. Sun, and C. L. Wu, Inhomogeneity, dynamical symmetry, and complexity in high-temperature superconductors: Reconciling a universal phase diagram with rich local disorder, Chin. Sci. Bull. 56(4–5), 367 (2011)
CrossRef ADS Google scholar
[58]
The particle–hole symmetry intrinsic to these models does not mean that hole-doped and electron-doped compounds are expected to behave in the same manner. Although the operators and basis states of the model are particle–hole symmetric, the interactions entering the effective Hamiltonian would not be expected to be the same for holedoped and particle-doped compounds. Thus, the physical properties of hole-doped and electron-doped compounds could differ substantially.
[59]
We employ an isomorphism between the groups SU(4) and SO(6) to label irreducible representations using SO(6) quantum numbers. The representation structure and relationship of SU(4) and SO(6) is discussed in: J. N. Ginocchio, Ann. Phys. 126, 234 (1980)
[60]
Groups generally may have more than one Casimir invariant. We shall use the term “Casimir”to refer loosely to the lowest-order such invariants (which are generally quadratic in the group generators). In the context of the present discussion, quadratic Casimirs are associated with 2-body interactions at the microscopic level. Higher-order Casimirs are then generally associated with 3-body and higher interactions. The restriction of our Hamiltonians to polynomials of order 2 in the Casimirs is then a physical restriction to consideration of only 1-body and 2-body interactions.
[61]
W. M. Zhang, D. H. Feng, and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys. 62(4), 867(1990)
CrossRef ADS Google scholar
[62]
W. M. Zhang, C. L. Wu, D. H. Feng, J. N. Ginocchio, and M. W. Guidry, Geometrical structure and critical phenomena in the fermion dynamical symmetry model: Sp(6), Phys. Rev. C 38(3), 1475 (1988)
CrossRef ADS Google scholar
[63]
W. M. Zhang, D. H. Feng, C. L. Wu, H. Wu, and J. N. Ginocchio, Symmetry constrained Hartree–Fock– Bogoliubov theory with applications to the fermion dynamical symmetry model, Nucl. Phys. A 505(1), 7 (1989)
CrossRef ADS Google scholar
[64]
W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical interpretation of SO(7): A critical dynamical symmetry, Phys. Rev. Lett. 59(18), 2032(1987)
CrossRef ADS Google scholar
[65]
W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical structure and critical phenomena in the fermion dynamical symmetry model: SO(8), Phys. Rev. C 37(3), 1281 (1988)
CrossRef ADS Google scholar
[66]
R. Gilmore, Geometry of symmetrized states, Ann. Phys. 74(2), 391 (1972)
CrossRef ADS Google scholar
[67]
R. Gilmore, On the properties of coherent states, Rev. Mex. Fis. 23(1–2), 143 (1974)
[68]
A. M. Perelomov, Coherent states for arbitrary Lie group, Commun. Math. Phys. 26(3), 222 (1972)
CrossRef ADS Google scholar
[69]
J. R. Klauder, Continuous-representation theory: Postulates of continuous-representation theory, J. Math. Phys. 4, 1055 (1963); Continuous‐representation theory (II): Postulates of continuous‐representation theory, J. Math. Phys. 4, 1058 (1963)
CrossRef ADS Google scholar
[70]
Thus the most general SU(4) coherent state depends on eight real variables. The reduction of the coherent state parameters to only two in Eq. (28) follows from requiring time reversal symmetry and assuming conservation of spin projection Szfor the wave function.
[71]
B. R. Judd, Operator Techniques in Atomic Spectroscopy, McGraw-Hill, 1963
[72]
The competition between dynamical symmetries governing the transition between spherical and deformed nuclei is discussed in §4.5 (in particular, §4.5.4) of Ref. [18].
