Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars
He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein
Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars
With a selected sample of neutron star (NS) equations of state (EOSs) that are consistent with the current observations and have a range of maximum masses, we investigate the relations between NS gravitational mass Mg and baryonic mass Mb, and the relations between the maximum NS mass supported through uniform rotation (Mmax) and that of nonrotating NSs (MTOV). We find that for an EOS-independent quadratic, universal transformation formula (), the best-fit A value is 0.080 for non-rotating NSs, 0.064 for maximally rotating NSs, and 0.073 when NSs with arbitrary rotation are considered. The residual error of the transformation is ~0.1M⊙ for non-spin or maximum-spin, but is as large as ~0.2M⊙ for all spins. For different EOSs, we find that the parameter A for non-rotating NSs is proportional to (where R1.4 is NS radius for 1.4M⊙ in units of km). For a particular EOS, if one adopts the best-fit parameters for different spin periods, the residual error of the transformation is smaller, which is of the order of 0.01 M⊙ for the quadratic form and less than 0.01M⊙ for the cubic form (). We also find a very tight and general correlation between the normalized mass gain due to spin and the spin period normalized to the Keplerian period , i.e., , which is independent of EOS models. These empirical relations are helpful to study NS-NS mergers with a long-lived NS merger product using multi-messenger data. The application of our results to GW170817 is discussed.
[1] |
J. M. Lattimer, The nuclear equation of state and neutron star masses, Annu. Rev. Nucl. Part. Sci. 62(1), 485 (2012)
CrossRef
ADS
Google scholar
|
[2] |
A. K. Harding, The neutron star zoo, Front. Phys. 8(6), 679 (2013)
CrossRef
ADS
Google scholar
|
[3] |
J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pennucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G. Whelan, A massive pulsar in a compact relativistic binary, Science 340(6131), 1233232 (2013)
CrossRef
ADS
Google scholar
|
[4] |
S. Lawrence, J. G. Tervala, P. F. Bedaque, and M. C. Miller, An upper bound on neutron star masses from models of short gamma-ray bursts, Astrophys. J. 808(2), 186 (2015)
CrossRef
ADS
Google scholar
|
[5] |
C. L. Fryer, K. Belczynski, E. Ramirez-Ruiz, S. Rosswog, G. Shen, and A. W. Steiner, The fate of the compact remnant in neutron star mergers, Astrophys. J. 812(1), 24 (2015)
CrossRef
ADS
Google scholar
|
[6] |
B. Margalit and B. D. Metzger, Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817, Astrophys. J. 850(2), L19 (2017)
CrossRef
ADS
Google scholar
|
[7] |
L. Rezzolla, E. R. Most, and L. R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852(2), L25 (2018)
CrossRef
ADS
Google scholar
|
[8] |
M. Ruiz, S. L. Shapiro, and A. Tsokaros, GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev. D 97(2), 021501 (2018)
CrossRef
ADS
Google scholar
|
[9] |
A. Rowlinson, P. T. O’Brien, N. R. Tanvir, B. Zhang, P. A. Evans, N. Lyons, A. J. Levan, R. Willingale, K. L. Page, O. Onal, D. N. Burrows, A. P. Beardmore, T. N. Ukwatta, E. Berger, J. Hjorth, A. S. Fruchter, R. L. Tunnicliffe, D. B. Fox, and A. Cucchiara, The unusual X-ray emission of the short Swift GRB 090515: Evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409(2), 531 (2010)
CrossRef
ADS
Google scholar
|
[10] |
A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan, Signatures of magnetar central engines in short GRB light curves, Mon. Not. R. Astron. Soc. 430(2), 1061 (2013)
CrossRef
ADS
Google scholar
|
[11] |
H. J. Lü, B. Zhang, W. H. Lei, Y. Li, and P. Lasky, The millisecond magnetar central engine in short GRBs, Astrophys. J. 805(2), 89 (2015)
CrossRef
ADS
Google scholar
|
[12] |
P. D. Lasky, B. Haskell, V. Ravi, E. J. Howell, and D. M. Coward, Nuclear equation of state from observations of short gamma-ray burst remnants, Phys. Rev. D 89(4), 047302 (2014)
CrossRef
ADS
Google scholar
|
[13] |
V. Ravi and P. D. Lasky, The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts, Mon. Not. R. Astron. Soc. 441(3), 2433 (2014)
CrossRef
ADS
Google scholar
|
[14] |
H. Gao, B. Zhang, and H. J. Lü, Constraints on binary neutron star merger product from short GRB observations, Phys. Rev. D 93(4), 044065 (2016)
CrossRef
ADS
Google scholar
|
[15] |
A. Li, B. Zhang, N. B. Zhang, H. Gao, B. Qi, and T. Liu, Internal X-ray plateau in short GRBs: Signature of supramassive fast-rotating quark stars? Phys. Rev. D 94(8), 083010 (2016)
CrossRef
ADS
Google scholar
|
[16] |
J. M. Lattimer and M. Prakash, Neutron star observations: Prognosis for equation of state constraints, Phys. Rep. 442(1–6), 109 (2007)
CrossRef
ADS
Google scholar
|
[17] |
F. X. Timmes, S. E. Woosley, and T. A. Weaver, The neutron star and black hole initial mass function, Astrophys. J. 457, 834 (1996)
CrossRef
ADS
Google scholar
|
[18] |
C. L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V. Kalogera, and D. E. Holz, Compact remnant mass function: Dependence on the explosion mechanism and metallicity, Astrophys. J. 749(1), 91 (2012)
CrossRef
ADS
Google scholar
|
[19] |
O. Pejcha and T. A. Thompson, The landscape of the neutrino mechanism of core-collapse supernovae: Neutron star and black hole mass functions, explosion energies, and nickel yields, Astrophys. J. 801(2), 90 (2015)
CrossRef
ADS
Google scholar
|
[20] |
J. M. Lattimer and A. Yahil, Analysis of the neutrino events from supernova 1987A, Astrophys. J. 340, 426 (1989)
CrossRef
ADS
Google scholar
|
[21] |
A. Burrows, D. Klein, and R. Gandhi, The future of supernova neutrino detection, Phys. Rev. D 45(10), 3361 (1992)
CrossRef
ADS
Google scholar
|
[22] |
J. Gava, J. Kneller, C. Volpe, and G. C. McLaughlin, Dynamical collective calculation of supernova neutrino signals, Phys. Rev. Lett. 103(7), 071101 (2009)
CrossRef
ADS
Google scholar
|
[23] |
G. Camelio, A. Lovato, L. Gualtieri, O. Benhar, J. A. Pons, and V. Ferrari, Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies, Phys. Rev. D 96(4), 043015 (2017)
CrossRef
ADS
Google scholar
|
[24] |
S. Rosswog, T. Piran, and E. Nakar, The multimessenger picture of compact object encounters: Binary mergers versus dynamical collisions, Mon. Not. R. Astron. Soc. 430(4), 2585 (2013)
CrossRef
ADS
Google scholar
|
[25] |
A. Bauswein, S. Goriely, and H. T. Janka, Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers, Astrophys. J. 773(1), 78 (2013)
CrossRef
ADS
Google scholar
|
[26] |
K. Hotokezaka, K. Kiuchi, K. Kyutoku, H. Okawa, Y. Sekiguchi, M. Shibata, and K. Taniguchi, Mass ejection from the merger of binary neutron stars, Phys. Rev. D 87(2), 024001 (2013)
CrossRef
ADS
Google scholar
|
[27] |
R. Fernández, D. Kasen, B. D. Metzger, and E. Quataert, Outflows from accretion discs formed in neutron star mergers: effect of black hole spin, Mon. Not. R. Astron. Soc. 446(1), 750 (2015)
CrossRef
ADS
Google scholar
|
[28] |
C. Y. Song, T. Liu, and A. Li, Outflows from black hole hyperaccretion systems: Short and long-short gamma-ray bursts and “quasi-supernovae”, Mon. Not. R. Astron. Soc. 477(2), 2173 (2018)
CrossRef
ADS
Google scholar
|
[29] |
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017)
|
[30] |
D. Radice, A. Perego, S. Bernuzzi, and B. Zhang, Longlived remnants from binary neutron star mergers, Mon. Not. R. Astron. Soc. 481(3), 3670 (2018)
CrossRef
ADS
Google scholar
|
[31] |
J. M. Lattimer and M. Prakash, Neutron star structure and the equation of state, Astrophys. J. 550(1), 426 (2001)
CrossRef
ADS
Google scholar
|
[32] |
M. Coughlin, T. Dietrich, K. Kawaguchi, S. Smartt, C. Stubbs, and M. Ujevic, Toward rapid transient identification and characterization of kilonovae, Astrophys. J. 849(1), 12 (2017)
CrossRef
ADS
Google scholar
|
[33] |
G. Bozzola, N. Stergioulas, and A. Bauswein, Universal relations for differentially rotating relativistic stars at the threshold to collapse, Mon. Not. R. Astron. Soc. 474(3), 3557 (2018)
CrossRef
ADS
Google scholar
|
[34] |
A. M. Studzińska, M. Kucaba, D. Gondek-Rosińska, L. Villain, and M. Ansorg, Effect of the equation of state on the maximum mass of differentially rotating neutron stars, Mon. Not. R. Astron. Soc. 463(3), 2667 (2016)
