A new approach to solar flare prediction

Michael L. Goodman, Chiman Kwan, Bulent Ayhan, Eric L. Shang

PDF(6490 KB)
PDF(6490 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (3) : 34601. DOI: 10.1007/s11467-020-0956-6
RESEARCH ARTICLE
RESEARCH ARTICLE

A new approach to solar flare prediction

Author information +
History +

Abstract

All three components of the current density are required to compute the heating rate due to free magnetic energy dissipation. Here we present a first test of a new model developed to determine if the times of increases in the resistive heating rate in active region (AR) photospheres are correlated with the subsequent occurrence of M and X flares in the corona. A data driven, 3D, non-force-free magnetohydrodynamic model restricted to the near-photospheric region is used to compute time series of the complete current density and the resistive heating rate per unit volume [Q(t)] in each pixel in neutral line regions (NLRs) of 14 ARs. The model is driven by time series of the magnetic field B measured by the Helioseismic & Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. For each AR, the cumulative distribution function (CDF) of the values of the NLR area integral Qi(t) of Q(t) is found to be a scale invariant power law distribution essentially identical to the observed CDF for the total energy released in coronal flares. This suggests that coronal flares and the photospheric Qiare correlated, and powered by the same process. The model predicts spikes in Qiwith values orders of magnitude above background values. These spikes are driven by spikes in the non-force free component of the current density. The times of these spikes are plausibly correlated with times of subsequent M or X flares a few hours to a few days later. The spikes occur on granulation scales, and may be signatures of heating in horizontal current sheets. It is also found that the times of relatively large values of the rate of change of the NLR unsigned magnetic flux are also plausibly correlated with the times of subsequent M and X flares, and spikes in Qi.

Keywords

active regions / magnetic fields / flares / forecasting / heating / photosphere / models / magnetohydrodynamics

Cite this article

Download citation ▾
Michael L. Goodman, Chiman Kwan, Bulent Ayhan, Eric L. Shang. A new approach to solar flare prediction. Front. Phys., 2020, 15(3): 34601 https://doi.org/10.1007/s11467-020-0956-6

References

[1]
M. J. Hagyard, D. Jr Smith, D. Teuber, and E. A. West, A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring, Sol. Phys. 91(1), 115 (1984)
CrossRef ADS Google scholar
[2]
C. J. Schrijver, Driving major solar flares and eruptions: A review, Adv. Space Res. 43(5), 739 (2009)
CrossRef ADS Google scholar
[3]
L. Fletcher, B. R. Dennis, H. S. Hudson, S. Krucker, K. Phillips, A. Veronig, M. Battaglia, L. Bone, A. Caspi, Q. Chen, P. Gallagher, P. T. Grigis, H. Ji, W. Liu, R. O. Milligan, and M. Temmer, An observational overview of solar flares, Space Sci. Rev. 159(1–4), 19 (2011)
CrossRef ADS Google scholar
[4]
H. S. Hudson, Global properties of solar flares, Space Sci. Rev. 158(1), 5 (2011)
CrossRef ADS Google scholar
[5]
M. K. Georgoulis, V. S. Titov, and Z. Mikić, Nonneutralized electric current patterns in solar active regions: Origin of the shear-generating Lorentz force, Astrophys. J. 761(1), 61 (2012)
CrossRef ADS Google scholar
[6]
H. Wang and C. Liu, Structure and evolution of magnetic fields associated with solar eruptions, Res. Astron. Astrophys. 15(2), 145 (2015)
CrossRef ADS Google scholar
[7]
N. Gyenge, N. Ballai, and T. Baranyi, Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares, Mon. Not. R. Astron. Soc. 459(4), 3532 (2016)
CrossRef ADS Google scholar
[8]
L. G. Balázs, N. Gyenge, M. B. ó, T. Baranyi, E. Forgács-Dajka, and I. Ballai, Statistical relationship between the succeeding solar flares detected by the RHESSI satellite, Mon. Not. R. Astron. Soc. 441(2), 1157 (2014)
CrossRef ADS Google scholar
[9]
D. L. Chesny, H. M. Oluseyi, and N. B. Orange, Heliumabundance and other composition effects on the properties of stellar surface convection in solar-like mainsequence stars, Astrophys. J. 778(2), 117 (2013)
CrossRef ADS Google scholar
[10]
T. Török, J. E. Leake, T. S. Titov, V. Archontis, Z. Mikić, M. G. Linton, K. Dalmasse, G. Aulanier, and B. Kliem, Distribution of electric currents in solar active regions, Astrophys. J. 782(1), L10 (2014)
CrossRef ADS Google scholar
[11]
P. H. Scherrer, R. S. Bogart, R. I. Bush, J. T. Hoeksema, A. G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T. D. Tarbell, A. Title, C. J. Wolfson, and I. Zayer, The solar oscillations investigation- Michelson Doppler imager, Sol. Phys. 162(1–2), 129 (1995)
CrossRef ADS Google scholar
[12]
R. C. Canfield, 1993, NASA-CR-194729, Solar Imaging Vector Magnetograph, Final Technical Report for NASA Grant NAGW-1454, 1 Aug. 1988- 31 Jul. 1993 (Univ. of Hawaii)
[13]
D. A. Falconer, R. L. Moore, and G. A. Gary, Magnetic causes of solar coronal mass ejections: Dominance of the free magnetic energy over the magnetic twist alone, Astrophys. J. 644(2), 1258 (2006)
CrossRef ADS Google scholar
[14]
D. A. Falconer, R. L. Moore, and G. A. Gary, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity, Astrophys. J. 689(2), 1433 (2008)
CrossRef ADS Google scholar
[15]
D. Falconer, A. F. Barghouty, I. Khazanov, and M. Moore, A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy, Space Weather 9(4), S04003 (2011)
CrossRef ADS Google scholar
[16]
D. A. Falconer, R. L. Moore, A. F. Barghouty, and I. Khazanov, Prior flaring as a complement to free magnetic energy for forecasting solar eruptions, Astrophys. J. 757(1), 32 (2012)
CrossRef ADS Google scholar
[17]
D. A. Falconer, R. L. Moore, A. F. Barghouty, and I. Khazanov, MAG4 versus alternative techniques for forecasting active region flare productivity, Space Weather 12(5), 306 (2014)
