Directional quantum random walk induced by coherence

Jin-Fu Chen, Yu-Han Ma, Chang-Pu Sun

PDF(2038 KB)
PDF(2038 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 21602. DOI: 10.1007/s11467-019-0944-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Directional quantum random walk induced by coherence

Author information +
History +

Abstract

Quantum walk (QW), which is considered as the quantum counterpart of the classical random walk (CRW), is actually the quantum extension of CRW from the single-coin interpretation. The sequential unitary evolution engenders correlation between different steps in QW and leads to a non-binomial position distribution. In this paper, we propose an alternative quantum extension of CRW from the ensemble interpretation, named quantum random walk (QRW), where the walker has many unrelated coins, modeled as two-level systems, initially prepared in the same state. We calculate the walker’s position distribution in QRW for different initial coin states with the coin operator chosen as Hadamard matrix. In one-dimensional case, the walker’s position is the asymmetric binomial distribution. We further demonstrate that in QRW, coherence leads the walker to perform directional movement. For an initially decoherenced coin state, the walker’s position distribution is exactly the same as that of CRW. Moreover, we study QRW in 2D lattice, where the coherence plays a more diversified role in the walker’s position distribution.

Keywords

quantum walk / random walk / ensemble interpretation / directional walking / coherence

Cite this article

Download citation ▾
Jin-Fu Chen, Yu-Han Ma, Chang-Pu Sun. Directional quantum random walk induced by coherence. Front. Phys., 2020, 15(2): 21602 https://doi.org/10.1007/s11467-019-0944-x

References

[1]
N. van Kampen, in: Stochastic Processes in Physics and Chemistry, 3rd Ed., North-Holland Personal Library, edited by N. V. Kampen, Elsevier, Amsterdam, 2007, p.ix
CrossRef ADS Google scholar
[2]
Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
CrossRef ADS Google scholar
[3]
A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, ACM Press, 2001
[4]
V. Kendo, Decoherence in quantum walks – a review, Math. Struct. Comput. Sci. 17(6), 1169 (2007)
CrossRef ADS Google scholar
[5]
S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)
CrossRef ADS Google scholar
[6]
G. Grimmett, S. Janson, and P. F. Scudo, Weak limits for quantum random walks, Phys. Rev. E 69(2), 026119 (2004)
CrossRef ADS Google scholar
[7]
G. Abal, R. Siri, A. Romanelli, and R. Donangelo, Quantum walk on the line: Entanglement and nonlocal initial conditions, Phys. Rev. A 73(4), 042302 (2006)
CrossRef ADS Google scholar
[8]
L. Ermann, J. P. Paz, and M. Saraceno, Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin, Phys. Rev. A 73(1), 012302 (2006)
CrossRef ADS Google scholar
[9]
N. Shenvi, J. Kempe, and K. B. Whaley, Quantum random-walk search algorithm, Phys. Rev. A 67(5), 052307 (2003)
CrossRef ADS Google scholar
[10]
A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)
CrossRef ADS Google scholar
[11]
N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon, Universal quantum computation using the discrete-time quantum walk, Phys. Rev. A 81(4), 042330 (2010)
CrossRef ADS Google scholar
[12]
P. Witthaut, Quantum walks and quantum simulations with Bloch-oscillating spinor atoms, Rev. A 82(3), 033602 (2010)
CrossRef ADS Google scholar
[13]
M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer, J. Chem. Phys. 129(17), 174106 (2008)
CrossRef ADS Google scholar
[14]
T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)
CrossRef ADS Google scholar
[15]
K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, W. Yi, and P. Xue, Simulating dynamic quantum phase transitions in photonic quantum walks, Phys. Rev. Lett. 122(2), 020501 (2019)
CrossRef ADS Google scholar
[16]
J. Z. Wu, W. W. Zhang, and B. C. Sanders, Topological quantum walks: Theory and experiments, Front. Phys. 14(6), 61301 (2019)
CrossRef ADS Google scholar
[17]
T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum walks driven by many coins, Phys. Rev. A 67(5), 052317 (2003)
CrossRef ADS Google scholar
[18]
T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. Math. Gen. 35(12), 2745 (2002)
CrossRef ADS Google scholar
[19]
A. Schreiber, K. N. Cassemiro, V. Potocek, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, Photons walking the line: A quantum walk with adjustable coin operations, Phys. Rev. Lett. 104(5), 050502 (2010)
CrossRef ADS Google scholar
[20]
S. Panahiyan and S. Fritzsche, Controlling quantum random walk with a step-dependent coin, New J. Phys. 20(8), 083028 (2018)
CrossRef ADS Google scholar
[21]
M. Karski, L. Forster, J. M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)
CrossRef ADS Google scholar
[22]
F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104(10), 100503 (2010)
CrossRef ADS Google scholar
[23]
H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)
CrossRef ADS Google scholar
[24]
P. Xue, B. C. Sanders, and D. Leibfried, Quantum walk on a line for a trapped ion, Phys. Rev. Lett. 103(18), 183602 (2009)
CrossRef ADS Google scholar
[25]
M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, Discrete single-photon quantum walks with tunable decoherence, Phys. Rev. Lett. 104(15), 153602 (2010)
CrossRef ADS Google scholar
[26]
A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, Quantum walks of correlated photons, Science 329(5998), 1500 (2010)
CrossRef ADS Google scholar
[27]
H. Tang, X. F. Lin, Z. Feng, J. Y. Chen, J. Gao, K. Sun, C. Y. Wang, P. C. Lai, X.-Y. Xu, Y. Wang, L. F. Qiao, A. L. Yang, and X. M. Jin, Experimental twodimensional quantum walk on a photonic chip, Sci. Adv. 4(5), eaat3174 (2018)
CrossRef ADS Google scholar
[28]
Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
CrossRef ADS Google scholar
[29]
T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum random walks with decoherent coins, Phys. Rev. A 67(3), 032304 (2003)
CrossRef ADS Google scholar
[30]
T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum to classical transition for random walks, Phys. Rev. Lett. 91(13), 130602 (2003)
CrossRef ADS Google scholar
[31]
K. Zhang, Limiting distribution of decoherent quantum random walks, Phys. Rev. A 77(6), 062302 (2008)
CrossRef ADS Google scholar
[32]
J. D. Whitfield, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, Quantum stochastic walks: A generalization of classical random walks and quantum walks, Phys. Rev. A 81(2), 022323 (2010)
CrossRef ADS Google scholar
[33]
J. Košík, V. Bužek, and M. Hillery, Quantum walks with random phase shifts, Phys. Rev. A 74(2), 022310 (2006)
CrossRef ADS Google scholar
[34]
P. Ribeiro, P. Milman, and R. Mosseri, Aperiodic quantum random walks, Phys. Rev. Lett. 93(19), 190503 (2004)
CrossRef ADS Google scholar
[35]
L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2038 KB)

Accesses

Citations

Detail

Sections
Recommended

/