Directional quantum random walk induced by coherence
Jin-Fu Chen, Yu-Han Ma, Chang-Pu Sun
Directional quantum random walk induced by coherence
Quantum walk (QW), which is considered as the quantum counterpart of the classical random walk (CRW), is actually the quantum extension of CRW from the single-coin interpretation. The sequential unitary evolution engenders correlation between different steps in QW and leads to a non-binomial position distribution. In this paper, we propose an alternative quantum extension of CRW from the ensemble interpretation, named quantum random walk (QRW), where the walker has many unrelated coins, modeled as two-level systems, initially prepared in the same state. We calculate the walker’s position distribution in QRW for different initial coin states with the coin operator chosen as Hadamard matrix. In one-dimensional case, the walker’s position is the asymmetric binomial distribution. We further demonstrate that in QRW, coherence leads the walker to perform directional movement. For an initially decoherenced coin state, the walker’s position distribution is exactly the same as that of CRW. Moreover, we study QRW in 2D lattice, where the coherence plays a more diversified role in the walker’s position distribution.
quantum walk / random walk / ensemble interpretation / directional walking / coherence
[1] |
N. van Kampen, in: Stochastic Processes in Physics and Chemistry, 3rd Ed., North-Holland Personal Library, edited by N. V. Kampen, Elsevier, Amsterdam, 2007, p.ix
CrossRef
ADS
Google scholar
|
[2] |
Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
CrossRef
ADS
Google scholar
|
[3] |
A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, ACM Press, 2001
|
[4] |
V. Kendo, Decoherence in quantum walks – a review, Math. Struct. Comput. Sci. 17(6), 1169 (2007)
CrossRef
ADS
Google scholar
|
[5] |
S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)
CrossRef
ADS
Google scholar
|
[6] |
G. Grimmett, S. Janson, and P. F. Scudo, Weak limits for quantum random walks, Phys. Rev. E 69(2), 026119 (2004)
CrossRef
ADS
Google scholar
|
[7] |
G. Abal, R. Siri, A. Romanelli, and R. Donangelo, Quantum walk on the line: Entanglement and nonlocal initial conditions, Phys. Rev. A 73(4), 042302 (2006)
CrossRef
ADS
Google scholar
|
[8] |
L. Ermann, J. P. Paz, and M. Saraceno, Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin, Phys. Rev. A 73(1), 012302 (2006)
CrossRef
ADS
Google scholar
|
[9] |
N. Shenvi, J. Kempe, and K. B. Whaley, Quantum random-walk search algorithm, Phys. Rev. A 67(5), 052307 (2003)
CrossRef
ADS
Google scholar
|
[10] |
A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)
CrossRef
ADS
Google scholar
|
[11] |
N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon, Universal quantum computation using the discrete-time quantum walk, Phys. Rev. A 81(4), 042330 (2010)
CrossRef
ADS
Google scholar
|
[12] |
P. Witthaut, Quantum walks and quantum simulations with Bloch-oscillating spinor atoms, Rev. A 82(3), 033602 (2010)
CrossRef
ADS
Google scholar
|
[13] |
M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer, J. Chem. Phys. 129(17), 174106 (2008)
CrossRef
ADS
Google scholar
|
[14] |
T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)
CrossRef
ADS
Google scholar
|
[15] |
K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, W. Yi, and P. Xue, Simulating dynamic quantum phase transitions in photonic quantum walks, Phys. Rev. Lett. 122(2), 020501 (2019)
CrossRef
ADS
Google scholar
|
[16] |
J. Z. Wu, W. W. Zhang, and B. C. Sanders, Topological quantum walks: Theory and experiments, Front. Phys. 14(6), 61301 (2019)
CrossRef
ADS
Google scholar
|
[17] |
T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum walks driven by many coins, Phys. Rev. A 67(5), 052317 (2003)
CrossRef
ADS
Google scholar
|
[18] |
T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. Math. Gen. 35(12), 2745 (2002)
CrossRef
ADS
Google scholar
|
[19] |
A. Schreiber, K. N. Cassemiro, V. Potocek, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, Photons walking the line: A quantum walk with adjustable coin operations, Phys. Rev. Lett. 104(5), 050502 (2010)
CrossRef
ADS
Google scholar
|
[20] |
S. Panahiyan and S. Fritzsche, Controlling quantum random walk with a step-dependent coin, New J. Phys. 20(8), 083028 (2018)
CrossRef
ADS
Google scholar
|
[21] |
M. Karski, L. Forster, J. M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)
CrossRef
ADS
Google scholar
|
[22] |
F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104(10), 100503 (2010)
CrossRef
ADS
Google scholar
|
[23] |
H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)
CrossRef
ADS
Google scholar
|
[24] |
P. Xue, B. C. Sanders, and D. Leibfried, Quantum walk on a line for a trapped ion, Phys. Rev. Lett. 103(18), 183602 (2009)
CrossRef
ADS
Google scholar
|
[25] |
M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, Discrete single-photon quantum walks with tunable decoherence, Phys. Rev. Lett. 104(15), 153602 (2010)
CrossRef
ADS
Google scholar
|
[26] |
A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, Quantum walks of correlated photons, Science 329(5998), 1500 (2010)
CrossRef
ADS
Google scholar
|
[27] |
H. Tang, X. F. Lin, Z. Feng, J. Y. Chen, J. Gao, K. Sun, C. Y. Wang, P. C. Lai, X.-Y. Xu, Y. Wang, L. F. Qiao, A. L. Yang, and X. M. Jin, Experimental twodimensional quantum walk on a photonic chip, Sci. Adv. 4(5), eaat3174 (2018)
CrossRef
ADS
Google scholar
|
[28] |
Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
CrossRef
ADS
Google scholar
|
[29] |
T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum random walks with decoherent coins, Phys. Rev. A 67(3), 032304 (2003)
CrossRef
ADS
Google scholar
|
[30] |
T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum to classical transition for random walks, Phys. Rev. Lett. 91(13), 130602 (2003)
CrossRef
ADS
Google scholar
|
[31] |
K. Zhang, Limiting distribution of decoherent quantum random walks, Phys. Rev. A 77(6), 062302 (2008)
CrossRef
ADS
Google scholar
|
[32] |
J. D. Whitfield, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, Quantum stochastic walks: A generalization of classical random walks and quantum walks, Phys. Rev. A 81(2), 022323 (2010)
CrossRef
ADS
Google scholar
|
[33] |
J. Košík, V. Bužek, and M. Hillery, Quantum walks with random phase shifts, Phys. Rev. A 74(2), 022310 (2006)
CrossRef
ADS
Google scholar
|
[34] |
P. Ribeiro, P. Milman, and R. Mosseri, Aperiodic quantum random walks, Phys. Rev. Lett. 93(19), 190503 (2004)
CrossRef
ADS
Google scholar
|
[35] |
L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |