Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range
Ji-Zhou Wu, Yu-Qing Li, Wen-Liang Liu, Jie Ma, Lian-Tuan Xiao, Suo-Tang Jia
Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range
The light-induced frequency shift (LIFS) of ultracold molecular ro-vibrational levels originates from the strong coupling of the atomic-scattering state and the bound-molecular state. In this paper, we present our experimental determination of the LIFSs of the lowest vibrational levels (ν= 0, 1) in the purely long-range state of ultracold cesium molecules. A high-resolution double photoassociation spectroscopy is developed, which serves as frequency ruler to measure the frequency shifts of the lowest molecular levels for Cs2. The experimental results are qualitatively consistent with the theoretical expectations.
light-induced frequency shift / ultracold molecule / double photoassociation spectroscopy / long-range state
[1] |
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef
ADS
Google scholar
|
[2] |
J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
CrossRef
ADS
Google scholar
|
[3] |
J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, Magneto-optical trapping of a diatomic molecule, Nature 512(7514), 286 (2014)
CrossRef
ADS
Google scholar
|
[4] |
A. M. Rey, A. V. Gorshkov, C. V. Kraus, M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. Ye, N. D. Lemke, and A. D. Ludlow, Probing many-body interactions in an optical lattice clock, Ann. Phys. 340(1), 311 (2014)
CrossRef
ADS
Google scholar
|
[5] |
J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
CrossRef
ADS
Google scholar
|
[6] |
N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12(7), 639 (2016)
CrossRef
ADS
Google scholar
|
[7] |
K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Longrange molecules and atomic scattering, Rev. Mod. Phys. 78(2), 483 (2006)
CrossRef
ADS
Google scholar
|
[8] |
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
CrossRef
ADS
Google scholar
|
[9] |
N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89(1), 015006 (2017)
CrossRef
ADS
Google scholar
|
[10] |
L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
CrossRef
ADS
Google scholar
|
[11] |
J. Rui, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, Y. A. Chen, B. Zhao, and J. W. Pan, Controlled state-tostate atom-exchange reaction in an ultracold atom–dimer mixture, Nat. Phys. 13(7), 699 (2017)
CrossRef
ADS
Google scholar
|
[12] |
L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler, T. Rosenband, and K. K. Ni, Building one molecule from a reservoir of two atoms, Science 360(6391), 900 (2018)
CrossRef
ADS
Google scholar
|
[13] |
W. B. Cairncross, D. N. Gresh, M. Grau, K. C. Cossel, T. S. Roussy, Y. Q. Ni, Y. Zhou, J. Ye, and E. A. Cornell, Precision measurement of the electron’s electric dipole moment using trapped molecular ions, Phys. Rev. Lett. 119, 153001 (2017)
CrossRef
ADS
Google scholar
|
[14] |
I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
CrossRef
ADS
Google scholar
|
[15] |
S. A. Moses, J. P. Covey, M. T. Miecnikowski, D. S. Jin, and J. Ye, New frontiers for quantum gases of polar molecules, Nat. Phys. 13(1), 13 (2017)
CrossRef
ADS
Google scholar
|
[16] |
O. Dulieu and C. Gabbanini, The formation and interactions of cold and ultracold molecules: New challenges for interdisciplinary physics, Rep. Prog. Phys. 72, 086401 (2009)
CrossRef
ADS
Google scholar
|
[17] |
D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, Photoassociative spectroscopy and formation of cold molecules in cold cesium vapor: Trap-loss spectrum versus ion spectrum, J. Mol. Spectrosc. 195(2), 229 (1999)
CrossRef
ADS
Google scholar
|
[18] |
J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, and S. Jia, Experimental determination of the rotational constants of high-lying vibrational levels of ultracold Cs2 in the 0g− purely long-range state, J. Phys. Chem. Lett. 4(21), 3612 (2013)
CrossRef
ADS
Google scholar
|
[19] |
S. Sainis, J. Sage, E. Tiesinga, S. Kotochigova, T. Bergeman, and D. DeMille, Detailed spectroscopy of the Cs2 a3∑+u state and implications for measurements sensitive to variation of the electron-proton mass ratio, Phys. Rev. A 86(2), 022513 (2012)
CrossRef
ADS
Google scholar
|
[20] |
Y. Yang, X. Liu, Y. Zhao, L. Xiao, and S. Jia, Rovibrational dynamics of RbCs on its lowest 1,3∑+ potential curves calculated by coupled cluster method with all-electron basis set, J. Phys. Chem. A 116(46), 11101 (2012)
CrossRef
ADS
Google scholar
|
[21] |
J. Wu, Z. Ji, Y. Zhang, L. Wang, Y. Zhao, J. Ma, L. Xiao, and S. Jia, High sensitive determination of light induced frequency shifts of ultracold cesium molecules, Opt. Lett. 36(11), 2038 (2011)
CrossRef
ADS
Google scholar
|
[22] |
P. K. Molony, P. D. Gregory, Z. H. Ji, B. Lu, M. P. Köppinger, C. R. Le Sueur, C. L. Blackley, J. M. Hutson, and S. L. Cornish, Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state, Phys. Rev. Lett. 113, 255301 (2014)
CrossRef
ADS
Google scholar
|
[23] |
L. Lassablière and G. Quéméner, Controlling the scattering length of ultracold dipolar molecules, Phys. Rev. Lett. 121(16), 163402 (2018)
CrossRef
ADS
Google scholar
|
[24] |
S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold Potassium-Rubidium molecules, Science 327(5967), 853 (2010)
CrossRef
ADS
Google scholar
|
[25] |
M. Portier, S. Moal, J. Kim, M. Leduc, C. Cohen-Tannoudji, and O. Dulieu, Analysis of light-induced frequency shifts in the photoassociation of ultracold metastable helium atoms, J. Phys. B 39(19), S881 (2006)
CrossRef
ADS
Google scholar
|
[26] |
I. D. Prodan, M. Pichler, M. Junker, R. G. Hulet, and J. L. Bohn, Intensity dependence of photoassociation in a quantum degenerate atomic gas, Phys. Rev. Lett. 91(8), 080402 (2003)
CrossRef
ADS
Google scholar
|
[27] |
C. McKenzie, J. Hecker Denschlag, H. Häffner, A. Browaeys, L. E. E. de Araujo, F. K. Fatemi, K. M. Jones, J. E. Simsarian, D. Cho, A. Simoni, E. Tiesinga, P. S. Julienne, K. Helmerson, P. D. Lett, S. L. Rolston, and W. D. Phillips, Photoassociation of sodium in a bose-einstein condensate, Phys. Rev. Lett. 88(12), 120403 (2002)
CrossRef
ADS
Google scholar
|
[28] |
A. Simoni, P. S. Julienne, E. Tiesinga, and C. J. Williams, Intensity effects in ultracold photoassociation line shapes, Phys. Rev. A 66(6), 063406 (2002)
CrossRef
ADS
Google scholar
|
[29] |
J. L. Bohn and P. S. Julienne, Semianalytic theory of laser-assisted resonant cold collisions, Phys. Rev. A 60(1), 414 (1999)
CrossRef
ADS
Google scholar
|
[30] |
Y. Q. Li, G. S. Feng, W. L. Liu, J. Z.Wu, J. Ma, L. T. Xiao, and S. T. Jia, Control of light induced frequency shift in ultracold cesium molecules by an external magnetic field, Opt. Lett. 40(10), 2241 (2015)
CrossRef
ADS
Google scholar
|
[31] |
W. Liu, X. Wang, J. Wu, X. Su, S. Wang, V. B. Sovkov, J. Ma, L. Xiao, and S. Jia, Experimental observation and determination of the light induced frequency shift of hyperfine levels of ultracold polar molecules, Phys. Rev. A 96(2), 022504 (2017)
CrossRef
ADS
Google scholar
|
[32] |
R. Wester, S. D. Kraft, M. Mudrich, M. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemüller, Photoassociation inside an optical dipole trap: Absolute rate coefficients and Franck–Condon factors, Appl. Phys. B 79(8), 993 (2004)
CrossRef
ADS
Google scholar
|
[33] |
N. Bouloufa, A. Crubellier, and O. Dulieu, Reexamination of the 0g− pure long-range state of Cs2: Prediction of missing levels in the photoassociation spectrum, Phys. Rev. A 75, 052501 (2007)
CrossRef
ADS
Google scholar
|
[34] |
Y. Zhang, J. Ma, J. Wu, L. Wang, L. Xiao, and S. Jia, Experimental observation of the lowest levels in the photoassociation spectroscopy of the 0g− purely-long-range state of Cs2, Phys. Rev. A 87, 030503 (2013)
CrossRef
ADS
Google scholar
|
[35] |
J. Wu, W. Liu, Y. Li, J. Ma, L. Xiao, and S. Jia, Experimental determination of rotational constants of low-lying vibrational levels in the 0g− pure long-range state of ultracold Cs2 molecule, J. Quant. Spectrosc. Radiat. Transf. 191, 13 (2017)
CrossRef
ADS
Google scholar
|
[36] |
J. Wu, J. Ma, Y. Zhang, Y. Li, L. Wang, Y. Zhao, G. Chen, L. Xiao, and S. Jia, High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules, Phys. Chem. Chem. Phys. 13(42), 18921 (2011)
CrossRef
ADS
Google scholar
|
[37] |
M. Pichler, H. Chen, and W. C. Stwalley, Photoassociation spectroscopy of ultracold Cs below the 6P3/2 limit, J. Chem. Phys. 121(4), 1796 (2004)
CrossRef
ADS
Google scholar
|
[38] |
A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Photoassociative spectroscopy of the long-range state, Eur Phys J. D 5, 389 (1999)
CrossRef
ADS
Google scholar
|
[39] |
M. Pichler, H. Chen, and W. C. Stwalley, Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit, J. Chem. Phys. 121(14), 6779 (2004)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |