Transferring entangled states of photonic cat-state qubits in circuit QED

Tong Liu, Zhen-Fei Zheng, Yu Zhang, Yu-Liang Fang, Chui-Ping Yang

PDF(1475 KB)
PDF(1475 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 21603. DOI: 10.1007/s11467-019-0949-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Transferring entangled states of photonic cat-state qubits in circuit QED

Author information +
History +

Abstract

We propose a method for transferring quantum entangled states of two photonic cat-state qubits (cqubits) from two microwave cavities to the other two microwave cavities. This proposal is realized by using four microwave cavities coupled to a superconducting flux qutrit. Because of using four cavities with different frequencies, the inter-cavity crosstalk is significantly reduced. Since only one coupler qutrit is used, the circuit resource is minimized. The entanglement transfer is completed with a singlestep operation only, thus this proposal is quite simple. The third energy level of the coupler qutrit is not populated during the state transfer, therefore decoherence from the higher energy level is greatly suppressed. Our numerical simulations show that high-fidelity transfer of two-cqubits entangled states from two transmission line resonators to the other two transmission line resonators is feasible with current circuit QED technology. This proposal is universal and can be applied to accomplish the same task in a wide range of physical systems, such as four microwave or optical cavities, which are coupled to a natural or artificial three-level atom.

Keywords

transferring quantum entangled states / photonic cat-state / microwave cavities

Cite this article

Download citation ▾
Tong Liu, Zhen-Fei Zheng, Yu Zhang, Yu-Liang Fang, Chui-Ping Yang. Transferring entangled states of photonic cat-state qubits in circuit QED. Front. Phys., 2020, 15(2): 21603 https://doi.org/10.1007/s11467-019-0949-5

