Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range 0g state

Ji-Zhou Wu, Yu-Qing Li, Wen-Liang Liu, Jie Ma, Lian-Tuan Xiao, Suo-Tang Jia

PDF(6220 KB)
PDF(6220 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 22602. DOI: 10.1007/s11467-020-0951-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range 0g state

Author information +
History +

Abstract

The light-induced frequency shift (LIFS) of ultracold molecular ro-vibrational levels originates from the strong coupling of the atomic-scattering state and the bound-molecular state. In this paper, we present our experimental determination of the LIFSs of the lowest vibrational levels (ν= 0, 1) in the purely long-range 0g state of ultracold cesium molecules. A high-resolution double photoassociation spectroscopy is developed, which serves as frequency ruler to measure the frequency shifts of the lowest molecular levels for Cs2. The experimental results are qualitatively consistent with the theoretical expectations.

Keywords

light-induced frequency shift / ultracold molecule / double photoassociation spectroscopy / long-range state

Cite this article

Download citation ▾
Ji-Zhou Wu, Yu-Qing Li, Wen-Liang Liu, Jie Ma, Lian-Tuan Xiao, Suo-Tang Jia. Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range 0g state. Front. Phys., 2020, 15(2): 22602 https://doi.org/10.1007/s11467-020-0951-y

References

[1]
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef ADS Google scholar
[2]
J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
CrossRef ADS Google scholar
[3]
J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, Magneto-optical trapping of a diatomic molecule, Nature 512(7514), 286 (2014)
CrossRef ADS Google scholar
[4]
A. M. Rey, A. V. Gorshkov, C. V. Kraus, M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. Ye, N. D. Lemke, and A. D. Ludlow, Probing many-body interactions in an optical lattice clock, Ann. Phys. 340(1), 311 (2014)
CrossRef ADS Google scholar
[5]
J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
CrossRef ADS Google scholar
[6]
N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12(7), 639 (2016)
CrossRef ADS Google scholar
[7]
K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Longrange molecules and atomic scattering, Rev. Mod. Phys. 78(2), 483 (2006)
CrossRef ADS Google scholar
[8]
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
CrossRef ADS Google scholar
[9]
N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89(1), 015006 (2017)
CrossRef ADS Google scholar
[10]
L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
CrossRef ADS Google scholar
[11]
J. Rui, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, Y. A. Chen, B. Zhao, and J. W. Pan, Controlled state-tostate atom-exchange reaction in an ultracold atom–dimer mixture, Nat. Phys. 13(7), 699 (2017)
CrossRef ADS Google scholar
[12]
L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler, T. Rosenband, and K. K. Ni, Building one molecule from a reservoir of two atoms, Science 360(6391), 900 (2018)
CrossRef ADS Google scholar
[13]
W. B. Cairncross, D. N. Gresh, M. Grau, K. C. Cossel, T. S. Roussy, Y. Q. Ni, Y. Zhou, J. Ye, and E. A. Cornell, Precision measurement of the electron’s electric dipole moment using trapped molecular ions, Phys. Rev. Lett. 119, 153001 (2017)
CrossRef ADS Google scholar
[14]
I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
CrossRef ADS Google scholar
[15]
S. A. Moses, J. P. Covey, M. T. Miecnikowski, D. S. Jin, and J. Ye, New frontiers for quantum gases of polar molecules, Nat. Phys. 13(1), 13 (2017)
CrossRef ADS Google scholar
[16]
O. Dulieu and C. Gabbanini, The formation and interactions of cold and ultracold molecules: New challenges for interdisciplinary physics, Rep. Prog. Phys. 72, 086401 (2009)
CrossRef ADS Google scholar
[17]
D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, Photoassociative spectroscopy and formation of cold molecules in cold cesium vapor: Trap-loss spectrum versus ion spectrum, J. Mol. Spectrosc. 195(2), 229 (1999)
CrossRef ADS Google scholar
[18]
J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, and S. Jia, Experimental determination of the rotational constants of high-lying vibrational levels of ultracold Cs2 in the 0g− purely long-range state, J. Phys. Chem. Lett. 4(21), 3612 (2013)
CrossRef ADS Google scholar
[19]
S. Sainis, J. Sage, E. Tiesinga, S. Kotochigova, T. Bergeman, and D. DeMille, Detailed spectroscopy of the Cs2 a3∑+u state and implications for measurements sensitive to variation of the electron-proton mass ratio, Phys. Rev. A 86(2), 022513 (2012)
CrossRef ADS Google scholar
[20]
Y. Yang, X. Liu, Y. Zhao, L. Xiao, and S. Jia, Rovibrational dynamics of RbCs on its lowest 1,3+ potential curves calculated by coupled cluster method with all-electron basis set, J. Phys. Chem. A 116(46), 11101 (2012)
CrossRef ADS Google scholar
[21]
J. Wu, Z. Ji, Y. Zhang, L. Wang, Y. Zhao, J. Ma, L. Xiao, and S. Jia, High sensitive determination of light induced frequency shifts of ultracold cesium molecules, Opt. Lett. 36(11), 2038 (2011)
CrossRef ADS Google scholar
[22]
P. K. Molony, P. D. Gregory, Z. H. Ji, B. Lu, M. P. Köppinger, C. R. Le Sueur, C. L. Blackley, J. M. Hutson, and S. L. Cornish, Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state, Phys. Rev. Lett. 113, 255301 (2014)
CrossRef ADS Google scholar
[23]
L. Lassablière and G. Quéméner, Controlling the scattering length of ultracold dipolar molecules, Phys. Rev. Lett. 121(16), 163402 (2018)
CrossRef ADS Google scholar
[24]
S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold Potassium-Rubidium molecules, Science 327(5967), 853 (2010)
CrossRef ADS Google scholar
[25]
M. Portier, S. Moal, J. Kim, M. Leduc, C. Cohen-Tannoudji, and O. Dulieu, Analysis of light-induced frequency shifts in the photoassociation of ultracold metastable helium atoms, J. Phys. B 39(19), S881 (2006)
CrossRef ADS Google scholar
[26]
I. D. Prodan, M. Pichler, M. Junker, R. G. Hulet, and J. L. Bohn, Intensity dependence of photoassociation in a quantum degenerate atomic gas, Phys. Rev. Lett. 91(8), 080402 (2003)
CrossRef ADS Google scholar
[27]
C. McKenzie, J. Hecker Denschlag, H. Häffner, A. Browaeys, L. E. E. de Araujo, F. K. Fatemi, K. M. Jones, J. E. Simsarian, D. Cho, A. Simoni, E. Tiesinga, P. S. Julienne, K. Helmerson, P. D. Lett, S. L. Rolston, and W. D. Phillips, Photoassociation of sodium in a bose-einstein condensate, Phys. Rev. Lett. 88(12), 120403 (2002)
CrossRef ADS Google scholar
[28]
A. Simoni, P. S. Julienne, E. Tiesinga, and C. J. Williams, Intensity effects in ultracold photoassociation line shapes, Phys. Rev. A 66(6), 063406 (2002)
CrossRef ADS Google scholar
[29]
J. L. Bohn and P. S. Julienne, Semianalytic theory of laser-assisted resonant cold collisions, Phys. Rev. A 60(1), 414 (1999)
CrossRef ADS Google scholar
[30]
Y. Q. Li, G. S. Feng, W. L. Liu, J. Z.Wu, J. Ma, L. T. Xiao, and S. T. Jia, Control of light induced frequency shift in ultracold cesium molecules by an external magnetic field, Opt. Lett. 40(10), 2241 (2015)
CrossRef ADS Google scholar
[31]
W. Liu, X. Wang, J. Wu, X. Su, S. Wang, V. B. Sovkov, J. Ma, L. Xiao, and S. Jia, Experimental observation and determination of the light induced frequency shift of hyperfine levels of ultracold polar molecules, Phys. Rev. A 96(2), 022504 (2017)
CrossRef ADS Google scholar
[32]
R. Wester, S. D. Kraft, M. Mudrich, M. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemüller, Photoassociation inside an optical dipole trap: Absolute rate coefficients and Franck–Condon factors, Appl. Phys. B 79(8), 993 (2004)
CrossRef ADS Google scholar
[33]
N. Bouloufa, A. Crubellier, and O. Dulieu, Reexamination of the 0g− pure long-range state of Cs2: Prediction of missing levels in the photoassociation spectrum, Phys. Rev. A 75, 052501 (2007)
CrossRef ADS Google scholar
[34]
Y. Zhang, J. Ma, J. Wu, L. Wang, L. Xiao, and S. Jia, Experimental observation of the lowest levels in the photoassociation spectroscopy of the 0g− purely-long-range state of Cs2, Phys. Rev. A 87, 030503 (2013)
CrossRef ADS Google scholar
[35]
J. Wu, W. Liu, Y. Li, J. Ma, L. Xiao, and S. Jia, Experimental determination of rotational constants of low-lying vibrational levels in the 0g− pure long-range state of ultracold Cs2 molecule, J. Quant. Spectrosc. Radiat. Transf. 191, 13 (2017)
CrossRef ADS Google scholar
[36]
J. Wu, J. Ma, Y. Zhang, Y. Li, L. Wang, Y. Zhao, G. Chen, L. Xiao, and S. Jia, High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules, Phys. Chem. Chem. Phys. 13(42), 18921 (2011)
CrossRef ADS Google scholar
[37]
M. Pichler, H. Chen, and W. C. Stwalley, Photoassociation spectroscopy of ultracold Cs below the 6P3/2 limit, J. Chem. Phys. 121(4), 1796 (2004)
CrossRef ADS Google scholar
[38]
A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Photoassociative spectroscopy of the long-range state, Eur Phys J. D 5, 389 (1999)
CrossRef ADS Google scholar
[39]
M. Pichler, H. Chen, and W. C. Stwalley, Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit, J. Chem. Phys. 121(14), 6779 (2004)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6220 KB)

Accesses

Citations

Detail

Sections
Recommended

/