CrossRef
ADS
Google scholar
|
[35] |
D. Gondek-Rosińska, I. Kowalska, L. Villain, M. Ansorg, and M. Kucaba, A New View on the Maximum Mass of Differentially Rotating Neutron Stars, Astrophys. J. 837(1), 58 (2017)
CrossRef
ADS
Google scholar
|
[36] |
A. Bauswein and N. Stergioulas, Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron-star mergers, Mon. Not. R. Astron. Soc. 471(4), 4956 (2017)
CrossRef
ADS
Google scholar
|
[37] |
L. R. Weih, E. R. Most, and L. Rezzolla, On the stability and maximum mass of differentially rotating relativistic stars, Mon. Not. R. Astron. Soc. 473(1), L126 (2018)
CrossRef
ADS
Google scholar
|
[38] |
E. M. Butterworth and J. R. Ipser, On the structure and stability of rapidly rotating fluid bodies in general relativity (I): The numerical method for computing structure and its application to uniformly rotating homogeneous bodies, Astrophys. J. 204, 200 (1976)
CrossRef
ADS
Google scholar
|
[39] |
N. Stergioulas and J. L. Friedman, Comparing models of rapidly rotating relativistic stars constructed by two numerical methods, Astrophys. J. 444, 306 (1995)
CrossRef
ADS
Google scholar
|
[40] |
F. Douchin and P. Haensel, A unified equation of state of dense matter and neutron star structure, Astronomy and Astrophysics 380, 151 (2001)
CrossRef
ADS
Google scholar
|
[41] |
R. B. Wiringa, V. Fiks, and A. Fabrocini, Equation of state for dense nucleon matter, Phys. Rev. C 38(2), 1010 (1988)
CrossRef
ADS
Google scholar
|
[42] |
A. Akmal and V. R. Pandharipande, Spin-isospin structure and pion condensation in nucleon matter, Phys. Rev. C 56(4), 2261 (1997)
CrossRef
ADS
Google scholar
|
[43] |
S. Goriely, N. Chamel, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas (XII): Stiffness and stability of neutron-star matter, Phys. Rev. C 82(3), 035804 (2010)
CrossRef
ADS
Google scholar
|
[44] |
S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter, Composition and thermodynamics of nuclear matter with light clusters, Phys. Rev. C 81(1), 015803 (2010)
CrossRef
ADS
Google scholar
|
[45] |
H. Müther, M. Prakash, and T. L. Ainsworth, The nuclear symmetry energy in relativistic Brueckner-Hartree- Fock calculations, Phys. Lett. B 199(4), 469 (1987)
CrossRef
ADS
Google scholar
|
[46] |
H. Müller and B. D. Serot, Relativistic mean-field theory and the high-density nuclear equation of state, Nucl. Phys. A. 606(3–4), 508 (1996)
CrossRef
ADS
Google scholar
|
[47] |
G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Rapidly rotating neutron stars in general relativity: Realistic equations of state, Astrophys. J. 424, 823 (1994)
CrossRef
ADS
Google scholar
|
[48] |
J. P. Lasota, P. Haensel, and M. A. Abramowicz, Fast rotation of neutron stars, Astrophys. J. 456, 300 (1996)
CrossRef
ADS
Google scholar
|
[49] |
C. Breu and L. Rezzolla, Maximum mass, moment of inertia and compactness of relativistic stars, Mon. Not. R. Astron. Soc. 459(1), 646 (2016)
CrossRef
ADS
Google scholar
|
[50] |
Y. W. Yu, L. D. Liu, and Z. G. Dai, A long-lived remnant neutron star after GW170817 inferred from its associated kilonova, Astrophys. J. 861(2), 114 (2018)
CrossRef
ADS
Google scholar
|
[51] |
S. Z. Li, L. D. Liu, Y. W. Yu, and B. Zhang, What powered the optical transient AT2017gfo associated with GW170817? Astrophys. J. 861(2), L12 (2018)
CrossRef
ADS
Google scholar
|
[52] |
S. Ai, H. Gao, Z. G. Dai, X. F. Wu, A. Li, B. Zhang, and M. Z. Li, The allowed parameter space of a long-lived neutron star as the merger remnant of GW170817, Astrophys. J. 860(1), 57 (2018)
CrossRef
ADS
Google scholar
|
[53] |
L. Piro, E. Troja, B. Zhang, G. Ryan, H. van Eerten, R. Ricci, M. H. Wieringa, A. Tiengo, N. R. Butler, S. B. Cenko, O. D. Fox, H. G. Khandrika, G. Novara, A. Rossi, and T. Sakamoto, A long-lived neutron star merger remnant in GW170817: Constraints and clues from Xray observations, Mon. Not. R. Astron. Soc. 483(2), 1912 (2019)
CrossRef
ADS
Google scholar
|
[54] |
B. D. Metzger, Welcome to the multi-messenger era! Lessons from a neutron star merger and the landscape ahead, arXiv: 1710.05931 (2017)
|
/
〈 | 〉 |