Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation
Xiao-Dong Wu, Yi-Jun Wang, Duan Huang, Ying Guo
Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation
We propose a novel scheme for measurement-device-independent (MDI) continuous-variable quantum key distribution (CVQKD) by simultaneously conducting classical communication and QKD, which is called “simultaneous MDI-CVQKD” protocol. In such protocol, each sender (Alice, Bob) can superimpose random numbers for QKD on classical information by taking advantage of the same weak coherent pulse and an untrusted third party (Charlie) decodes it by using the same coherent detectors, which could be appealing in practice due to that multiple purposes can be realized by employing only single communication system. What is more, the proposed protocol is MDI, which is immune to all possible side-channel attacks on practical detectors. Security results illustrate that the simultaneous MDI-CVQKD protocol can secure against arbitrary collective attacks. In addition, we employ phasesensitive optical amplifiers to compensate the imperfection existing in practical detectors. With this technology, even common practical detectors can be used for detection through choosing a suitable optical amplifier gain. Furthermore, we also take the finite-size effect into consideration and show that the whole raw keys can be taken advantage of to generate the final secret key instead of sacrificing part of them for parameter estimation. Therefore, an enhanced performance of the simultaneous MDI-CVQKD protocol can be obtained in finite-size regime.
measurement-device-independent / continuous-variable quantum key distribution / simultaneous / realistic detector compensation
[1] |
S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quantum cryptography, arXiv: 1906.01645 (2019)
CrossRef
ADS
Google scholar
|
[2] |
E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, Practical challenges in quantum key distribution, npj Quantum Inf. 2, 16025 (2016)
CrossRef
ADS
Google scholar
|
[3] |
H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)
CrossRef
ADS
Google scholar
|
[4] |
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)
CrossRef
ADS
Google scholar
|
[5] |
V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)
CrossRef
ADS
Google scholar
|
[6] |
C. Weedbrook, S. Pirandola, R. García-Patrín, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84(2), 621 (2012)
CrossRef
ADS
Google scholar
|
[7] |
L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
CrossRef
ADS
Google scholar
|
[8] |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef
ADS
Google scholar
|
[9] |
H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)
CrossRef
ADS
Google scholar
|
[10] |
J. Y. Wang, B. Yang, S. K. Liao, L. Zhang, Q. Shen, X. F. Hu, J. C. Wu, S. J. Yang, H. Jiang, Y. L. Tang, B. Zhong, H. Liang, W. Y. Liu, Y. H. Hu, Y. M. Huang, B. Qi, J. G. Ren, G. S. Pan, J. Yin, J. J. Jia, Y. A. Chen, K. Chen, C. Z. Peng, and J. W. Pan, Direct and full-scale experimental verifications towards ground–satellite quantum key distribution, Nat. Photonics 7(5), 387 (2013)
CrossRef
ADS
Google scholar
|
[11] |
M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, Overcoming the rate-distance limit of quantum key distribution without quantum repeaters, Nature 557(7705), 400 (2018)
CrossRef
ADS
Google scholar
|
[12] |
A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
CrossRef
ADS
Google scholar
|
[13] |
F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88(5), 057902 (2002)
CrossRef
ADS
Google scholar
|
[14] |
F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421(6920), 238 (2003)
CrossRef
ADS
Google scholar
|
[15] |
T. C. Ralph, Continuous variable quantum cryptography, Phys. Rev. A 61(1), 010303 (1999)
CrossRef
ADS
Google scholar
|
[16] |
F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, Continuous-variable quantum key distribution with Gaussian modulation – the theory of practical implementations, Adv. Quantum Technol. 1(1), 1800011 (2018)
CrossRef
ADS
Google scholar
|
[17] |
B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76(5), 052323 (2007)
CrossRef
ADS
Google scholar
|
[18] |
X. D. Wu, Q. Liao, D. Huang, X. H. Wu, and Y. Guo, Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine, Chin. Phys. B 26(11), 110304 (2017)
CrossRef
ADS
Google scholar
|
[19] |
W. Liu, P. Huang, J. Peng, J. Fan, and G. Zeng, Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution, Phys. Rev. A 97(2), 022316 (2018)
CrossRef
ADS
Google scholar
|
[20] |
T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution, Quantum Inform. Process. 17(1), 11 (2018)
CrossRef
ADS
Google scholar
|
[21] |
R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97, 190503 (2006)
CrossRef
ADS
Google scholar
|
[22] |
P. Huang, J. Fang, and G. Zeng, State-discrimination attack on discretely modulated continuous-variable quantum key distribution, Phys. Rev. A 89(4), 042330 (2014)
CrossRef
ADS
Google scholar
|
[23] |
X. D. Wu, Y. J. Wang, H. Zhong, Q. Liao, and Y. Guo, Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction, Front. Phys. 14(4), 41501 (2019)
CrossRef
ADS
Google scholar
|
[24] |
C. Xie, J. Zhang, Q. Pan, X. Jia, and K. Peng, Continuous variable quantum communication with bright entangled optical beams, Front. Phys. China 1(4), 383 (2006)
CrossRef
ADS
Google scholar
|
[25] |
S. Pirandola, S. L. Braunstein, and S. Lloyd, Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography, Phys. Rev. Lett. 101(20), 200504 (2008)
CrossRef
ADS
Google scholar
|
[26] |
R. Renner and J. I. Cirac, de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography, Phys. Rev. Lett. 102(11), 110504 (2009)
CrossRef
ADS
Google scholar
|
[27] |
A. Leverrier, F. Grosshans, and P. Grangier, Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A 81(6), 062343 (2010)
CrossRef
ADS
Google scholar
|
[28] |
F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks, Phys. Rev. Lett. 109(10), 100502 (2012)
CrossRef
ADS
Google scholar
|
[29] |
A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, Security of continuous-variable quantum key distribution against general attacks, Phys. Rev. Lett. 110(3), 030502 (2013)
CrossRef
ADS
Google scholar
|
[30] |
A. Leverrier, Composable security proof for continuousvariable quantum key distribution with coherent states, Phys. Rev. Lett. 114(7), 070501 (2015)
CrossRef
ADS
Google scholar
|
[31] |
D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6(1), 19201 (2016)
CrossRef
ADS
Google scholar
|
[32] |
D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Field demonstration of a continuous-variable quantum\ key distribution network, Opt. Lett. 41(15), 3511 (2016)
CrossRef
ADS
Google scholar
|
[33] |
P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, Experimental demonstration of longdistance continuous-variable quantum key distribution, Nat. Photonics 7(5), 378 (2013)
CrossRef
ADS
Google scholar
|
[34] |
C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel, Sci. Rep. 5(1), 14607 (2015)
CrossRef
ADS
Google scholar
|
[35] |
G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. 85(6), 1330 (2000)
CrossRef
ADS
Google scholar
|
[36] |
Z. Yuan, J. Dynes, and A. Shields, Avoiding the blinding attack in QKD, Nat. Photonics 4(12), 800 (2010)
CrossRef
ADS
Google scholar
|
[37] |
J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking on quantum key distribution using homodyne detection, Phys. Rev. A 89(3), 032304 (2014)
CrossRef
ADS
Google scholar
|
[38] |
P. Jouguet, S. Kunz-Jacques, and E. Diamanti, Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution, Phys. Rev. A 87(6), 062313 (2013)
CrossRef
ADS
Google scholar
|
[39] |
X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A 88(2), 022339 (2013)
CrossRef
ADS
Google scholar
|
[40] |
X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantumkey-distribution system with a heterodyne protocol, Phys. Rev. A 87(5), 052309 (2013)
CrossRef
ADS
Google scholar
|
[41] |
H. Qin, R. Kumar, V. Makarov, and R. Alléaume, Homodyne-detector-blinding attack in continuousvariable quantum key distribution, Phys. Rev. A 98(1), 012312 (2018)
CrossRef
ADS
Google scholar
|
[42] |
H. Qin, R. Kumar, and R. Alléaume, Saturation attack on continuous-variable quantum key distribution system, Proc. SPIE 8899, 88990N (2013)
CrossRef
ADS
Google scholar
|
[43] |
S. L. Braunstein and S. Pirandola, Side-channel-free quantum key distribution, Phys. Rev. Lett. 108(13), 130502 (2012)
CrossRef
ADS
Google scholar
|
[44] |
H. K. Lo, M. Curty, and B. Qi, Measurement-deviceindependent quantum key distribution, Phys. Rev. Lett. 108(13), 130503 (2012)
CrossRef
ADS
Google scholar
|
[45] |
F. Xu, M. Curty, B. Qi, and H. K. Lo, Practical aspects of measurement-device-independent quantum key distribution, New J. Phys. 15(11), 113007 (2013)
CrossRef
ADS
Google scholar
|
[46] |
X. B. Wang, Three-intensity decoy-state method for device-independent quantum key distribution with basisdependent errors, Phys. Rev. A 87(1), 012320 (2013)
CrossRef
ADS
Google scholar
|
[47] |
M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, Finite-key analysis for measurement-deviceindependent quantum key distribution, Nat. Commun. 5(1), 3732 (2014)
CrossRef
ADS
Google scholar
|
[48] |
C. Ottaviani, G. Spedalieri, S. L. Braunstein, and S. Pirandola, Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration, Phys. Rev. A 91(2), 022320 (2015)
CrossRef
ADS
Google scholar
|
[49] |
P. Papanastasiou, C. Ottaviani, and S. Pirandola, Finitesize analysis of measurement-device-independent quantum cryptography with continuous variables, Phys. Rev. A 96(4), 042332 (2017)
CrossRef
ADS
Google scholar
|
[50] |
Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett. 111(13), 130502 (2013)
CrossRef
ADS
Google scholar
