Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars

He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein

PDF(1719 KB)
PDF(1719 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 24603. DOI: 10.1007/s11467-019-0945-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars

Author information +
History +

Abstract

With a selected sample of neutron star (NS) equations of state (EOSs) that are consistent with the current observations and have a range of maximum masses, we investigate the relations between NS gravitational mass Mg and baryonic mass Mb, and the relations between the maximum NS mass supported through uniform rotation (Mmax) and that of nonrotating NSs (MTOV). We find that for an EOS-independent quadratic, universal transformation formula (Mb=Mg+A×Mg2), the best-fit A value is 0.080 for non-rotating NSs, 0.064 for maximally rotating NSs, and 0.073 when NSs with arbitrary rotation are considered. The residual error of the transformation is ~0.1M for non-spin or maximum-spin, but is as large as ~0.2M for all spins. For different EOSs, we find that the parameter A for non-rotating NSs is proportional to R1.41 (where R1.4 is NS radius for 1.4M in units of km). For a particular EOS, if one adopts the best-fit parameters for different spin periods, the residual error of the transformation is smaller, which is of the order of 0.01 M for the quadratic form and less than 0.01M⊙ for the cubic form (Mb=Mg+A1×Mg2+A2×Mg3). We also find a very tight and general correlation between the normalized mass gain due to spin Δm(MmaxMTOV)/MTOV and the spin period normalized to the Keplerian period P, i.e., log10Δm=(2.74±0.05)log10P+log10(0.20±0.01), which is independent of EOS models. These empirical relations are helpful to study NS-NS mergers with a long-lived NS merger product using multi-messenger data. The application of our results to GW170817 is discussed.

Keywords

gravitational waves

Cite this article

Download citation ▾
He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein. Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars. Front. Phys., 2020, 15(2): 24603 https://doi.org/10.1007/s11467-019-0945-9