[73]
M. W. Guidry and Y. Sun, Superconductivity and superfluidity as universal emergent phenomena in diverse fermionic systems, Front. Phys. 10(4), 1 (2015)
CrossRef ADS Google scholar
[74]
M. W. Guidry, Universality of emergent states in diverse physical systems, AIP Conf. Proc. 1912, 020005 (2017)
CrossRef ADS Google scholar
[75]
L. A. Wu and M. W. Guidry, The ground state of monolayer graphene in a strong magnetic field, Sci. Rep. 6(1), 22423 (2016)
CrossRef ADS Google scholar
[76]
L. A. Wu, M. Murphy, and M. W. Guidry, SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene, Phys. Rev. B 95(11), 115117 (2017)
CrossRef ADS Google scholar
[77]
M. W. Guidry, SO(8) fermion dynamical symmetry and quantum hall states for graphene in a strong magnetic field, Fortschr. Phys. 65(6–8), 1600057 (2017)
CrossRef ADS Google scholar
[78]
J. L. Tallon, J. W. Loram, J. R. Cooper, C. Panagopoulos, and C. Bernhard, Superfluid density in cuprate high-Tcsuperconductors: A new paradigm, Phys. Rev. B 68(18), 180501 (2003)
CrossRef ADS Google scholar
[79]
P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doğan, The magnetic excitation spectrum and thermodynamics of high-Tcsuperconductors, Science 284(5418), 1344 (1999)
CrossRef ADS Google scholar
[80]
J. C. Campuzano, H. Ding, M. R. Norman, H. M. Fretwell, M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Electronic spectra and their relation to the (π, π) collective mode in high-Tcsuperconductors, Phys. Rev. Lett. 83(18), 3709 (1999)
CrossRef ADS Google scholar
[81]
Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita, and S. Uchida, Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2–xSrxCuO4, Nature 406(6795), 486 (2000)
CrossRef ADS Google scholar
[82]
N. P. Ong, Y. Wang, S. Ono, Y. Ando, and S. Uchida, Vorticity and the Nernst effect in cuprate superconductors, Ann. Phys. 13(12), 9 (2004)
CrossRef ADS Google scholar
[83]
P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793), 1196 (1987)
CrossRef ADS Google scholar
[84]
D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. E. King, Antiferromagnetism in La2CuO4–y, Phys. Rev. Lett. 58(26), 2802 (1987)
CrossRef ADS Google scholar
[85]
T. S. Nunner, B. M. Anderson, A. Melikyan, and P. J. Hirschfeld, Dopant-modulated pair interaction in cuprate superconductors, Phys. Rev. Lett. 95(17), 177003 (2005)
CrossRef ADS Google scholar
[86]
A. C. Fang, L. Capriotti, D. J. Scalapino, S. A. Kivelson, N. Kaneko, M. Greven, and A. Kapitulnik, Gapinhomogeneity-induced electronic states in superconducting Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 96(1), 017007 (2006)
CrossRef ADS Google scholar
[87]
Y. He, T. S. Nunner, P. J. Hirschfeld, and H. P. Cheng, Local electronic structure of Bi2Sr2CaCu2O8 near oxygen dopants: A window on the high-Tcpairing mechanism, Phys. Rev. Lett. 96(19), 197002 (2006)
CrossRef ADS Google scholar
[88]
M. M. Maśka, Z. Sledz, K. Czajka, and M. Mierzejewski, Inhomogeneity-induced enhancement of the pairing interaction in cuprate superconductors, Phys. Rev. Lett. 99(14), 147006 (2007)
CrossRef ADS Google scholar
[89]
S. Petit and M. B. Lepetit, Real-space fluctuations of effective exchange integrals in high-Tccuprates, Europhys. Lett. 87(6), 67005 (2009)
CrossRef ADS Google scholar
[90]
K. Foyevtsova, R. Valentı, and P. J. Hirschfeld, Effect of dopant atoms on local superexchange in cuprate superconductors: A perturbative treatment, Phys. Rev. B 79(14), 144424 (2009)
CrossRef ADS Google scholar
[91]
S. Johnston, F. Vernay, and T. P. Devereaux, Impact of an oxygen dopant in Bi2Sr2CaCu2O8+δ, Europhys. Lett. 86(3), 37007 (2009)
CrossRef ADS Google scholar
[92]
S. Okamoto and T. A. Maier, Microscopic inhomogeneity and superconducting properties of a two-dimensional Hubbard model for high-Tccuprates, Phys. Rev. B 81(21), 214525 (2010)
CrossRef ADS Google scholar
[93]
G. Khaliullin, M. Mori, T. Tohyama, and S. Maekawa, Enhanced pairing correlations near oxygen dopants in cuprate superconductors, Phys. Rev. Lett. 105(25), 257005 (2010)
CrossRef ADS Google scholar
[94]
J. W. Loram, J. L. Tallon, and W. Y. Liang, Absence of gross static inhomogeneity in cuprate superconductors, Phys. Rev. B 69, 060502(R) (2004)
CrossRef ADS Google scholar
[95]
J. Bobroff, H. Alloul, S. Ouazi, P. Mendels, A. Mahajan, N. Blanchard, G. Collin, V. Guillen, and J. F. Marucco, Absence of static phase separation in the high Tccuprate YBa2Cu3O6+y, Phys. Rev. Lett. 89(15), 157002 (2002)
CrossRef ADS Google scholar
[96]
I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and M. R. Beasley, Giant proximity effect in cuprate superconductors, Phys. Rev. Lett. 93(15), 157002 (2004)
CrossRef ADS Google scholar
[97]
G. Alvarez, M. Mayr, A. Moreo, and E. Dagotto, Areas of superconductivity and giant proximity effects in underdoped cuprates, Phys. Rev. B 71(1), 014514 (2005)
CrossRef ADS Google scholar
[98]
I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor, Nature 422(6934), 873 (2003)
CrossRef ADS Google scholar
[99]
E. Demler, A. J. Berlinsky, C. Kallin, G. B. Arnold, and M. R. Beasley, Proximity effect and Josephson coupling in the SO(5) theory of high-Tcsuperconductivity, Phys. Rev. Lett. 80(13), 2917 (1998)
CrossRef ADS Google scholar
[100]
E. Dagotto, Complexity in strongly correlated electronic systems, Science 309(5732), 257 (2005)
CrossRef ADS Google scholar
[101]
M. R. Norman and C. Pépin, The electronic nature of high temperature cuprate superconductors, Rep. Prog. Phys. 66(10), 1547 (2003)
CrossRef ADS Google scholar
[102]
A. Damascelli, A. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75(2), 473 (2003)
CrossRef ADS Google scholar
[103]
E. Dagotto, Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66(3), 763 (1994)
CrossRef ADS Google scholar
[104]
M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, Destruction of the Fermi surface in underdoped high-Tcsuperconductors, Nature 392(6672), 157 (1998)
CrossRef ADS Google scholar
[105]
X. J. Zhou, T. Yoshida, D. H. Lee, W. L. Yang, V. Brouet, F. Zhou, W. X. Ti, J. W. Xiong, Z. X. Zhao, T. Sasagawa, T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori, Z. Hussain, and Z. X. Shen, Dichotomy between nodal and antinodal quasiparticles in underdoped (La2–xSrx)CuO4 superconductor, Phys. Rev. Lett. 92(18), 187001 (2004)
CrossRef ADS Google scholar
[106]
A. Kanigel, M. R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski, H. M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z. Z. Li, H. Raffy, K. Kadowaki, D. Hinks, L. Ozyuzer, and J. C. Campuzano, Evolution of the pseudogap from Fermi arcs to the nodal liquid, Nat. Phys. 2(7), 447 (2006)
CrossRef ADS Google scholar
[107]
N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J. B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Quantum oscillations and the Fermi surface in an underdoped high-Tcsuperconductor, Nature 447(7144), 565 (2007)
CrossRef ADS Google scholar
[108]
D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou, J. B. Bonnemaison, N. E. Hussey, L. Balicas, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Adachi, C. Proust, and L. Taillefer, Electron pockets in the Fermi surface of hole-doped high-Tcsuperconductors, Nature 450(7169), 533 (2007)
CrossRef ADS Google scholar
[109]
E. A. Yelland, J. Singleton, C. H. Mielke, N. Harrison, F. F. Balakirev, B. Dabrowski, and J. R. Cooper, Quantum oscillations in the underdopedcuprate YBa2Cu4O8, Phys. Rev. Lett. 100(4), 047003 (2008)
CrossRef ADS Google scholar
[110]
A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron- Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust, and N. E. Hussey, Small Fermi surface pockets in underdopedhigh temperature superconductors: Observation of Shubnikov–de Haas oscillations in YBa2Cu4O8, Phys. Rev. Lett. 100(4), 047004 (2008)
CrossRef ADS Google scholar
[111]
C. Jaudet, D. Vignolles, A. Audouard, J. Levallois, D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Nardone, A. Zitouni, R. Liang, D. A. Bonn, W. N. Hardy, L. Taillefer, and C. Proust, de Haas–van Alphen oscillations in the underdoped high-temperature superconductor YBa2Cu3O6.5, Phys. Rev. Lett. 100(18), 187005 (2008)
CrossRef ADS Google scholar
[112]
S. R. Julian and M. R. Norman, Local pairs and small surfaces, Nature 447(7144), 537 (2007)
