Mechanically scanned leaky-wave antenna based on a topological one-way waveguide

Qian Shen, Yun You, Jie Xu, Yun Shen, Xiaohua Deng, Zhuoyuan Wang, Weidong Min, Linfang Shen, Sanshui Xiao

PDF(3661 KB)
PDF(3661 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (3) : 33601. DOI: 10.1007/s11467-020-0953-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Mechanically scanned leaky-wave antenna based on a topological one-way waveguide

Author information +
History +

Abstract

We propose a uniform backfire-to-endfire leaky-wave antenna (LWA) based on a topological one-way waveguide under external bias magnetic field. We systematically analyze the dispersion, showing that the proposed structure supports leaky mode arisen from total internal reflection. By means of tuning frequency or magnetic field, we obtain fixed-bias frequency and fixed-frequency bias LWA with continuous beam scanning from backward, broadside to forward direction. More importantly, we, for the first time, demonstrate that this proposed LWA shows mechanical tunability, allowing us to manipulate the radiation direction from backward, broadside to forward direction by mechanically tuning the air layer thickness. The simulated results show that our system exhibits super low 3dB beam width, high radiation efficiency as well as high antenna gain. Being provided such multiple controlled (especially mechanically) beam scanning manners, the present LWA paves an advanced approach for continuous beam scanning, holding a great potential for applications in modern communication and radar system.

Keywords

leaky-wave antenna / one-way waveguide / magneto-optic materials

Cite this article

Download citation ▾
Qian Shen, Yun You, Jie Xu, Yun Shen, Xiaohua Deng, Zhuoyuan Wang, Weidong Min, Linfang Shen, Sanshui Xiao. Mechanically scanned leaky-wave antenna based on a topological one-way waveguide. Front. Phys., 2020, 15(3): 33601 https://doi.org/10.1007/s11467-020-0953-9

