Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation

Xiao-Dong Wu, Yi-Jun Wang, Duan Huang, Ying Guo

PDF(2287 KB)
PDF(2287 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (3) : 31601. DOI: 10.1007/s11467-020-0954-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation

Author information +
History +

Abstract

We propose a novel scheme for measurement-device-independent (MDI) continuous-variable quantum key distribution (CVQKD) by simultaneously conducting classical communication and QKD, which is called “simultaneous MDI-CVQKD” protocol. In such protocol, each sender (Alice, Bob) can superimpose random numbers for QKD on classical information by taking advantage of the same weak coherent pulse and an untrusted third party (Charlie) decodes it by using the same coherent detectors, which could be appealing in practice due to that multiple purposes can be realized by employing only single communication system. What is more, the proposed protocol is MDI, which is immune to all possible side-channel attacks on practical detectors. Security results illustrate that the simultaneous MDI-CVQKD protocol can secure against arbitrary collective attacks. In addition, we employ phasesensitive optical amplifiers to compensate the imperfection existing in practical detectors. With this technology, even common practical detectors can be used for detection through choosing a suitable optical amplifier gain. Furthermore, we also take the finite-size effect into consideration and show that the whole raw keys can be taken advantage of to generate the final secret key instead of sacrificing part of them for parameter estimation. Therefore, an enhanced performance of the simultaneous MDI-CVQKD protocol can be obtained in finite-size regime.

Keywords

measurement-device-independent / continuous-variable quantum key distribution / simultaneous / realistic detector compensation

Cite this article

Download citation ▾
Xiao-Dong Wu, Yi-Jun Wang, Duan Huang, Ying Guo. Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation. Front. Phys., 2020, 15(3): 31601 https://doi.org/10.1007/s11467-020-0954-8