CrossRef ADS Google scholar
[113]
G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo, and N. L. Wang, Superconducting properties of the Fe-based layered superconductor LaFeAsO0.9F0.1, Phys. Rev. Lett. 101(5), 057007 (2008)
CrossRef ADS Google scholar
[114]
H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, Superconductivity at 25 K in hole-doped (La1–xSrx)OFeAs, Europhys. Lett. 82(1), 17009 (2008)
CrossRef ADS Google scholar
[115]
X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Superconductivity at 43 K in SmFeAsO1–xFx, Nature 453(7196), 761 (2008)
CrossRef ADS Google scholar
[116]
G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1–xFxFeAs, Phys. Rev. Lett. 100(24), 247002 (2008)
CrossRef ADS Google scholar
[117]
Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1–xFx]FeAs, Europhys. Lett. 82(5), 57002 (2008)
CrossRef ADS Google scholar
[118]
G. F. Chen, Z. Li, D. Wu, J. Dong, G. Li, W. Z. Hu, P. Zheng, J. L. Luo, and N. L. Wang, Element substitution effect in transition metal oxypnictide Re(O1–xFx)TAs (Re= rare earth, T= transition metal), Chin. Phys. Lett. 25(6), 2235 (2008)
CrossRef ADS Google scholar
[119]
M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Model for the magnetic order and pairing channels in Fe pnictide superconductors, Phys. Rev. Lett. 101(23), 237004 (2008)
CrossRef ADS Google scholar
[120]
A. Moreo, M. Daghofer, J. A. Riera, and E. Dagotto, Properties of a two-orbital model for oxypnictide superconductors: Magnetic order, B2g spin-singlet pairing channel, and its nodal structure, Phys. Rev. B 79(13), 134502 (2009)
CrossRef ADS Google scholar
[121]
K. Nakayama, T. Sato, P. Richard, Y. M. Xu, Y. Sekiba, S. Souma, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studied by angle-resolved photoemission spectroscopy, Europhys. Lett. 85(6), 67002 (2009)
CrossRef ADS Google scholar
[122]
H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2, Europhys. Lett. 83(4), 47001 (2008)
CrossRef ADS Google scholar
[123]
L. Zhao, H. Y. Liu, W. T. Zhang, J. Q. Meng, X. W. Jia, G. D. Liu, X. L. Dong, G. F. Chen, J. L. Luo, N. L. Wang, W. Lu, G. L. Wang, Y. Zhou, Y. Zhu, X. Y. Wang, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Multiple nodeless superconducting gaps in (Ba0.6K0.4)Fe2As2 superconductor from angle resolved photoemission spectroscopy, Chin. Phys. Lett. 25(12), 4402 (2008)
[124]
K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z. H. Liu, P. Richard, T. Sato, J. B. He, D. M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S. C. Wang, Unconventional anisotropic s-wave superconducting gaps of LiFeAs ironpnictide superconductor, Phys. Rev. Lett. 108(3), 037002 (2012)
CrossRef ADS Google scholar
[125]
Z. H. Liu, P. Richard, K. Nakayama, G. F. Chen, S. Dong, J. B. He, D. M. Wang, T. L. Xia, K. Umezawa, T. Kawahara, S. Souma, T. Sato, T. Takahashi, T. Qian, Y. Huang, N. Xu, Y. Shi, H. Ding, and S. C. Wang, Unconventional superconducting gap in NaFe0.95Co0.05As observed by angle-resolved photoemission spectroscopy, Phys. Rev. B 84(6), 064519 (2011)
CrossRef ADS Google scholar
[126]
J. Hu and N. Hao, S4 symmetric microscopic model for iron-based superconductors, Phys. Rev. X 2(2), 021009 (2012)
CrossRef ADS Google scholar
[127]
P. W. Anderson, When the electron falls apart, Phys. Today 50(10), 42 (1997)
CrossRef ADS Google scholar
[128]
S. C. Zhang, A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism, Science 275(5303), 1089 (1997)
CrossRef ADS Google scholar
[129]
There also is the U(1) generator of charge density waves in our full U(4)⊃U(1)×SU(4) algebra that does not appear in the Zhang SO(5) algebra.
[130]
S. C. Zhang, J. P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach, Projected SO(5) models, Phys. Rev. B 60(18), 13070 (1999)
CrossRef ADS Google scholar
[131]
The broken particle number symmetry can be restored by particle-number projection, but in practice this procedure may not be necessary as we are dealing with a system having a very large number of fermions.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5356 KB)

Accesses

Citations

Detail

Sections
Recommended

/