References

[1]
J. M. Lattimer, The nuclear equation of state and neutron star masses, Annu. Rev. Nucl. Part. Sci. 62(1), 485 (2012)
CrossRef ADS Google scholar
[2]
A. K. Harding, The neutron star zoo, Front. Phys. 8(6), 679 (2013)
CrossRef ADS Google scholar
[3]
J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pennucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G. Whelan, A massive pulsar in a compact relativistic binary, Science 340(6131), 1233232 (2013)
CrossRef ADS Google scholar
[4]
S. Lawrence, J. G. Tervala, P. F. Bedaque, and M. C. Miller, An upper bound on neutron star masses from models of short gamma-ray bursts, Astrophys. J. 808(2), 186 (2015)
CrossRef ADS Google scholar
[5]
C. L. Fryer, K. Belczynski, E. Ramirez-Ruiz, S. Rosswog, G. Shen, and A. W. Steiner, The fate of the compact remnant in neutron star mergers, Astrophys. J. 812(1), 24 (2015)
CrossRef ADS Google scholar
[6]
B. Margalit and B. D. Metzger, Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817, Astrophys. J. 850(2), L19 (2017)
CrossRef ADS Google scholar
[7]
L. Rezzolla, E. R. Most, and L. R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852(2), L25 (2018)
CrossRef ADS Google scholar
[8]
M. Ruiz, S. L. Shapiro, and A. Tsokaros, GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev. D 97(2), 021501 (2018)
CrossRef ADS Google scholar
[9]
A. Rowlinson, P. T. O’Brien, N. R. Tanvir, B. Zhang, P. A. Evans, N. Lyons, A. J. Levan, R. Willingale, K. L. Page, O. Onal, D. N. Burrows, A. P. Beardmore, T. N. Ukwatta, E. Berger, J. Hjorth, A. S. Fruchter, R. L. Tunnicliffe, D. B. Fox, and A. Cucchiara, The unusual X-ray emission of the short Swift GRB 090515: Evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409(2), 531 (2010)
CrossRef ADS Google scholar
[10]
A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan, Signatures of magnetar central engines in short GRB light curves, Mon. Not. R. Astron. Soc. 430(2), 1061 (2013)
CrossRef ADS Google scholar
[11]
H. J. Lü, B. Zhang, W. H. Lei, Y. Li, and P. Lasky, The millisecond magnetar central engine in short GRBs, Astrophys. J. 805(2), 89 (2015)
CrossRef ADS Google scholar
[12]
P. D. Lasky, B. Haskell, V. Ravi, E. J. Howell, and D. M. Coward, Nuclear equation of state from observations of short gamma-ray burst remnants, Phys. Rev. D 89(4), 047302 (2014)
CrossRef ADS Google scholar
[13]
V. Ravi and P. D. Lasky, The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts, Mon. Not. R. Astron. Soc. 441(3), 2433 (2014)
CrossRef ADS Google scholar
[14]
H. Gao, B. Zhang, and H. J. Lü, Constraints on binary neutron star merger product from short GRB observations, Phys. Rev. D 93(4), 044065 (2016)
CrossRef ADS Google scholar
[15]
A. Li, B. Zhang, N. B. Zhang, H. Gao, B. Qi, and T. Liu, Internal X-ray plateau in short GRBs: Signature of supramassive fast-rotating quark stars? Phys. Rev. D 94(8), 083010 (2016)
CrossRef ADS Google scholar
[16]
J. M. Lattimer and M. Prakash, Neutron star observations: Prognosis for equation of state constraints, Phys. Rep. 442(1–6), 109 (2007)
CrossRef ADS Google scholar
[17]
F. X. Timmes, S. E. Woosley, and T. A. Weaver, The neutron star and black hole initial mass function, Astrophys. J. 457, 834 (1996)
CrossRef ADS Google scholar
[18]
C. L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V. Kalogera, and D. E. Holz, Compact remnant mass function: Dependence on the explosion mechanism and metallicity, Astrophys. J. 749(1), 91 (2012)
CrossRef ADS Google scholar
[19]
O. Pejcha and T. A. Thompson, The landscape of the neutrino mechanism of core-collapse supernovae: Neutron star and black hole mass functions, explosion energies, and nickel yields, Astrophys. J. 801(2), 90 (2015)
CrossRef ADS Google scholar
[20]
J. M. Lattimer and A. Yahil, Analysis of the neutrino events from supernova 1987A, Astrophys. J. 340, 426 (1989)
CrossRef ADS Google scholar
[21]
A. Burrows, D. Klein, and R. Gandhi, The future of supernova neutrino detection, Phys. Rev. D 45(10), 3361 (1992)
CrossRef ADS Google scholar
[22]
J. Gava, J. Kneller, C. Volpe, and G. C. McLaughlin, Dynamical collective calculation of supernova neutrino signals, Phys. Rev. Lett. 103(7), 071101 (2009)
CrossRef ADS Google scholar
[23]
G. Camelio, A. Lovato, L. Gualtieri, O. Benhar, J. A. Pons, and V. Ferrari, Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies, Phys. Rev. D 96(4), 043015 (2017)
CrossRef ADS Google scholar
[24]
S. Rosswog, T. Piran, and E. Nakar, The multimessenger picture of compact object encounters: Binary mergers versus dynamical collisions, Mon. Not. R. Astron. Soc. 430(4), 2585 (2013)
CrossRef ADS Google scholar
[25]
A. Bauswein, S. Goriely, and H. T. Janka, Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers, Astrophys. J. 773(1), 78 (2013)
CrossRef ADS Google scholar
[26]
K. Hotokezaka, K. Kiuchi, K. Kyutoku, H. Okawa, Y. Sekiguchi, M. Shibata, and K. Taniguchi, Mass ejection from the merger of binary neutron stars, Phys. Rev. D 87(2), 024001 (2013)
CrossRef ADS Google scholar
[27]
R. Fernández, D. Kasen, B. D. Metzger, and E. Quataert, Outflows from accretion discs formed in neutron star mergers: effect of black hole spin, Mon. Not. R. Astron. Soc. 446(1), 750 (2015)
CrossRef ADS Google scholar
[28]