References

[1]
S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quantum cryptography, arXiv: 1906.01645 (2019)
CrossRef ADS Google scholar
[2]
E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, Practical challenges in quantum key distribution, npj Quantum Inf. 2, 16025 (2016)
CrossRef ADS Google scholar
[3]
H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)
CrossRef ADS Google scholar
[4]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)
CrossRef ADS Google scholar
[5]
V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)
CrossRef ADS Google scholar
[6]
C. Weedbrook, S. Pirandola, R. García-Patrín, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84(2), 621 (2012)
CrossRef ADS Google scholar
[7]
L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
CrossRef ADS Google scholar
[8]
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef ADS Google scholar
[9]
H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)
CrossRef ADS Google scholar
[10]
J. Y. Wang, B. Yang, S. K. Liao, L. Zhang, Q. Shen, X. F. Hu, J. C. Wu, S. J. Yang, H. Jiang, Y. L. Tang, B. Zhong, H. Liang, W. Y. Liu, Y. H. Hu, Y. M. Huang, B. Qi, J. G. Ren, G. S. Pan, J. Yin, J. J. Jia, Y. A. Chen, K. Chen, C. Z. Peng, and J. W. Pan, Direct and full-scale experimental verifications towards ground–satellite quantum key distribution, Nat. Photonics 7(5), 387 (2013)
CrossRef ADS Google scholar
[11]
M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, Overcoming the rate-distance limit of quantum key distribution without quantum repeaters, Nature 557(7705), 400 (2018)
CrossRef ADS Google scholar
[12]
A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
CrossRef ADS Google scholar
[13]
F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88(5), 057902 (2002)
CrossRef ADS Google scholar
[14]
F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421(6920), 238 (2003)
CrossRef ADS Google scholar
[15]
T. C. Ralph, Continuous variable quantum cryptography, Phys. Rev. A 61(1), 010303 (1999)
CrossRef ADS Google scholar
[16]
F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, Continuous-variable quantum key distribution with Gaussian modulation – the theory of practical implementations, Adv. Quantum Technol. 1(1), 1800011 (2018)
CrossRef ADS Google scholar
[17]
B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76(5), 052323 (2007)
CrossRef ADS Google scholar
[18]
X. D. Wu, Q. Liao, D. Huang, X. H. Wu, and Y. Guo, Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine, Chin. Phys. B 26(11), 110304 (2017)
CrossRef ADS Google scholar
[19]
W. Liu, P. Huang, J. Peng, J. Fan, and G. Zeng, Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution, Phys. Rev. A 97(2), 022316 (2018)
CrossRef ADS Google scholar
[20]
T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution, Quantum Inform. Process. 17(1), 11 (2018)
CrossRef ADS Google scholar
[21]
R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97, 190503 (2006)
CrossRef ADS Google scholar
[22]
P. Huang, J. Fang, and G. Zeng, State-discrimination attack on discretely modulated continuous-variable quantum key distribution, Phys. Rev. A 89(4), 042330 (2014)
CrossRef ADS Google scholar
[23]
X. D. Wu, Y. J. Wang, H. Zhong, Q. Liao, and Y. Guo, Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction, Front. Phys. 14(4), 41501 (2019)
CrossRef ADS Google scholar
[24]
C. Xie, J. Zhang, Q. Pan, X. Jia, and K. Peng, Continuous variable quantum communication with bright entangled optical beams, Front. Phys. China 1(4), 383 (2006)
CrossRef ADS Google scholar
[25]
S. Pirandola, S. L. Braunstein, and S. Lloyd, Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography, Phys. Rev. Lett. 101(20), 200504 (2008)
CrossRef ADS Google scholar
[26]
R. Renner and J. I. Cirac, de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography, Phys. Rev. Lett. 102(11), 110504 (2009)
CrossRef ADS Google scholar
[27]
A. Leverrier, F. Grosshans, and P. Grangier, Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A 81(6), 062343 (2010)
CrossRef ADS Google scholar
[28]
F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks, Phys. Rev. Lett. 109(10), 100502 (2012)
CrossRef ADS Google scholar
[29]
A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, Security of continuous-variable quantum key distribution against general attacks, Phys. Rev. Lett. 110(3), 030502 (2013)
CrossRef ADS Google scholar
[30]
A. Leverrier, Composable security proof for continuousvariable quantum key distribution with coherent states, Phys. Rev. Lett. 114(7), 070501 (2015)
CrossRef ADS Google scholar
[31]
D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6(1), 19201 (2016)
CrossRef ADS Google scholar
[32]
D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Field demonstration of a continuous-variable quantum\ key distribution network, Opt. Lett. 41(15), 3511 (2016)
CrossRef ADS Google scholar
[33]
P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, Experimental demonstration of longdistance continuous-variable quantum key distribution, Nat. Photonics 7(5), 378 (2013)
CrossRef ADS Google scholar
[34]
C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel, Sci. Rep. 5(1), 14607 (2015)
CrossRef ADS Google scholar
[35]
G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. 85(6), 1330 (2000)
CrossRef ADS Google scholar
[36]
Z. Yuan, J. Dynes, and A. Shields, Avoiding the blinding attack in QKD, Nat. Photonics 4(12), 800 (2010)
CrossRef ADS Google scholar
[37]
J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking on quantum key distribution using homodyne detection, Phys. Rev. A 89(3), 032304 (2014)
CrossRef ADS Google scholar
[38]
P. Jouguet, S. Kunz-Jacques, and E. Diamanti, Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution, Phys. Rev. A 87(6), 062313 (2013)
CrossRef ADS Google scholar
[39]
X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A 88(2), 022339 (2013)
CrossRef ADS Google scholar
[40]
X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantumkey-distribution system with a heterodyne protocol, Phys. Rev. A 87(5), 052309 (2013)
CrossRef ADS Google scholar
[41]
H. Qin, R. Kumar, V. Makarov, and R. Alléaume, Homodyne-detector-blinding attack in continuousvariable quantum key distribution, Phys. Rev. A 98(1), 012312 (2018)
CrossRef ADS Google scholar
[42]
H. Qin, R. Kumar, and R. Alléaume, Saturation attack on continuous-variable quantum key distribution system, Proc. SPIE 8899, 88990N (2013)
CrossRef ADS Google scholar
[43]
S. L. Braunstein and S. Pirandola, Side-channel-free quantum key distribution, Phys. Rev. Lett. 108(13), 130502 (2012)
CrossRef ADS Google scholar
[44]
H. K. Lo, M. Curty, and B. Qi, Measurement-deviceindependent quantum key distribution, Phys. Rev. Lett. 108(13), 130503 (2012)
CrossRef ADS Google scholar
[45]
F. Xu, M. Curty, B. Qi, and H. K. Lo, Practical aspects of measurement-device-independent quantum key distribution, New J. Phys. 15(11), 113007 (2013)
CrossRef ADS Google scholar
[46]
X. B. Wang, Three-intensity decoy-state method for device-independent quantum key distribution with basisdependent errors, Phys. Rev. A 87(1), 012320 (2013)
CrossRef ADS Google scholar
[47]
M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, Finite-key analysis for measurement-deviceindependent quantum key distribution, Nat. Commun. 5(1), 3732 (2014)
CrossRef ADS Google scholar
[48]
C. Ottaviani, G. Spedalieri, S. L. Braunstein, and S. Pirandola, Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration, Phys. Rev. A 91(2), 022320 (2015)
CrossRef ADS Google scholar
[49]
P. Papanastasiou, C. Ottaviani, and S. Pirandola, Finitesize analysis of measurement-device-independent quantum cryptography with continuous variables, Phys. Rev. A 96(4), 042332 (2017)
CrossRef ADS Google scholar
[50]
Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett. 111(13), 130502 (2013)
CrossRef ADS Google scholar
[51]
T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid, Proof-of-principle demonstration of measurement-deviceindependent quantum key distribution using polarization qubits, Phys. Rev. A 88(5), 052303 (2013)
CrossRef ADS Google scholar
[52]
Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, Phys. Rev. Lett. 112(19), 190503 (2014)
CrossRef ADS Google scholar
[53]
H. W. Li, Z. Q. Yin, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, Quantum key distribution based on quantum dimension and independent devices, Phys. Rev. A 89(3), 032302 (2014)
CrossRef ADS Google scholar
[54]
F. Xu, B. Qi, Z. Liao, and H. K. Lo, Long distance measurement-device-independent quantum key distribution with entangled photon sources, Appl. Phys. Lett. 103(6), 061101 (2013)
CrossRef ADS Google scholar
[55]
X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, and L. M. Liang, Gaussian-modulated coherent-state measurementdevice- independent quantum key distribution, Phys. Rev. A 89(4), 042335 (2014)
CrossRef ADS Google scholar
[56]
S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-deviceindependent quantum cryptography, Nat. Photonics 9(6), 397 (2015)
CrossRef ADS Google scholar
[57]
Z. Li, Y. C. Zhang, F. Xu, X. Peng, and H. Guo, Continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A 89(5), 052301 (2014)
CrossRef ADS Google scholar
[58]
B. Qi, Simultaneous classical communication and quantum key distribution using continuous variables, Phys. Rev. A 94(4), 042340 (2016)
CrossRef ADS Google scholar
[59]
B. Qi and C. C. W. Lim, Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator, Phys. Rev. Appl. 9(5), 054008 (2018)
CrossRef ADS Google scholar
[60]
X. Wu, Y. Wang, Q. Liao, H. Zhong, and Y. Guo, Simultaneous classical communication and quantum key distribution based on plug-and-play configuration with an optical amplifier, Entropy 21(4), 333 (2019)
CrossRef ADS Google scholar
[61]
T. Wang, P. Huang, S. Wang, and G. Zeng, Carrierphase estimation for simultaneous quantum key distribution and classical communication using a real local oscillator, Phys. Rev. A 99(2), 022318 (2019)
CrossRef ADS Google scholar
[62]
W. A. Hofer, Solving the Einstein-Podolsky-Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)
CrossRef ADS Google scholar
[63]
M. Navascués and A. Acín, Security bounds for continuous variables quantum key distribution, Phys. Rev. Lett. 94(2), 020505 (2005)
CrossRef ADS Google scholar
[64]
S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fundamental limits of repeaterless quantum communications, Nat. Commun. 8(1), 15043 (2017)
CrossRef ADS Google scholar
[65]
S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, Improvement of continuousvariable quantum key distribution systems by using optical preamplifiers, J. Phys. At. Mol. Opt. Phys. 42(11), 114014 (2009)
CrossRef ADS Google scholar
[66]
X. Zhang, Y. Zhang, Y. Zhao, X. Wang, S. Yu, and H. Guo, Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution, Phys. Rev. A 96(4), 042334 (2017)
CrossRef ADS Google scholar
[67]
C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, Parameter estimation with almost no public communication for continuous-variable quantum key distribution, Phys. Rev. Lett. 120(22), 220505 (2018)
CrossRef ADS Google scholar
[68]
Q. Liao, Y. Wang, D. Huang, and Y. Guo, Dualphase-modulated plug-and-play measurement-deviceindependent continuous-variable quantum key distribution, Opt. Express 26(16), 19907 (2018)
CrossRef ADS Google scholar
[69]
X. Wu, Y. Wang, S. Li, W. Zhang, D. Huang, and Y. Guo, Security analysis of passive measurement-deviceindependent continuous-variable quantum key distribution with almost no public communication, Quantum Inform. Process. 18(12), 372 (2019)
CrossRef ADS Google scholar
[70]
C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, Continuous-variable measurement-deviceindependent quantum key distribution: Composable security against coherent attacks, Phys. Rev. A 97(5), 052327 (2018)
CrossRef ADS Google scholar
[71]
B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the local oscillator “locally” in continuousvariable quantum key distribution based on coherent detection, Phys. Rev. X 5(4), 041009 (2015)
CrossRef ADS Google scholar
[72]
D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-referenced continuous-variable quantum key distribution protocol, Phys. Rev. X 5(4), 041010 (2015)
CrossRef ADS Google scholar
[73]
D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, High-speed continuous-variable quantum key distribution without sending a local oscillator, Opt. Lett. 40(16), 3695 (2015)
CrossRef ADS Google scholar
[74]
X. Zhang, Y. Zhang, Z. Li, S. Yu, and H. Guo,IEEE Photonics J. 10, 1 (2018)
CrossRef ADS Google scholar
[75]
G.-P. Sanchez, Universite Libre de Bruxelles, 2007

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2287 KB)

Accesses

Citations

Detail

Sections
Recommended

/