Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure

X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo

PDF(1884 KB)
PDF(1884 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (3) : 33603. DOI: 10.1007/s11467-020-0955-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure

Author information +
History +

Abstract

Using the transfer matrix method, spin- and valley-dependent electron transport properties modulated by the velocity barrier were studied in the normal/ferromagnetic/normal monolayer MoS2 quantum structure. Based on Snell’s Law in optics, we define the velocity barrier as ξ=v2/v1 by changing the Fermi velocity of the intermediate ferromagnetic region to obtain a deflection condition during the electron transport process in the structure. The results show that both the magnitude and the direction of spin- and valley-dependent electron polarization can be regulated by the velocity barrier. –100% polarization of spin- and valley-dependent electron can be achieved for ξ>1, while 100% polarization can be obtained for ξ<1. Furthermore, it is determined that perfect spin and valley transport always occur at a large incident angle. In addition, the spin- and valley-dependent electron transport considerably depends on the length kFL and the gate voltage U(x) of the intermediate ferromagnetic region. These findings provide an effective method for designing novel spin and valley electronic devices.

Keywords

velocity barrier / monolayer MoS2 / spin / valley / polarization

Cite this article

Download citation ▾
X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure. Front. Phys., 2020, 15(3): 33603 https://doi.org/10.1007/s11467-020-0955-7

References

[1]
X. J. Qiu, Z. Z. Cao, J. M. Lei, J. Shen, and C. C. Qin, Optical and Electric Control of Charge and Spin-Valley Transport in Ferromagnetic Silicene Junction, Superlattices Microstruct. 109, 735 (2017)
CrossRef ADS Google scholar
[2]
M. Tahir, Electrical and optical transport properties of single layer WSe2, Physica E 97, 184 (2017)
CrossRef ADS Google scholar
[3]
K. F. Mak, K. L. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
CrossRef ADS Google scholar
[4]
H. Li, J. Shao, D. Yao, and G. Yang, Gate-voltagecontrolled spin and valley polarization transport in a normal/ferromagnetic/normal MoS2 junction, ACS Appl. Mater. Interfaces 6(3), 1759 (2014)
CrossRef ADS Google scholar
[5]
L. F. Sun and Y. Guo, Line-type resonance peaks and their suppression through graphene-based symmetric and asymmetric double barriers, J. Appl. Phys. 109(12), 123719 (2011)
CrossRef ADS Google scholar
[6]
H. P. Huang, D. Liu, H. M. Zhang, and X. J. Kong, Electronic transport and shot noise in Thue-Morse sequence graphene superlattice, J. Appl. Phys. 113(4), 043702 (2013)
CrossRef ADS Google scholar
[7]
P. Ye, R. Y. Yuan, Y. Y. Xia, and X. Zhao, Spin and valley transport in the ferromagnetic MoS2 junctions subjected by the gate voltage, J. Phys. Conf. Ser. 827, 012011 (2017)
CrossRef ADS Google scholar
[8]
T. Yokoyama, Controllable valley and spin transport in ferromagnetic silicene junctions, Phys. Rev. B 87, 241409(R) (2013)
CrossRef ADS Google scholar
[9]
L. Majidi and R. Asgari, Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve, Phys. Rev. B 90(16), 165440 (2014)
CrossRef ADS Google scholar
[10]
H. Haugen, D. Huertas-Hernando, and A. Brataas, Spin transport in proximity-induced ferromagnetic graphene, Phys. Rev. B 77(11), 115406 (2008)
CrossRef ADS Google scholar
[11]
P. Stepanov, Y. Barlas, S. Che, K. Myhro, G. Voigt, Z. Pi, K. Watanabe, T. Taniguchi, D. Smirnov, F. Zhang, R. K. Lake, A. H. MacDonald, and C. N. Lau, Quantum parity Hall effect in bernal-stacked trilayer graphene, Proc. Natl. Acad. Sci. USA 116(21), 10286 (2019)
CrossRef ADS Google scholar
[12]
S. Sun, Y. Yu, J. Dang, K. Peng, X. Xie, F. Song, C. Qian, S. Wu, H. Ali, J. Tang, J. Yang, S. Xiao, S. Tian, M. Wang, X. Shan, M. A. Rafiq, C. Wang, and X. Xu, Large gfactor in bilayer WS2 flakes, Appl. Phys. Lett. 114(11), 113104 (2019)
CrossRef ADS Google scholar
[13]
X. Q. Yu, Z. G. Zhu, J. S. You, T. Low, and G. Su, Topological nonlinear anomalous nernst effect in strained transition metal dichalcogenides, Phys. Rev. B 99(20), 201410 (2019)
CrossRef ADS Google scholar
[14]
E. I. Rashba, Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem, Phys. Rev. B 62(24), R16267 (2000)
CrossRef ADS Google scholar
[15]
G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62(8), R4790 (2000)
CrossRef ADS Google scholar
[16]
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448(7153), 571 (2007)
CrossRef ADS Google scholar
[17]
X. Ma, H. Ai, H. Gao, and X. Zhang, Valley polarization and ferroelectricity in two-dimensional GaAsC6 monolayer, Phys. Chem. Chem. Phys. 21, 3954 (2019)
CrossRef ADS Google scholar
[18]
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and Other Two-Dimensional Materials, Front. Phys. 14, 13301 (2019)
CrossRef ADS Google scholar
[19]
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
CrossRef ADS Google scholar
[20]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[21]
G. D. Scholes and G. Rumbles, Excitons in nanoscale systems, Nat. Mater. 5(9), 683 (2006)
CrossRef ADS Google scholar
[22]
M. Law, J. Goldberger, and P. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 34(1), 83 (2004)
CrossRef ADS Google scholar
[23]
Y. L. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley splitting and polarization by the Zeeman effect in monolayer MoSe2, Phys. Rev. Lett. 113(26), 266804 (2014)
CrossRef ADS Google scholar
[24]
D. MacNeil, C. Heikes, K. F. Mak, Z. Anderson, A. Kormanyos, V. Zolymi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114, 037401 (2015)
CrossRef ADS Google scholar
[25]
G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. W. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11, 141 (2015)
CrossRef ADS Google scholar
[26]
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)
CrossRef ADS Google scholar
[27]
J. S. Qi, X. Li, Q. Niu, and J. Feng, Giant and tunable valley degeneracy splitting in MoTe2, Phys. Rev. B 92(12), 121403 (2015)
CrossRef ADS Google scholar
[28]
Z. F. Liu, W. X. Feng, H. L. Xin, Y. L. Gao, P. F. Liu, Y. G. Yao, H. M. Weng, and J. J. Zhao, Two-dimensional spin–valley-coupled Dirac semimetals in functionalized SbAs monolayers, Mater. Horiz. 6(4), 781 (2019)
CrossRef ADS Google scholar
[29]
F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Weak localization in graphene flakes, Phys. Rev. Lett. 100(5), 056802 (2008)
CrossRef ADS Google scholar
[30]
M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61(21), 2472 (1988)
CrossRef ADS Google scholar
[31]
S. Datta and B. Das, Electronic analog of the electronoptic modulator, Appl. Phys. Lett. 56(7), 665 (1990)
CrossRef ADS Google scholar
[32]
A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
CrossRef ADS Google scholar
[33]
X. D. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in transition metal dichalcogenides, Nat. Phys. 10, 343 (2014)
CrossRef ADS Google scholar
[34]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[35]
H. M. Dong, S. D. Guo, Y. F. Duan, F. Huang, W. Xu, and J. Zhang, Electronic and optical properties of singlelayer MoS2, Front. Phys. 13(4), 137307 (2018)
CrossRef ADS Google scholar
[36]
G. Y. Wu, N. Y. Lue, and Y. C. Chen, Quantum manipulation of valleys in bilayer graphene, Phys. Rev. B 88(12), 125422 (2013)
CrossRef ADS Google scholar
[37]
L. Majidi and R. Asgari, Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve, Phys. Rev. B 90(16), 165440 (2014)
CrossRef ADS Google scholar
[38]
P. M. Krstajić, P. Vasilopoulos, and M. Tahir, Spin- and valley-polarized transport through ferromagnetic and antiferromagnetic barriers on monolayer MoS2, Physica E 75, 317 (2016)
CrossRef ADS Google scholar
[39]
R. P. Arnaud, Velocity-modulation control of electronwave propagation in graphene, Phys. Rev. B 81, 073407 (2010)
CrossRef ADS Google scholar
[40]
A. Concha and Z. Tešanović, Effect of a velocity barrier on the ballistic transport of Dirac fermions, Phys. Rev. B 82(3), 033413 (2010)
CrossRef ADS Google scholar
[41]
P. M. Krstaji and P. Vasilopoulos, Ballistic transport through graphene nanostructures of velocity and potential barriers, J. Phys.: Condes. Matter 23, 135302 (2011)
CrossRef ADS Google scholar
[42]
Y. Wang, Y. Liu, and B. Wang, Resonant tunneling and enhanced Goos–Hänchen shift in a graphene double velocity barrier structure, Physica E 53, 186 (2013)
CrossRef ADS Google scholar
[43]
J. L. Zhang, W. Fu, K.Y. Wang, S.S. Ke, and H.F. Lü, Effect of a velocity barrier on the spin- and valley-dependent transport in ferromagnetic silicene, Physica B 525, 16 (2017)
CrossRef ADS Google scholar
[44]
X. J. Qiu, Q. Lv, and Z. Z. Cao, Velocity barriercontrolled of spin-valley polarized transport in monolayer WSe2 Junction, Superlattices Microstruct. 449, 117 (2018)
CrossRef ADS Google scholar
[45]
C. H. Park, L. Yang, Y. W. Son, M. L. Cohen, and S. G. Louie, Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials, Nat. Phys. 4(3), 213 (2008)
CrossRef ADS Google scholar
[46]
M. Gibertini, A. Singha, V. Pellegrini, M. Polini, G. Vignale, A. Pinczuk, L. N. Pfeiffer, and K. W. West, Engineering artificial graphene in a two-dimensional electron gas, Phys. Rev. B 79(24), 241406 (2009)
CrossRef ADS Google scholar
[47]
A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)
CrossRef ADS Google scholar
[48]
C. Jang, S. Adam, J. H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering, Phys. Rev. Lett. 101(14), 146805 (2008)
CrossRef ADS Google scholar
[49]
X. Li, F. Zhang, and Q. Niu, Unconventional quantum Hall effect and tunable spin Hall effect in MoS2 trilayers, Phys. Rev. Lett. 110, 066803 (2013)
[50]
M. Tahir and U. Schwingenschlögl, Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides, New J. Phys. 16(11), 115003 (2014)
CrossRef ADS Google scholar
[51]
Z. Li and J. P. Carbotte, Longitudinal and spin-valley Hall optical conductivity in single layer MoS2, Phys. Rev. B 86(20), 205425 (2012)
CrossRef ADS Google scholar
[52]
M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett. 57, 1761 (1986)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1884 KB)

Accesses

Citations

Detail

Sections
Recommended

/