Equivariant PT-symmetric real Chern insulators

Y. X. Zhao

PDF(737 KB)
PDF(737 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (1) : 13603. DOI: 10.1007/s11467-019-0943-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Equivariant PT-symmetric real Chern insulators

Author information +
History +

Abstract

It was understood that Chern insulators cannot be realized in the presence of PT symmetry. In this paper, we reveal a new class of PT-symmetric Chern insulators, which has internal degrees of freedom forming real representations of a symmetry group with a complex endomorphism field. As a generalization to the conventional 2n-dimensional Chern insulators with integer n≥1, these PT-symmetric Chern insulators have the n-th complex Chern number as their topological invariant, and have a Zclassification given by the equivariant orthogonal K theory. Thus, in a fairly different sense, there exist ubiquitously Chern insulators with PT symmetry. By generalizing the Thouless charge pump argument, we find that, for a PT-symmetric Chern insulator with Chern number υ, there are equally many υ flavors of coexisting left- and right-handed chiral modes. Chiral modes with opposite chirality are complex conjugates to each other as complex representations of the internal symmetry group, but are not isomorphic. For the physical dimensionality d = 2, the PT-symmetric Chern insulators may be realized in artificial systems including photonic crystals and periodic mechanical systems.

Keywords

topological insulator / Chern insulator

Cite this article

Download citation ▾
Y. X. Zhao. Equivariant PT-symmetric real Chern insulators. Front. Phys., 2020, 15(1): 13603 https://doi.org/10.1007/s11467-019-0943-y

References

[1]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[2]
R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23(10), 5632 (1981)
CrossRef ADS Google scholar
[3]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[4]
F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef ADS Google scholar
[5]
G. E. Volovik, Universe in a Helium Droplet, Oxford University Press, Oxford UK, 2003
[6]
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
CrossRef ADS Google scholar
[7]
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
CrossRef ADS Google scholar
[8]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[9]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[10]
Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PTand CPinvariant topological metals and nodal superconductors, Phys. Rev. Lett. 116(15), 156402 (2016)
CrossRef ADS Google scholar
[11]
Y. X. Zhao and Y. Lu, PT-symmetric real Dirac fermions and semimetals, Phys. Rev. Lett. 118(5), 056401 (2017)
CrossRef ADS Google scholar
[12]
C. Fang, Y. Chen, H. Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin–orbital coupling, Phys. Rev. B. 92(8), 081201 (2015)
CrossRef ADS Google scholar
[13]
R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett. 115(3), 036807 (2015)
CrossRef ADS Google scholar
[14]
Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115(3), 036806 (2015)
CrossRef ADS Google scholar
[15]
D. W. Zhang, Y. X. Zhao, R. B. Liu, Z. Y. Xue, S. L. Zhu, and Z. D. Wang, Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice, Phys. Rev. A 93(4), 043617 (2016)
CrossRef ADS Google scholar
[16]
W. B. Rui, Y. X. Zhao, and A. P. Schnyder, Topological transport in Dirac nodal-line semimetals, Phys. Rev. B 97, 161113 (2018)
CrossRef ADS Google scholar
[17]
L. Lu, J. D. Joannopoulos, and M. Soljačići, Topological photonics, Nat. Photon. 8, 821 (2014)
CrossRef ADS Google scholar
[18]
J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995
[19]
E. Prodan and C. Prodan, Topological phonon modes and their role in dynamic instability of microtubules, Phys. Rev. Lett. 103(24), 248101 (2009)
CrossRef ADS Google scholar
[20]
C. L. Kane and T. C. Lubensky, Topological boundary modes in isostatic lattices, Nat. Phys. 10, 39 (2014)
CrossRef ADS Google scholar
[21]
P. Wang, L. Lu, and K. Bertoldi, Topological phononic crystals with one-way elastic edge waves, Phys. Rev. Lett. 115(10), 104302 (2015)
CrossRef ADS Google scholar
[22]
M. F. Atiyah and D. W. Anderson, K-Theory, WA Benjamin New York, 1967
[23]
M. F. Atiyah, K-theory and reality, Q. J. Math. 17(1), 367 (1966)
CrossRef ADS Google scholar
[24]
G. Segal, Equivariant K-theory, Publications mathématiques de l’IHÉS 34(1), 129 (1968)
CrossRef ADS Google scholar
[25]
D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27(10), 6083 (1983)
CrossRef ADS Google scholar
[26]
Q. Niu and D. J. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and manybody interaction,J. Phys. Math. Gen. 17(12), 2453 (1984)
CrossRef ADS Google scholar
[27]
L. Fu and C. L. Kane, Time reversal polarization and a Z2 adiabatic spin pump, Phys. Rev. B 74(19), 195312 (2006)
CrossRef ADS Google scholar
[28]
Y. Yu, Y. S. Wu, and X. Xie, Bulk-edge correspondence, spectral flow and Atiyah–Patodi–Singer theorem for the invariant in topological insulators, Nucl. Phys. B 916, 550 (2017)
[29]
T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer Science & Business Media, 2013
[30]
F. J. Dyson, The threefold way, J. Math. Phys. 3(6), 1199 (1962)
CrossRef ADS Google scholar
[31]
Here we consider the case of strong topological insulators, which means the BZ torus is treated as a sphere.
[32]
A. Kitaev, V. Lebedev, and M. Feigel’man, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009)
CrossRef ADS Google scholar
[33]
J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62(23), 2747 (1989)
CrossRef ADS Google scholar
[34]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
CrossRef ADS Google scholar
[35]
C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(737 KB)

Accesses

Citations

Detail

Sections
Recommended

/