References

[1]
W. W. Hansen, U.S. Patent 2 402 622 (1940)
[2]
D. Comite, S. K. Podilchak, P. Baccarelli, P. Burghignoli, A. Galli, A. P. Freundorfer, and Y. M. M. Antar, Analysis and design of a compact leaky-wave antenna for wideband broadside radiation, Sci. Rep. 8(1), 17741 (2018)
CrossRef ADS Google scholar
[3]
J. L. Gomez-Tornero, Analysis and design of conformal tapered leaky-wave antennas, IEEE Antennas Wirel. Propag. Lett. 10, 1068 (2011)
CrossRef ADS Google scholar
[4]
L. Wang, J. L. Gomez-Tornero, E. Rajo-Iglesias, and O. Quevedo-Teruel, Low-dispersive leaky-wave antenna integrated in Groove gap waveguide technology, IEEE Trans. Antenn. Propag. 66(11), 99 (2018)
CrossRef ADS Google scholar
[5]
J. Xu, W. Hong, H. Tang, Z. Kuai, and K. Wu, Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications, IEEE Antennas Wirel. Propag. Lett. 7, 85 (2008)
CrossRef ADS Google scholar
[6]
D. R. Jackson, C. Caloz, and T. Itoh, Leaky-wave antennas, IEEE Proc. 100(7), 2194 (2012)
CrossRef ADS Google scholar
[7]
Q. Song, S. Campione, O. Boyraz, and F. Capolino, Silicon-based optical leaky wave antenna with narrow beam radiation, Opt. Express 19(9), 8735 (2011)
CrossRef ADS Google scholar
[8]
J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, Holographic surface leaky-wave lenses with circularly-polarized focused near-fields (I): Concept, design and analysis theory, IEEE Trans. Antenn. Propag. 61(7), 3475 (2013)
CrossRef ADS Google scholar
[9]
A. Lai, C. Caloz and T. Itoh, Composite right/lefthanded transmission line metamaterials, IEEE Microw. Mag. 5(3), 34 (2004)
CrossRef ADS Google scholar
[10]
J. Y. Yin, J. Ren, Q. Zhang, H. C. Zhang, Y. Q. Liu, Y. B. Li, X. Wan, and T. Jun Cui, Frequency-controlled broad-angle beam scanning of patch array fed by Spoof surface plasmon polaritons, IEEE Trans. Antenn. Propag. 64(12), 5181 (2016)
CrossRef ADS Google scholar
[11]
L. Liu, C. Caloz, and T. Itoh, Dominant mode leakywave antenna with backfire-to-endfire scanning capability, Electron. Lett. 38(23), 1414 (2002)
CrossRef ADS Google scholar
[12]
L. Goldstone and A. Oliner, Leaky-wave antennas (I): Rectangular waveguides, IEEE Trans. Antenn. Propag. 7(4), 307 (2003)
CrossRef ADS Google scholar
[13]
W. Hong, T. L. Chen, C. Y. Chang, J. W. Sheen, and Y. D. Lin, Broadband tapered microstrip leaky-wave antenna, IEEE Trans. Antenn. Propag. 51(8), 1922 (2003)
CrossRef ADS Google scholar
[14]
M. Wang, H. F. Ma, H. C. Zhang, W. X. Tang, X. R. Zhang, and T. J. Cui, Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line, IEEE Trans. Antenn. Propag. 66(9), 4449 (2018)
CrossRef ADS Google scholar
[15]
M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, W. X. Jiang, and T. J. Cui, A dual-band electronic-scanning leaky-wave antenna based on a corrugated microstrip line, IEEE Trans. Antenn. Propag. 67(5), 3433 (2019)
CrossRef ADS Google scholar
[16]
D. K. Karmokar, K. P. Esselle, and S. G. Hay, Fixedfrequency bBeam steering of microstrip leaky-wave Antennas using binary switches, IEEE Trans. Antenn. Propag. 64(6), 2146 (2016)
CrossRef ADS Google scholar
[17]
R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, Electronically steerable 1-D Fabry–Perot leaky-wave antenna employing a tunable high impedance surface, IEEE Trans. Antenn. Propag. 60(11), 5046 (2012)
CrossRef ADS Google scholar
[18]
B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, New York, 1962
[19]
A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, Surface polaritons on semi-infinite gyromagnetic media, J. Phys. C 6(7), 1266 (1973)
CrossRef ADS Google scholar
[20]
T. Kodera and C. Caloz, Integrated leaky-wave antenna– duplexer/diplexer using CRLH uniform ferrite-loaded open waveguide, IEEE Trans. Antenn. Propag. 58(8), 2508 (2010)
CrossRef ADS Google scholar
[21]
T. Ueda and M. Tsutsumi, Left-handed transmission characteristics of rectangular waveguides periodically loaded with ferrite, IEEE Trans. Magn. 41(10), 3532 (2005)
CrossRef ADS Google scholar
[22]
T. Ueda and M. Tsutsumi, Nonreciprocal left-handed transmission characteristics of microstriplines on ferrite substrate, IET Microw. Antennas Propag. 1(2), 349 (2007)
CrossRef ADS Google scholar
[23]
Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)
CrossRef ADS Google scholar
[24]
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
CrossRef ADS Google scholar
[25]
A. B. Khanikaev and G. Shvets, Two-dimensional topological photonics, Nat. Photonics 11(12), 763 (2017)
CrossRef ADS Google scholar
[26]
S. C. Zhang, Z. Fang, and Q. K. Xue, Advances in topological materials, Front. Phys. 7(2), 147 (2012)
CrossRef ADS Google scholar
[27]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef ADS Google scholar
[28]
T. Kodera and C. Caloz, Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel backfire-to-endfire leaky-wave antenna, IEEE Trans. Microw. Theory Tech. 57(4), 784 (2009)
CrossRef ADS Google scholar
[29]
Q. Shen, L. F. Shen, W. D. Min, C. Wu, X. H. Deng, and S. S. Xiao, Trapping a magnetic rainbow by using a one-way magnetostatic-like mode, Opt. Mater. Express 9(11), 4399 (2019)
CrossRef ADS Google scholar
[30]
X. Deng, L. Hong, X. Zheng, and L. Shen, One-way regular electromagnetic mode immune to backscattering, Appl. Opt. 54(14), 4608 (2015)
CrossRef ADS Google scholar
[31]
Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, Completely stopping microwaves with extremely enhanced magnetic fields, Sci. Rep. 8(1), 15811 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3661 KB)

Accesses

Citations

Detail

Sections
Recommended

/