Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure
X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo
Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure
Using the transfer matrix method, spin- and valley-dependent electron transport properties modulated by the velocity barrier were studied in the normal/ferromagnetic/normal monolayer MoS2 quantum structure. Based on Snell’s Law in optics, we define the velocity barrier as ξ=v2/v1 by changing the Fermi velocity of the intermediate ferromagnetic region to obtain a deflection condition during the electron transport process in the structure. The results show that both the magnitude and the direction of spin- and valley-dependent electron polarization can be regulated by the velocity barrier. –100% polarization of spin- and valley-dependent electron can be achieved for ξ>1, while 100% polarization can be obtained for ξ<1. Furthermore, it is determined that perfect spin and valley transport always occur at a large incident angle. In addition, the spin- and valley-dependent electron transport considerably depends on the length kFL and the gate voltage U(x) of the intermediate ferromagnetic region. These findings provide an effective method for designing novel spin and valley electronic devices.
velocity barrier / monolayer MoS2 / spin / valley / polarization
[1] |
X. J. Qiu, Z. Z. Cao, J. M. Lei, J. Shen, and C. C. Qin, Optical and Electric Control of Charge and Spin-Valley Transport in Ferromagnetic Silicene Junction, Superlattices Microstruct. 109, 735 (2017)
CrossRef
ADS
Google scholar
|
[2] |
M. Tahir, Electrical and optical transport properties of single layer WSe2, Physica E 97, 184 (2017)
CrossRef
ADS
Google scholar
|
[3] |
K. F. Mak, K. L. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
CrossRef
ADS
Google scholar
|
[4] |
H. Li, J. Shao, D. Yao, and G. Yang, Gate-voltagecontrolled spin and valley polarization transport in a normal/ferromagnetic/normal MoS2 junction, ACS Appl. Mater. Interfaces 6(3), 1759 (2014)
CrossRef
ADS
Google scholar
|
[5] |
L. F. Sun and Y. Guo, Line-type resonance peaks and their suppression through graphene-based symmetric and asymmetric double barriers, J. Appl. Phys. 109(12), 123719 (2011)
CrossRef
ADS
Google scholar
|
[6] |
H. P. Huang, D. Liu, H. M. Zhang, and X. J. Kong, Electronic transport and shot noise in Thue-Morse sequence graphene superlattice, J. Appl. Phys. 113(4), 043702 (2013)
CrossRef
ADS
Google scholar
|
[7] |
P. Ye, R. Y. Yuan, Y. Y. Xia, and X. Zhao, Spin and valley transport in the ferromagnetic MoS2 junctions subjected by the gate voltage, J. Phys. Conf. Ser. 827, 012011 (2017)
CrossRef
ADS
Google scholar
|
[8] |
T. Yokoyama, Controllable valley and spin transport in ferromagnetic silicene junctions, Phys. Rev. B 87, 241409(R) (2013)
CrossRef
ADS
Google scholar
|
[9] |
L. Majidi and R. Asgari, Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve, Phys. Rev. B 90(16), 165440 (2014)
CrossRef
ADS
Google scholar
|
[10] |
H. Haugen, D. Huertas-Hernando, and A. Brataas, Spin transport in proximity-induced ferromagnetic graphene, Phys. Rev. B 77(11), 115406 (2008)
CrossRef
ADS
Google scholar
|
[11] |
P. Stepanov, Y. Barlas, S. Che, K. Myhro, G. Voigt, Z. Pi, K. Watanabe, T. Taniguchi, D. Smirnov, F. Zhang, R. K. Lake, A. H. MacDonald, and C. N. Lau, Quantum parity Hall effect in bernal-stacked trilayer graphene, Proc. Natl. Acad. Sci. USA 116(21), 10286 (2019)
CrossRef
ADS
Google scholar
|
[12] |
S. Sun, Y. Yu, J. Dang, K. Peng, X. Xie, F. Song, C. Qian, S. Wu, H. Ali, J. Tang, J. Yang, S. Xiao, S. Tian, M. Wang, X. Shan, M. A. Rafiq, C. Wang, and X. Xu, Large gfactor in bilayer WS2 flakes, Appl. Phys. Lett. 114(11), 113104 (2019)
CrossRef
ADS
Google scholar
|
[13] |
X. Q. Yu, Z. G. Zhu, J. S. You, T. Low, and G. Su, Topological nonlinear anomalous nernst effect in strained transition metal dichalcogenides, Phys. Rev. B 99(20), 201410 (2019)
CrossRef
ADS
Google scholar
|
[14] |
E. I. Rashba, Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem, Phys. Rev. B 62(24), R16267 (2000)
CrossRef
ADS
Google scholar
|
[15] |
G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62(8), R4790 (2000)
CrossRef
ADS
Google scholar
|
[16] |
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448(7153), 571 (2007)
CrossRef
ADS
Google scholar
|
[17] |
X. Ma, H. Ai, H. Gao, and X. Zhang, Valley polarization and ferroelectricity in two-dimensional GaAsC6 monolayer, Phys. Chem. Chem. Phys. 21, 3954 (2019)
CrossRef
ADS
Google scholar
|
[18] |
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and Other Two-Dimensional Materials, Front. Phys. 14, 13301 (2019)
CrossRef
ADS
Google scholar
|
[19] |
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
CrossRef
ADS
Google scholar
|
[20] |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef
ADS
Google scholar
|
[21] |
G. D. Scholes and G. Rumbles, Excitons in nanoscale systems, Nat. Mater. 5(9), 683 (2006)
CrossRef
ADS
Google scholar
|
[22] |
M. Law, J. Goldberger, and P. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 34(1), 83 (2004)