CrossRef ADS Google scholar
[18]
C. J. Schrijver, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting, Astrophys. J. 655(2), L117 (2007)
CrossRef ADS Google scholar
[19]
M. B. Korsós, T. Baranyi, and A. Ludmány, Pre-flare dynamics of sunspot groups, Astrophys. J. 789(2), 107 (2014)
CrossRef ADS Google scholar
[20]
M. B. Korsós, A. Ludmány, R. Erdélyi, and T. Baranyi, On flare predictability based on sunspot group evolution, Astrophys. J. 802(2), L21 (2015a)
CrossRef ADS Google scholar
[21]
M. B. Korsós, N. Gyenge, T. Baranyi, and A. Ludmány, Dynamic precursors of flares in active region NOAA 10486, J. Astrophys. Astron. 36(1), 111 (2015b)
CrossRef ADS Google scholar
[22]
M. B. Korsós and R. Erdélyi, On the state of a solar active region before flares and CMEs, Astrophys. J. 823(2), 153 (2016)
CrossRef ADS Google scholar
[23]
M. K. Georgoulis and D. M. Rust, Quantitative forecasting of major solar flares, Astrophys. J. 661(1), L109 (2007)
CrossRef ADS Google scholar
[24]
M. K. Georgoulis, 2011, in Physics of Sun and Star Spots, Proceedings IAU Symposium No. 273, 2010, pg. 495 (International Astronomical Union 2011)
[25]
K. D. Leka and G. Barnes, Photospheric magnetic field properties of flaring versus flare-quiet active regions (I): Data, general approach, and sample results, Astrophys. J. 595(2), 1277 (2003a)
CrossRef ADS Google scholar
[26]
K. D. Leka and G. Barnes, Photospheric magnetic field properties of flaring versus flare-quiet active regions (II): Discriminant analysis, Astrophys. J. 595(2), 1296 (2003b)
CrossRef ADS Google scholar
[27]
K. D. Leka and G. Barnes, Photospheric magnetic field properties of flaring versus flare-quiet active regions (IV): A statistically significant sample, Astrophys. J. 656(2), 1173 (2007)
CrossRef ADS Google scholar
[28]
G. Barnes, and K. D. Leka, Photospheric magnetic field properties of flaring versus flare-quiet active regions (III): Magnetic charge topology models, Astrophys. J. 646(2), 1303 (2006)
CrossRef ADS Google scholar
[29]
Wang , J., Shi , Z., Wang , H. & Lü , Y. 1996, 456, 861
CrossRef ADS Google scholar
[30]
Y. Lü, J. Wang, and H. Wang, Shear angle of magnetic fields, Sol. Phys. 148(1), 119 (1993)
CrossRef ADS Google scholar
[31]
G. Barnes, K. D. Leka, C. J. Schrijver, T. Colak, R. Qahwaji, O. W. Ashamari, Y. Yuan, J. Zhang, R. T. J. McAteer, D. S. Bloomfield, P. A. Higgins, P. T. Gallagher, D. A. Falconer, M. K. Georgoulis, M. S. Wheatland, C. Balch, T. Dunn, and E. L. Wagner, A comparison of flare forecasting methods (i): Results from the “all-clear” workshop, Astrophys. J. 829(2), 89 (2016)
CrossRef ADS Google scholar
[32]
P. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Jr Duvall, J. Zhao, A. M. Title, C. J. Schrijver, T. D. Tarbell, and S. Tomczyk, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO), Sol. Phys. 275(1), 207 (2012)
CrossRef ADS Google scholar
[33]
M. G. Bobra, X. Sun, J. T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi, G. Barnes, and K. D. Leka, The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPs – Space-weather HMI active region patches, Sol. Phys. 289(9), 3549 (2014)
CrossRef ADS Google scholar
[34]
J. T. Hoeksema, Y. Liu, K. Hayashi, X. Sun, J. Schou, S. Couvidat, A. Norton, M. Bobra, R. Centeno, K. D. Leka, G. Barnes, and M. Turmon, The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: Overview and performance, Sol. Phys. 289(9), 3483 (2014)
CrossRef ADS Google scholar
[35]
Å. Nordlund, R. F. Stein, and M. Asplund, Solar Surface Convection, Living Rev. Sol. Phys. 6, 2 (2009)
CrossRef ADS Google scholar
[36]
B. W. Lites, K. D. Leka, A. Skumanich, V. Martínez Pillet, and T. Shimizu, Small-scale horizontal magnetic fields in the solar photosphere, Astrophys. J. 460, 1019 (1996)
CrossRef ADS Google scholar
[37]
B. W. Lites, A. Skumanich, and V. Martínez Pillet, Astron. Astrophys. 333, 1053 (1998)
[38]
B. W. Lites, M. Kubo, H. Socas-Navarro, T. Berger, Z. Frank, R. Shine, T. Tarbell, A. Title, K. Ichimoto, Y. Katsukawa, S. Tsuneta, Y. Suematsu, T. Shimizu, and S. Nagata, The horizontal magnetic flux of the quiet- Sun internetwork as observed with the hinode spectropolarimeter, Astrophys. J. 672(2), 1237 (2008)
CrossRef ADS Google scholar
[39]
D. Orozco Suárez, L. R. Bellot Rubio, J. C. del Toro Iniesta, S. Tsuneta, B. W. Lites, K. Ichimoto, Y. Katsukawa, S. Nagata, T. Shimizu, R. A. Shine, Y. Suematsu, T. D. Tarbell, and A. M. Title, Quiet-Sun internetwork magnetic fields from the inversion of Hinode measurements, Astrophys. J. 670(1), L61 (2007)
CrossRef ADS Google scholar
[40]
B. W. Lites, The topology and behavior of magnetic fields emerging at the solar photosphere, Space Sci. Rev. 144(1–4), 197 (2009)
CrossRef ADS Google scholar
[41]
S14 2014, Final Report for NASA Phase 1 SBIR Contract NNX14CG30P: “A New Class of Flare Prediction Algorithms: A Synthesis of Data, Pattern Recognition Algorithms, and First Principles Magnetohydrodynamics”, (Accepted by the NASA Technology Transfer System on December 22, 2014, Case No. GSC-17381-1). The report is available at goo.gl/jQh0YX. Note: The PI name on the report is not correct. The PI is Chiman Kwan. The report was written by the PI and M. L. Goodman. M. C. Cheung, and M. L. DeRosa, A method for data-driven simulations of evolving solar active regions, Astrophys. J. 757(2), 147 (2012)
[42]
X. Sun, On the coordinate system of space-weather HMI active region patches (SHARPs): A technical note, arxiv: 1309.2392 (2013)
[43]
M. G. Bobra, 2014, private communication
[44]
J. D. Jackson, Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999
CrossRef ADS Google scholar
[45]
M. L. Goodman, On the efficiency of plasma heating by Pedersen current dissipation from the photosphere to the lower corona, Astron. Astrophys. 416(3), 1159 (2004)
CrossRef ADS Google scholar
[46]
V. Smirnova, A. Richokainen, A. Solovev, J. Kallunki, A. Zhiltsov, and V. Ryzhov, Long quasi-periodic oscillations of sunspots and nearby magnetic structures, Astron. Astrophys. 552, A23 (2013a)
CrossRef ADS Google scholar
[47]
V. Smirnova, V. I. Efremov, L. D. Parfinenko, A. Riehokainen, and A. A. Solov’ev, Artifacts of SDO/HMI data and long-period oscillations of sunspots, Astron. Astrophys. 554, A121 (2013b)
CrossRef ADS Google scholar
[48]
P. V. Strekalova, Y. A. Nagovitsyn, A. Riehokainen, and V. V. Smirnova, Long-period variations in the magnetic field of small-scale solar structures., Geomagn. Aeron. 56(8), 1052 (2016)
CrossRef ADS Google scholar
[49]
S. Couvidat, J. Schou, J. T. Hoeksema, R. S. Bogart, R. I. Bush, T. L. Jr Duvall, Y. Liu, A. A. Norton, and P. H. Scherrer, Observables processing for the helioseismic and magnetic imager instrument on the solar dynamics observatory, Sol. Phys. 291(7), 1887 (2016)
CrossRef ADS Google scholar
[50]
Y. Liu, J. T. Hoeksema, P. H. Scherrer, J. Schou, S. Couvidat, R. I. Bush, K. Jr Duvall, X. Hayashi, X. Sun, and X. Zhao, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/ Michelson Doppler imager, Sol. Phys. 279(1), 295 (2012)
CrossRef ADS Google scholar
[51]
A. G. de Wijn, J. O. Stenflo, S. K. Solanki, and S. Tsuneta, Small-scale solar magnetic fields, Space Sci. Rev. 144(1–4), 275 (2009)
CrossRef ADS Google scholar
[52]
H. Peter, H. Tian, W. Curdt, D. Schmit, D. Innes, B. De Pontieu, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T. D. Tarbell, J. P. Wuelser, J. Martinez-Sykora, L. Kleint, L. Golub, S. McKillop, K. K. Reeves, S. Saar, P. Testa, C. Kankelborg, S. Jaeggli, M. Carlsson, and V. Hansteen, Hot explosions in the cool atmosphere of the Sun, Science 346(6207), 1255726 (2014)
CrossRef ADS Google scholar
[53]
P. G. Judge, UV spectra, bombs, and the solar atmosphere, Astrophys. J. 808(2), 116 (2015)
CrossRef ADS Google scholar
[54]
G. R. Gupta and D. Tripathi, IRIS and SDO observations of recurrent explosive events, Astrophys. J. 809(1), 82 (2015)
CrossRef ADS Google scholar
[55]
G. J. M. Vissers, L. H. M. Rouppe van der Voort, R. J. Rutten, M. Carlsson, and B. De Pontieu, Ellerman bombs at high resolution (iii): Simultaneous observations with IRIS and SST, Astrophys. J. 812(1), 11 (2015)
CrossRef ADS Google scholar
[56]
Y. H. Kim, V. Yurchyshyn, S. C. Bong, I. H. Cho, K. S. Cho, J. Lee, E. K. Lim, Y. D. Park, H. Yang, K. Ahn, P. R. Goode, and B. H. Jang, Simultaneous observation of a hot explosion by NST and IRIS, Astrophys. J. 810(1), 38 (2015)
CrossRef ADS Google scholar
[57]
H. Tian, Z. Xu, J. He, and C. Madsen, Are IRIS bombs connected to Ellerman bombs? Astrophys. J. 824(2), 96 (2016)
CrossRef ADS Google scholar
[58]
R. J. Rutten, H features with hot onsets, Astron. Astrophys. 590, A124 (2016)
CrossRef ADS Google scholar
[59]
R. J. Rutten, Solar H-alpha features with hot onsets, Astron. Astrophys. 598, A89 (2017)
CrossRef ADS Google scholar
[60]
L. P. Chitta, H. Peter, P. R. Young, and Y. M. Huant, Compact solar UV burst triggered in a magnetic field with a fan-spine topology, Astron. Astrophys. 605, A49 (2017)
CrossRef ADS Google scholar
[61]
H. Tian, V. Yurchyshyn, H. Peter, S. K. Solanki, P. R. Young, L. Ni, W. Cao, K. Ji, Y. Zhu, J. Zhang, T. Samanta, Y. Song, J. He, L. Wang, and Y. Chen, Frequently occurring reconnection jets from Sunspot light bridges, Astrophys. J. 854(2), 92 (2018a)
CrossRef ADS Google scholar
[62]
H. Tian, X. Zhu, H. Peter, J. Zhao, T. Samanta, and Y. Chen, Magnetic reconnection at the earliest stage of solar flux emergence, Astrophys. J. 854(2), 174 (2018b)
CrossRef ADS Google scholar
[63]
N. W. Watkins, G. Pruessner, S. C. Chapman, N. B. Crosby, and H. J. Jensen, 25 years of self-organized criticality: Concepts and controversies, Space Sci. Rev. 198(1), 3 (2016)
CrossRef ADS Google scholar
[64]
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/fnoise, Phys. Rev. Lett. 59(4), 381 (1987)
CrossRef ADS Google scholar
[65]
C. Tang, K. Wiesenfeld, P. Bak, S. Coppersmith, and P. Littlewood, Phase organization, Phys. Rev. Lett. 58(12), 1161 (1987)
CrossRef ADS Google scholar
[66]
L. Kadanoff, in: Springer Proceedings in Physics, V. 57, Evolutionary Trends in the Physical Sciences, Eds. M. Suzuki and R. Kubo, Springer-Verlag Berlin Heidelberg, 1991
[67]
P. G. Drazin, Nonlinear Systems, Cambridge University Press, Cambridge Texts in Applied Mathematics, 1992
[68]
P. Bak, How Nature Works, Springer Science+ Business Media New York, 1996
CrossRef ADS Google scholar
[69]
M. E. J. Newman, Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46(5), 323 (2005)
CrossRef ADS Google scholar
[70]
D. W. Datlowe, M. J. Elcan, and H. S. Hudson, OSO-7 observations of solar X-rays in the energy range 10-100 keV, Sol. Phys. 39(1), 155 (1974)
CrossRef ADS Google scholar
[71]
M. S. Wheatland, Flare frequency-size distributions for individual active regions, Astrophys. J. 532(2), 1209 (2000)
CrossRef ADS Google scholar
[72]
M. S. Wheatland, Evidence for departure from a powerlaw flare size distribution for a small solar active region, Astrophys. J. 710(2), 1324 (2010)
CrossRef ADS Google scholar
[73]
H. S. Hudson, Solar flares, microflares, nanoflares, and coronal heating, Sol. Phys. 133(2), 357 (1991)
CrossRef ADS Google scholar
[74]
N. B. Crosby, M. J. Aschwanden, and B. R. Dennis, Frequency distributions and correlations of solar X-ray flare parameters, Sol. Phys. 143(2), 275 (1993)
CrossRef ADS Google scholar
[75]
T. Shimizu, Publ. Astron. Soc. Jpn. 47, 251 (1995)
[76]
M. J. Aschwanden, and C. E. Parnell, Nanoflare statistics from first principles: Fractal geometry and temperature synthesis, Astrophys. J. 572(2), 1048 (2002)
CrossRef ADS Google scholar
[77]
M. J. Aschwanden, A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system, Astron. Astrophys. 539, A2 (2012)
CrossRef ADS Google scholar
[78]
M. J. Aschwnaden, in: Self Organized Criticality Systems, Ed. M. J. Aschwanden, Open Academic Press: Berlin, Warsaw, 2013, http://www.openacademicpress.de/
[79]
M. J. Aschwanden, N. B. Crosby, M. Dimitropoulou, M. K. Georgoulis, S. Hergarten, J. McAteer, A. V. Milovanov, S. Mineshige, L. Morales, N. Nishizuka, G. Pruessner, R. Sanchez, A. S. Sharma, A. Strugarek, and V. Uritsky, 25 years of self-organized criticality: Solar and astrophysics, Space Sci. Rev. 198(1–4), 47 (2016)
CrossRef ADS Google scholar
[80]
E. T. Lu and R. J. Hamilton, Avalanches and the distribution of solar flares, Astrophys. J. 380, L89 (1991)
CrossRef ADS Google scholar
[81]
E. T. Lu, R. J. Hamilton, J. M. McTiernan, and K. R. Bromund, Solar flares and avalanches in driven dissipative systems, Astrophys. J. 412, 841 (1993)
CrossRef ADS Google scholar
[82]
P. Charbonneau, S. W. McIntosh, H. Liu, and T. Bogdan, Avalanche models for solar flares, Sol. Phys. 203(2), 321 (2001)
CrossRef ADS Google scholar
[83]
S. W. McIntosh, P. Charbonneau, T. J. Bogdan, H. Liu, and J. P. Norman, Geometrical properties of avalanches in self-organized critical models of solar flares, Phys. Rev. E 65(4), 046125 (2002)
CrossRef ADS Google scholar
[84]
L. Vlahos and M. K. Georgoulis, On the self-similarity of unstable magnetic discontinuities in solar active regions, Astrophys. J. 603(1), L61 (2004)
CrossRef ADS Google scholar
[85]
M. S. Wheatland and I. J. D. Craig, Toward a reconnection model for solar flare statistics, Astrophys. J. 595(1), 458 (2003)
CrossRef ADS Google scholar
[86]
V. M. Uritsky, J. M. Davila, L. Ofman, and A. J. Coyner, Stochastic coupling of solar photosphere and corona, Astrophys. J. 769(1), 62 (2013)
CrossRef ADS Google scholar
[87]
V. M. Uritsky and J. M. Davila, Spatiotemporal organization of energy release events in the quiet solar corona, Astrophys. J. 795(1), 15 (2014)
CrossRef ADS Google scholar
[88]
R. A. Howard, J. D. Moses, A. Vourlidas, J. S. Newmark, D. G. Socker, , Sun earth connection coronal and heliospheric investigation (SECCHI), Space Sci. Rev. 136(1–4), 67 (2008)

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6490 KB)

Accesses

Citations

Detail

Sections
Recommended

/