C. Y. Song, T. Liu, and A. Li, Outflows from black hole hyperaccretion systems: Short and long-short gamma-ray bursts and “quasi-supernovae”, Mon. Not. R. Astron. Soc. 477(2), 2173 (2018)
CrossRef ADS Google scholar
[29]
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017)
[30]
D. Radice, A. Perego, S. Bernuzzi, and B. Zhang, Longlived remnants from binary neutron star mergers, Mon. Not. R. Astron. Soc. 481(3), 3670 (2018)
CrossRef ADS Google scholar
[31]
J. M. Lattimer and M. Prakash, Neutron star structure and the equation of state, Astrophys. J. 550(1), 426 (2001)
CrossRef ADS Google scholar
[32]
M. Coughlin, T. Dietrich, K. Kawaguchi, S. Smartt, C. Stubbs, and M. Ujevic, Toward rapid transient identification and characterization of kilonovae, Astrophys. J. 849(1), 12 (2017)
CrossRef ADS Google scholar
[33]
G. Bozzola, N. Stergioulas, and A. Bauswein, Universal relations for differentially rotating relativistic stars at the threshold to collapse, Mon. Not. R. Astron. Soc. 474(3), 3557 (2018)
CrossRef ADS Google scholar
[34]
A. M. Studzińska, M. Kucaba, D. Gondek-Rosińska, L. Villain, and M. Ansorg, Effect of the equation of state on the maximum mass of differentially rotating neutron stars, Mon. Not. R. Astron. Soc. 463(3), 2667 (2016)
CrossRef ADS Google scholar
[35]
D. Gondek-Rosińska, I. Kowalska, L. Villain, M. Ansorg, and M. Kucaba, A New View on the Maximum Mass of Differentially Rotating Neutron Stars, Astrophys. J. 837(1), 58 (2017)
CrossRef ADS Google scholar
[36]
A. Bauswein and N. Stergioulas, Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron-star mergers, Mon. Not. R. Astron. Soc. 471(4), 4956 (2017)
CrossRef ADS Google scholar
[37]
L. R. Weih, E. R. Most, and L. Rezzolla, On the stability and maximum mass of differentially rotating relativistic stars, Mon. Not. R. Astron. Soc. 473(1), L126 (2018)
CrossRef ADS Google scholar
[38]
E. M. Butterworth and J. R. Ipser, On the structure and stability of rapidly rotating fluid bodies in general relativity (I): The numerical method for computing structure and its application to uniformly rotating homogeneous bodies, Astrophys. J. 204, 200 (1976)
CrossRef ADS Google scholar
[39]
N. Stergioulas and J. L. Friedman, Comparing models of rapidly rotating relativistic stars constructed by two numerical methods, Astrophys. J. 444, 306 (1995)
CrossRef ADS Google scholar
[40]
F. Douchin and P. Haensel, A unified equation of state of dense matter and neutron star structure, Astronomy and Astrophysics 380, 151 (2001)
CrossRef ADS Google scholar
[41]
R. B. Wiringa, V. Fiks, and A. Fabrocini, Equation of state for dense nucleon matter, Phys. Rev. C 38(2), 1010 (1988)
CrossRef ADS Google scholar
[42]
A. Akmal and V. R. Pandharipande, Spin-isospin structure and pion condensation in nucleon matter, Phys. Rev. C 56(4), 2261 (1997)
CrossRef ADS Google scholar
[43]
S. Goriely, N. Chamel, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas (XII): Stiffness and stability of neutron-star matter, Phys. Rev. C 82(3), 035804 (2010)
CrossRef ADS Google scholar
[44]
S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter, Composition and thermodynamics of nuclear matter with light clusters, Phys. Rev. C 81(1), 015803 (2010)
CrossRef ADS Google scholar
[45]
H. Müther, M. Prakash, and T. L. Ainsworth, The nuclear symmetry energy in relativistic Brueckner-Hartree- Fock calculations, Phys. Lett. B 199(4), 469 (1987)
CrossRef ADS Google scholar
[46]
H. Müller and B. D. Serot, Relativistic mean-field theory and the high-density nuclear equation of state, Nucl. Phys. A. 606(3–4), 508 (1996)
CrossRef ADS Google scholar
[47]
G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Rapidly rotating neutron stars in general relativity: Realistic equations of state, Astrophys. J. 424, 823 (1994)
CrossRef ADS Google scholar
[48]
J. P. Lasota, P. Haensel, and M. A. Abramowicz, Fast rotation of neutron stars, Astrophys. J. 456, 300 (1996)
CrossRef ADS Google scholar
[49]
C. Breu and L. Rezzolla, Maximum mass, moment of inertia and compactness of relativistic stars, Mon. Not. R. Astron. Soc. 459(1), 646 (2016)
CrossRef ADS Google scholar
[50]
Y. W. Yu, L. D. Liu, and Z. G. Dai, A long-lived remnant neutron star after GW170817 inferred from its associated kilonova, Astrophys. J. 861(2), 114 (2018)
CrossRef ADS Google scholar
[51]
S. Z. Li, L. D. Liu, Y. W. Yu, and B. Zhang, What powered the optical transient AT2017gfo associated with GW170817? Astrophys. J. 861(2), L12 (2018)
CrossRef ADS Google scholar
[52]
S. Ai, H. Gao, Z. G. Dai, X. F. Wu, A. Li, B. Zhang, and M. Z. Li, The allowed parameter space of a long-lived neutron star as the merger remnant of GW170817, Astrophys. J. 860(1), 57 (2018)
CrossRef ADS Google scholar
[53]
L. Piro, E. Troja, B. Zhang, G. Ryan, H. van Eerten, R. Ricci, M. H. Wieringa, A. Tiengo, N. R. Butler, S. B. Cenko, O. D. Fox, H. G. Khandrika, G. Novara, A. Rossi, and T. Sakamoto, A long-lived neutron star merger remnant in GW170817: Constraints and clues from Xray observations, Mon. Not. R. Astron. Soc. 483(2), 1912 (2019)
CrossRef ADS Google scholar
[54]
B. D. Metzger, Welcome to the multi-messenger era! Lessons from a neutron star merger and the landscape ahead, arXiv: 1710.05931 (2017)

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1719 KB)

Accesses

Citations

Detail

Sections
Recommended

/