References

[1]
C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantuminterferencedevice qubits in cavity QED, Phys. Rev. A 67(4), 042311 (2003)
CrossRef ADS Google scholar
[2]
J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68(6), 064509 (2003)
CrossRef ADS Google scholar
[3]
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)
CrossRef ADS Google scholar
[4]
J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58(11), 42 (2005)
CrossRef ADS Google scholar
[5]
J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453(7198), 1031 (2008)
CrossRef ADS Google scholar
[6]
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
CrossRef ADS Google scholar
[7]
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
CrossRef ADS Google scholar
[8]
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
CrossRef ADS Google scholar
[9]
P. B. Li, Y. C. Liu, S. Y. Gao, Z. L. Xiang, P. Rabl, Y. F. Xiao, and F. L. Li, Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities, Phys. Rev. Appl. 4(4), 044003 (2015)
CrossRef ADS Google scholar
[10]
C. P. Yang, S. I. Chu, and S. Han, Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter, Phys. Rev. Lett. 92(11), 117902 (2004)
CrossRef ADS Google scholar
[11]
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431(7005), 162 (2004)
CrossRef ADS Google scholar
[12]
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6(10), 772 (2010)
CrossRef ADS Google scholar
[13]
Q. Q. Wu, J. Q. Liao, and L. M. Kuang, Quantum state transfer between charge and flux qubits in circuit-QED, Chin. Phys. Lett. 25(4), 1179 (2008)
CrossRef ADS Google scholar
[14]
Z. B. Feng, Quantum state transfer between hybrid qubits in a circuit QED, Phys. Rev. A 85(1), 014302 (2012)
CrossRef ADS Google scholar
[15]
C. P. Yang, Q. P. Su, and F. Nori, Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities, New J. Phys. 15(11), 115003 (2013)
CrossRef ADS Google scholar
[16]
C. P. Yang and S. Han, n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72(3), 032311 (2005)
CrossRef ADS Google scholar
[17]
C. P. Yang, Y. X. Liu, and F. Nori, Phase gate of one qubit simultaneously controlling nqubits in a cavity, Phys. Rev. A 81(6), 062323 (2010)
CrossRef ADS Google scholar
[18]
C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, Single-step implementation of a multiple target-qubit controlled phase gate without need of classical pulses, Opt. Lett. 39(11), 3312 (2014)
CrossRef ADS Google scholar
[19]
H. F. Wang, A. D. Zhu, and S. Zhang, One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39(6), 1489 (2014)
CrossRef ADS Google scholar
[20]
Z. P. Hong, B. J. Liu, J. Q. Cai, X. D. Zhang, Y. Hu, Z. D. Wang, and Z. Y. Xue, Implementing universal nonadiabatic holonomic quantum gates with transmons, Phys. Rev. A 97(2), 022332 (2018)
CrossRef ADS Google scholar
[21]
B. Ye, Z. F. Zheng, and C. P. Yang, Multiplex-controlled phase gate with qubits distributed in a multicavity system, Phys. Rev. A 97(6), 062336 (2018)
CrossRef ADS Google scholar
[22]
S. L. Zhu, Z. D. Wang, and P. Zanardi, Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett. 94(10), 100502 (2005)
CrossRef ADS Google scholar
[23]
X. L. Zhang, K. L. Gao, and M. Feng, Preparation of cluster states and W states with superconducting quantuminterference-device qubits in cavity QED, Phys. Rev. A 74(2), 024303 (2006)
CrossRef ADS Google scholar
[24]
Z. J. Deng, K. L. Gao, and M. Feng, Generation of Nqubit W states with rf SQUID qubits by adiabatic passage, Phys. Rev. A 74(6), 064303 (2006)
CrossRef ADS Google scholar
[25]
F. Helmer, and F. Marquardt, Measurement-based synthesis of multiqubit entangled states in superconducting cavity QED, Phys. Rev. A 79(5), 052328 (2009)
CrossRef ADS Google scholar
[26]
S. Aldana, Y. D. Wang, and C. Bruder, Greenberger- Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)
CrossRef ADS Google scholar
[27]
C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
CrossRef ADS Google scholar
[28]
X. T. Mo, and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
CrossRef ADS Google scholar
[29]
Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Single-loop realization of arbitrary non-adiabatic holonomic singlequbit quantum gates in a superconducting circuit, Phys. Rev. Lett. 121(11), 110501 (2018)
CrossRef ADS Google scholar
[30]
T. Wang, Z. Zhang, L. Xiang, Z. Jia, P. Duan, W. Cai, Z. Gong, Z. Zong, M. Wu, J. Wu, L. Sun, Y. Yin, and G. Guo, The experimental realization of high-fidelity “shortcut-to-adiabaticity” quantum gates in a superconducting Xmon qubit, arXiv: 1804.08247 (2018)
CrossRef ADS Google scholar
[31]
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79, 180511(R) (2009)
CrossRef ADS Google scholar
[32]
J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti, B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen, Simple All-microwave entangling gate for fixed-frequency superconducting qubits, Phys. Rev. Lett. 107(8), 080502 (2011)
CrossRef ADS Google scholar
[33]
M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen, M. Lenander, E. Lucero, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Implementing the quantum von neumann architecture with superconducting circuits, Science 334(6052), 61 (2011)
CrossRef ADS Google scholar
[34]
A. Fedorov, L. Steffen, M. Baur, M. P. daSilva, and A. Wallraff, Implementation of a Toffoli gate with superconducting circuits, Nature 481(7380), 170 (2012)
CrossRef ADS Google scholar
[35]
C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J .W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)
CrossRef ADS Google scholar
[36]
M. Gong, M. C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C.Y. Lu, X. Zhu, and J. W. Pan, Genuine12-qubit entanglement on a superconducting quantum processor, Phys. Rev. Lett. 122(11), 110501 (2019)
CrossRef ADS Google scholar
[37]
C. Song, K. Xu, H. Li, Y. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D. Wang, H. Wang, and S. Zhu, Observation of multi-component atomic Schrodinger cat states of up to 20 qubits, Science 365(6453), 574 (2019)
CrossRef ADS Google scholar
[38]
L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler, G. Puebla-Hellmann, A. Fedorov, and A. Wallraff, Deterministic quantum teleportation with feed-forward in a solid state system., Nature 500(7462), 319 (2013)
CrossRef ADS Google scholar
[39]
X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
CrossRef ADS Google scholar
[40]
W. Ning, X. J. Huang, P. R. Han, H. Li, H. Deng, Z. B. Yang, Z. R. Zhong, Y. Xia, K. Xu, D. Zheng, and S. B. Zheng, Deterministic entanglement swapping in a superconducting circuit, arXiv: 1902.10959 (2019)
CrossRef ADS Google scholar
[41]
Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
CrossRef ADS Google scholar
[42]
W. Chen, D. A. Bennett, V. Patel, and J. E. Lukens, Substrate and process dependent losses in superconducting thin film resonators, Supercond. Sci. Technol. 21(7), 075013 (2008)
CrossRef ADS Google scholar
[43]
P. J. Leek, M. Baur, J. M. Fink, R. Bianchetti, L. Steffen, S. Filipp, and A. Wallraff, Cavity quantum electrodynamics with separate photon storage and qubit readout modes, Phys. Rev. Lett. 104(10), 100504 (2010)
CrossRef ADS Google scholar
[44]
M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, A quantum memory with near-millisecond coherence in circuit QED,Phys. Rev. B 94(1), 014506 (2016)
CrossRef ADS Google scholar
[45]
M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
CrossRef ADS Google scholar
[46]
M. Mariantoni, M. J. Storcz, F. K. Wilhelm, W. D. Oliver, A. Emmert, A. Marx, R. Gross, H. Christ, and E. Solano, On-chip microwave Fock states and quantum homodyne measurements, arXiv: cond-mat/0509737 (2005)
[47]
Y. X. Liu, L. F. Wei, and F. Nori, Generation of nonclassical photon states using a superconducting qubit in a microcavity, Europhys. Lett. 67(6), 941 (2004)
CrossRef ADS Google scholar
[48]
K. Moon and S. M. Girvin, Theory of microwave parametric down-conversion and squeezing using circuit QED, Phys. Rev. Lett. 95(14), 140504 (2005)
CrossRef ADS Google scholar
[49]
F. Marquardt and C. Bruder, Superposition of two mesoscopically distinct quantum states: Coupling a Cooperpair box to a large superconducting island, Phys. Rev. B 63(5), 054514 (2001)
CrossRef ADS Google scholar
[50]
Y. X. Liu, L. F. Wei, and F. Nori, Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit, Phys. Rev. A 71(6), 063820 (2005)
CrossRef ADS Google scholar
[51]
J. Q. Liao, J. F. Huang, and L. Tian, Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems, Phys. Rev. A (Coll. Park) 93(3), 033853 (2016)
CrossRef ADS Google scholar
[52]
X. Y. Lö, G. L. Zhu, L. L. Zheng, and Y. Wu, Entanglement and quantum superposition induced by a single photon, Phys. Rev. A (Coll. Park) 97(3), 033807 (2018)
CrossRef ADS Google scholar
[53]
F. W. Strauch, K. Jacobs, and R. W. Simmonds, Arbitrary control of entanglement between two superconducting resonators, Phys. Rev. Lett. 105(5), 050501 (2010)
CrossRef ADS Google scholar
[54]
C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)
CrossRef ADS Google scholar
[55]
P. B. Li, S. Y. Gao, and F. L. Li, Engineering two-mode entangled states between two superconducting resonators by dissipation, Phys. Rev. A 86(1), 012318 (2012)
CrossRef ADS Google scholar
[56]
C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit, Phys. Rev. A 87(2), 022320 (2013)
CrossRef ADS Google scholar
[57]
Q. P. Su, H. H. Zhu, L. Yu, Y. Zhang, S. J. Xiong, J. M. Liu, and C. P. Yang, Generating double NOON states of photons in circuit QED, Phys. Rev. A 95(2), 022339 (2017)
CrossRef ADS Google scholar
[58]
C. P. Yang, Q. P. Su, S. B. Zheng, F. Nori, and S. Han, Entangling two oscillators with arbitrary asymmetric initial states, Phys. Rev. A 95(5), 052341 (2017)
CrossRef ADS Google scholar
[59]
S. T. Merkel and F. K. Wilhelm, Generation and detection of NOON states in superconducting circuits, New J. Phys. 12(9), 093036 (2010)
CrossRef ADS Google scholar
[60]
Y. J. Zhao, C. Q. Wang, X. Zhu, and Y. X. Liu, Engineering entangled microwave photon states via multiphoton transitions between two cavities and a superconducting qubit, arXiv: 1506.06363 (2015)
[61]
S. J. Xiong, Z. Sun, J. M. Liu, T. Liu, and C. P. Yang, Efficient scheme for generation of photonic NOON states in circuit QED, Opt. Lett. 40(10), 2221 (2015)
CrossRef ADS Google scholar
[62]
M. Hua, M. J. Tao, and F. G. Deng, Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics, Phys. Rev. A 90(1), 012328 (2014)
CrossRef ADS Google scholar
[63]
M. Hua, M. J. Tao, and F. G. Deng, Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED, Sci. Rep. 5(1), 9274 (2015)
CrossRef ADS Google scholar
[64]
B. Ye, Z. F. Zheng, Y. Zhang, C. P. Yang, and Q. E. D. Circuit, single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n−1 microwave photonic qubits, Opt. Express 26(23), 30689 (2018)
CrossRef ADS Google scholar
[65]
M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, Synthesizing arbitrary quantum states in a superconducting resonator, Nature 459(7246), 546 (2009)
CrossRef ADS Google scholar
[66]
M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, Generation of Fock states in a superconducting quantum circuit, Nature 454(7202), 310 (2008)
CrossRef ADS Google scholar
[67]
H. Wang, M. Hofheinz, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, A. N. Cleland, and J. M. Martinis, Measurement of the decay of Fock states in a superconducting quantum circuit, Phys. Rev. Lett. 101(24), 240401 (2008)
CrossRef ADS Google scholar
[68]
Y. Xu, W. Cai, Y. Ma, X. Mu, W. Dai, W. Wang, L. Hu, X. Li, J. Han, H. Wang, Y. Song, Z. B. Yang, S. B. Zheng, and L. Sun, Geometrically manipulating photonic Schrödinger cat states and realizing cavity phase gates, arXiv: 1810.04690 (2018)
[69]
H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Deterministic entanglement of photons in two superconducting microwave resonators, Phys. Rev. Lett. 106(6), 060401 (2011)
CrossRef ADS Google scholar
[70]
M. Mariantoni, H. Wang, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Photon shell game in threeresonator circuit quantum electrodynamics, Nat. Phys. 7(4), 287 (2011)
CrossRef ADS Google scholar
[71]
L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C. L. Zou, S. M. Girvin, L. M. Duan, and L. Sun, Quantum error correction and universal gate set operation on a binomial bosonic logical qubit., Nat. Phys. 15(5), 503 (2019)
CrossRef ADS Google scholar
[72]
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)
CrossRef ADS Google scholar
[73]
N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)
CrossRef ADS Google scholar
[74]
C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger-Horne-Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
CrossRef ADS Google scholar
[75]
M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16(4), 045014 (2014)
CrossRef ADS Google scholar
[76]
S. E. Nigg, Deterministic Hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A 89(2), 022340 (2014)
CrossRef ADS Google scholar
[77]
Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, and C. P. Yang, Universal controlled-phase gate with cat-state qubits in circuit QED, Phys. Rev. A 96(5), 052317 (2017)
CrossRef ADS Google scholar
[78]
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
CrossRef ADS Google scholar
[79]
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)
CrossRef ADS Google scholar
[80]
C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrodinger cat living in two boxes, Science 352(6289), 1087 (2016)
CrossRef ADS Google scholar
[81]
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79(18), 180511 (2009)
CrossRef ADS Google scholar
[82]
M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
CrossRef ADS Google scholar
[83]
D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
CrossRef ADS Google scholar
[84]
J. Q. You, X. Hu, S. Ashhab, and F. Nori, Lowdecoherence flux qubit, Phys. Rev. B 75, 140515(R) (2007)
CrossRef ADS Google scholar
[85]
M. Steffen, S. Kumar, D. P. DiVincenzo, J. R. Rozen, G. A. Keefe, M. B. Rothwell, and M. B. Ketchen, Highcoherence hybrid superconducting qubit, Phys. Rev. Lett. 105(10), 100502 (2010)
CrossRef ADS Google scholar
[86]
F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and W. D. Oliver, The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7(1), 12964 (2016)
CrossRef ADS Google scholar
[87]
M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit, Phys. Rev. Lett. 102(24), 243602 (2009)
CrossRef ADS Google scholar
[88]
F. Yoshihara, Y. Nakamura, F. Yan, S. Gustavsson, J. Bylander, W. D. Oliver, and J. S. Tsai, Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions, Phys. Rev. B 89(2), 020503 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1475 KB)

Accesses

Citations

Detail

Sections
Recommended

/