|
[51] |
T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid, Proof-of-principle demonstration of measurement-deviceindependent quantum key distribution using polarization qubits, Phys. Rev. A 88(5), 052303 (2013)
CrossRef
ADS
Google scholar
|
[52] |
Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, Phys. Rev. Lett. 112(19), 190503 (2014)
CrossRef
ADS
Google scholar
|
[53] |
H. W. Li, Z. Q. Yin, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, Quantum key distribution based on quantum dimension and independent devices, Phys. Rev. A 89(3), 032302 (2014)
CrossRef
ADS
Google scholar
|
[54] |
F. Xu, B. Qi, Z. Liao, and H. K. Lo, Long distance measurement-device-independent quantum key distribution with entangled photon sources, Appl. Phys. Lett. 103(6), 061101 (2013)
CrossRef
ADS
Google scholar
|
[55] |
X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, and L. M. Liang, Gaussian-modulated coherent-state measurementdevice- independent quantum key distribution, Phys. Rev. A 89(4), 042335 (2014)
CrossRef
ADS
Google scholar
|
[56] |
S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-deviceindependent quantum cryptography, Nat. Photonics 9(6), 397 (2015)
CrossRef
ADS
Google scholar
|
[57] |
Z. Li, Y. C. Zhang, F. Xu, X. Peng, and H. Guo, Continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A 89(5), 052301 (2014)
CrossRef
ADS
Google scholar
|
[58] |
B. Qi, Simultaneous classical communication and quantum key distribution using continuous variables, Phys. Rev. A 94(4), 042340 (2016)
CrossRef
ADS
Google scholar
|
[59] |
B. Qi and C. C. W. Lim, Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator, Phys. Rev. Appl. 9(5), 054008 (2018)
CrossRef
ADS
Google scholar
|
[60] |
X. Wu, Y. Wang, Q. Liao, H. Zhong, and Y. Guo, Simultaneous classical communication and quantum key distribution based on plug-and-play configuration with an optical amplifier, Entropy 21(4), 333 (2019)
CrossRef
ADS
Google scholar
|
[61] |
T. Wang, P. Huang, S. Wang, and G. Zeng, Carrierphase estimation for simultaneous quantum key distribution and classical communication using a real local oscillator, Phys. Rev. A 99(2), 022318 (2019)
CrossRef
ADS
Google scholar
|
[62] |
W. A. Hofer, Solving the Einstein-Podolsky-Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)
CrossRef
ADS
Google scholar
|
[63] |
M. Navascués and A. Acín, Security bounds for continuous variables quantum key distribution, Phys. Rev. Lett. 94(2), 020505 (2005)
CrossRef
ADS
Google scholar
|
[64] |
S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fundamental limits of repeaterless quantum communications, Nat. Commun. 8(1), 15043 (2017)
CrossRef
ADS
Google scholar
|
[65] |
S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, Improvement of continuousvariable quantum key distribution systems by using optical preamplifiers, J. Phys. At. Mol. Opt. Phys. 42(11), 114014 (2009)
CrossRef
ADS
Google scholar
|
[66] |
X. Zhang, Y. Zhang, Y. Zhao, X. Wang, S. Yu, and H. Guo, Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A 96(4), 042334 (2017)
CrossRef
ADS
Google scholar
|
[67] |
C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, Parameter estimation with almost no public communication for continuous-variable quantum key distribution, Phys. Rev. Lett. 120(22), 220505 (2018)
CrossRef
ADS
Google scholar
|
[68] |
Q. Liao, Y. Wang, D. Huang, and Y. Guo, Dualphase-modulated plug-and-play measurement-deviceindependent continuous-variable quantum key distribution, Opt. Express 26(16), 19907 (2018)
CrossRef
ADS
Google scholar
|
[69] |
X. Wu, Y. Wang, S. Li, W. Zhang, D. Huang, and Y. Guo, Security analysis of passive measurement-deviceindependent continuous-variable quantum key distribution with almost no public communication, Quantum Inform. Process. 18(12), 372 (2019)
CrossRef
ADS
Google scholar
|
[70] |
C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, Continuous-variable measurement-deviceindependent quantum key distribution: Composable security against coherent attacks, Phys. Rev. A 97(5), 052327 (2018)
CrossRef
ADS
Google scholar
|
[71] |
B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the local oscillator “locally” in continuousvariable quantum key distribution based on coherent detection, Phys. Rev. X 5(4), 041009 (2015)
CrossRef
ADS
Google scholar
|
[72] |
D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-referenced continuous-variable quantum key distribution protocol, Phys. Rev. X 5(4), 041010 (2015)
CrossRef
ADS
Google scholar
|
[73] |
D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, High-speed continuous-variable quantum key distribution without sending a local oscillator, Opt. Lett. 40(16), 3695 (2015)
CrossRef
ADS
Google scholar
|
[74] |
X. Zhang, Y. Zhang, Z. Li, S. Yu, and H. Guo,IEEE Photonics J. 10, 1 (2018)
CrossRef
ADS
Google scholar
|
[75] |
G.-P. Sanchez, Universite Libre de Bruxelles, 2007
|
/
〈 | 〉 |