CrossRef
ADS
Google scholar
|
[23] |
Y. L. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley splitting and polarization by the Zeeman effect in monolayer MoSe2, Phys. Rev. Lett. 113(26), 266804 (2014)
CrossRef
ADS
Google scholar
|
[24] |
D. MacNeil, C. Heikes, K. F. Mak, Z. Anderson, A. Kormanyos, V. Zolymi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114, 037401 (2015)
CrossRef
ADS
Google scholar
|
[25] |
G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. W. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11, 141 (2015)
CrossRef
ADS
Google scholar
|
[26] |
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)
CrossRef
ADS
Google scholar
|
[27] |
J. S. Qi, X. Li, Q. Niu, and J. Feng, Giant and tunable valley degeneracy splitting in MoTe2, Phys. Rev. B 92(12), 121403 (2015)
CrossRef
ADS
Google scholar
|
[28] |
Z. F. Liu, W. X. Feng, H. L. Xin, Y. L. Gao, P. F. Liu, Y. G. Yao, H. M. Weng, and J. J. Zhao, Two-dimensional spin–valley-coupled Dirac semimetals in functionalized SbAs monolayers, Mater. Horiz. 6(4), 781 (2019)
CrossRef
ADS
Google scholar
|
[29] |
F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Weak localization in graphene flakes, Phys. Rev. Lett. 100(5), 056802 (2008)
CrossRef
ADS
Google scholar
|
[30] |
M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61(21), 2472 (1988)
CrossRef
ADS
Google scholar
|
[31] |
S. Datta and B. Das, Electronic analog of the electronoptic modulator, Appl. Phys. Lett. 56(7), 665 (1990)
CrossRef
ADS
Google scholar
|
[32] |
A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
CrossRef
ADS
Google scholar
|
[33] |
X. D. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in transition metal dichalcogenides, Nat. Phys. 10, 343 (2014)
CrossRef
ADS
Google scholar
|
[34] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[35] |
H. M. Dong, S. D. Guo, Y. F. Duan, F. Huang, W. Xu, and J. Zhang, Electronic and optical properties of singlelayer MoS2, Front. Phys. 13(4), 137307 (2018)
CrossRef
ADS
Google scholar
|
[36] |
G. Y. Wu, N. Y. Lue, and Y. C. Chen, Quantum manipulation of valleys in bilayer graphene, Phys. Rev. B 88(12), 125422 (2013)
CrossRef
ADS
Google scholar
|
[37] |
L. Majidi and R. Asgari, Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve, Phys. Rev. B 90(16), 165440 (2014)
CrossRef
ADS
Google scholar
|
[38] |
P. M. Krstajić, P. Vasilopoulos, and M. Tahir, Spin- and valley-polarized transport through ferromagnetic and antiferromagnetic barriers on monolayer MoS2, Physica E 75, 317 (2016)
CrossRef
ADS
Google scholar
|
[39] |
R. P. Arnaud, Velocity-modulation control of electronwave propagation in graphene, Phys. Rev. B 81, 073407 (2010)
CrossRef
ADS
Google scholar
|
[40] |
A. Concha and Z. Tešanović, Effect of a velocity barrier on the ballistic transport of Dirac fermions, Phys. Rev. B 82(3), 033413 (2010)
CrossRef
ADS
Google scholar
|
[41] |
P. M. Krstaji and P. Vasilopoulos, Ballistic transport through graphene nanostructures of velocity and potential barriers, J. Phys.: Condes. Matter 23, 135302 (2011)
CrossRef
ADS
Google scholar
|
[42] |
Y. Wang, Y. Liu, and B. Wang, Resonant tunneling and enhanced Goos–Hänchen shift in a graphene double velocity barrier structure, Physica E 53, 186 (2013)
CrossRef
ADS
Google scholar
|
[43] |
J. L. Zhang, W. Fu, K.Y. Wang, S.S. Ke, and H.F. Lü, Effect of a velocity barrier on the spin- and valley-dependent transport in ferromagnetic silicene, Physica B 525, 16 (2017)
CrossRef
ADS
Google scholar
|
[44] |
X. J. Qiu, Q. Lv, and Z. Z. Cao, Velocity barriercontrolled of spin-valley polarized transport in monolayer WSe2 Junction, Superlattices Microstruct. 449, 117 (2018)
CrossRef
ADS
Google scholar
|
[45] |
C. H. Park, L. Yang, Y. W. Son, M. L. Cohen, and S. G. Louie, Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials, Nat. Phys. 4(3), 213 (2008)
CrossRef
ADS
Google scholar
|
[46] |
M. Gibertini, A. Singha, V. Pellegrini, M. Polini, G. Vignale, A. Pinczuk, L. N. Pfeiffer, and K. W. West, Engineering artificial graphene in a two-dimensional electron gas, Phys. Rev. B 79(24), 241406 (2009)
CrossRef
ADS
Google scholar
|
[47] |
A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)
CrossRef
ADS
Google scholar
|
[48] |
C. Jang, S. Adam, J. H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering, Phys. Rev. Lett. 101(14), 146805 (2008)
CrossRef
ADS
Google scholar
|
[49] |
X. Li, F. Zhang, and Q. Niu, Unconventional quantum Hall effect and tunable spin Hall effect in MoS2 trilayers, Phys. Rev. Lett. 110, 066803 (2013)
|
[50] |
M. Tahir and U. Schwingenschlögl, Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides, New J. Phys. 16(11), 115003 (2014)
CrossRef
ADS
Google scholar
|
[51] |
Z. Li and J. P. Carbotte, Longitudinal and spin-valley Hall optical conductivity in single layer MoS2, Phys. Rev. B 86(20), 205425 (2012)
CrossRef
ADS
Google scholar
|
[52] |
M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett. 57, 1761 (1986)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |