Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy

Hangwen Guo, Mohammad Saghayezhian, Zhen Wang, Yimei Zhu, Jiandi Zhang, Ward Plummer

PDF(4176 KB)
PDF(4176 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (1) : 13401. DOI: 10.1007/s11467-019-0942-z
REVIEW ARTICLE
REVIEW ARTICLE

Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy

Author information +
History +

Abstract

Complex oxide interfaces have been one of the central focuses in condensed matter physics and material science. Over the past decade, aberration corrected scanning transmission electron microscopy and spectroscopy has proven to be invaluable to visualize and understand the emerging quantum phenomena at an interface. In this paper, we briefly review some recent progress in the utilization of electron microscopy to probe interfaces. Specifically, we discuss several important challenges for electron microscopy to advance our understanding on interface phenomena, from the perspective of variable temperature, magnetism, electron energy loss spectroscopy analysis, electronic symmetry, and defects probing.

Keywords

complex oxide interfaces / scanning transmission electron microscopy / electron energy loss spectroscopy

Cite this article

Download citation ▾
Hangwen Guo, Mohammad Saghayezhian, Zhen Wang, Yimei Zhu, Jiandi Zhang, Ward Plummer. Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy. Front. Phys., 2020, 15(1): 13401 https://doi.org/10.1007/s11467-019-0942-z

References

[1]
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)
CrossRef ADS Google scholar
[2]
J. Chakhalian, A. J. Millis, and J. Rondinelli, Whither the oxide interface, Nat. Mater. 11(2), 92 (2012)
CrossRef ADS Google scholar
[3]
J. Mannhart and D. G. Schlom, Oxide interfaces- an opportunity for electronics, Science 327(5973), 1607 (2010)
CrossRef ADS Google scholar
[4]
M. Bibes, J. E. Villegas, and A. Barthélémy, Ultrathin oxide films and interfaces for electronics and spintronics, Adv. Phys. 60(1), 5 (2011)
CrossRef ADS Google scholar
[5]
P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J. M. Triscone, Interface physics in complex oxide heterostructures, Annu. Rev. Condens. Matter Phys. 2(1), 141 (2011)
CrossRef ADS Google scholar
[6]
M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, et al., Towards oxide electronics: A roadmap, Appl. Surf. Sci. 482, 1 (2019)
CrossRef ADS Google scholar
[7]
M. Huijben, P. Yu, L. W. Martin, H. J. A. Molegraaf, Y. H. Chu, M. B. Holcomb, N. Balke, G. Rijnders, and R. Ramesh, Ultrathin limit of exchange bias coupling at oxide multiferroic/ferromagnetic interfaces, Adv. Mater. 25(34), 4739 (2013)
CrossRef ADS Google scholar
[8]
S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater. 9(9), 756 (2010)
CrossRef ADS Google scholar
[9]
M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J. M. Triscone, Exchange bias in LaNiO3–LaMnO3 superlattices, Nat. Mater. 11(3), 195 (2012)
CrossRef ADS Google scholar
[10]
C. Cen, S. Thiel, J. Mannhart, and J. Levy, Oxide nanoelectronics on demand, Science 323(5917), 1026 (2009)
CrossRef ADS Google scholar
[11]
A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
CrossRef ADS Google scholar
[12]
S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Tunable quasi-two-dimensional electron gases in oxide heterostructures, Science 313(5795), 1942 (2006)
CrossRef ADS Google scholar
[13]
N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Superconducting interfaces between insulating oxides, Science 317(5842), 1196 (2007)
CrossRef ADS Google scholar
[14]
J. Zhang, Z. Zhong, X. Guan, X. Shen, J. Zhang, F. Han, H. Zhang, H. Zhang, X. Yan, Q. Zhang, L. Gu, F. Hu, R. Yu, B. Shen, and J. Sun, Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures, Nat. Commun. 9(1), 1923 (2018)
CrossRef ADS Google scholar
[15]
C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy, Phys. Rev. B 79(8), 081405 (2009)
CrossRef ADS Google scholar
[16]
M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface, Phys. Rev. Lett. 102(16), 166804 (2009)
CrossRef ADS Google scholar
[17]
J. Chakhalian, J. W. Freeland, H. U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Orbital reconstruction and covalent bonding at an oxide interface, Science 318(5853), 1114 (2007)
CrossRef ADS Google scholar
[18]
H. J. A. Molegraaf, J. Hoffman, C. A. F. Vaz, S. Gariglio, D. van der Marel, C. H. Ahn, and J. M. Triscone, Magnetoelectric effects in complex oxides with competing ground states, Adv. Mater. 21(34), 3470 (2009)
CrossRef ADS Google scholar
[19]
C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures, Adv. Mater. 22(26–27), 2900 (2010)
CrossRef ADS Google scholar
[20]
C. A. F. Vaz, Electric field control of magnetism in multiferroic heterostructures, J. Phys.: Condens. Matter 24(33), 333201 (2012)
CrossRef ADS Google scholar
[21]
W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
CrossRef ADS Google scholar
[22]
S. Dong, J. M. Liu, S. W. Cheong, and Z. Ren, Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology, Adv. Phys. 64(5–6), 519 (2015)
CrossRef ADS Google scholar
[23]
W. Huang, Y. Yin, and X. Li, Atomic-scale mapping of interface reconstructions in multiferroic heterostructures, Appl. Phys. Rev. 5(4), 041110 (2018)
CrossRef ADS Google scholar
[24]
H. Kroemer, Quasielectric fields and band offsets: Teaching electrons new tricks, Rev. Mod. Phys. 73(3), 783 (2001)
CrossRef ADS Google scholar
[25]
D. P. Norton, Synthesis and properties of epitaxial electronic oxide thin-film materials, Mater. Sci. Eng. Rep. 43(5–6), 139 (2004)
CrossRef ADS Google scholar
[26]
P. R. Willmott, Deposition of complex multielemental thin films, Prog. Surf. Sci. 76(6–8), 163 (2004)
CrossRef ADS Google scholar
[27]
M. N. R. Ashfold, F. Claeyssens, G. M. Fuge, and S. J. Henley, Pulsed laser ablation and deposition of thin films, Chem. Soc. Rev. 33(1), 23 (2004)
CrossRef ADS Google scholar
[28]
H. M. Christen and G. Eres, Recent advances in pulsedlaser deposition of complex oxides, J. Phys.: Condens. Matter 20(26), 264005 (2008)
CrossRef ADS Google scholar
[29]
H. Guo, D. Sun, W. Wang, Z. Gai, I. Kravchenko, J. Shao, L. Jiang, T. Z. Ward, P. C. Snijders, L. Yin, J. Shen, and X. Xu, Growth diagram of La0.7Sr0.3MnO3 thin films using pulsed laser deposition, J. Appl. Phys. 113(23), 234301 (2013)
CrossRef ADS Google scholar
[30]
M. Varela, A. R. Lupini, K. Benthem, A. Y. Borisevich, M. F. Chisholm, N. Shibata, E. Abe, and S. J. Pennycook, Materials characterization in the aberration-corrected scanning transmission electron microscope, Annu. Rev. Mater. Res. 35(1), 539 (2005)
CrossRef ADS Google scholar
[31]
R. F. Egerton, Electron energy-loss spectroscopy in the TEM, Rep. Prog. Phys. 72(1), 016502 (2009)
CrossRef ADS Google scholar
[32]
F. Hofer, F. P. Schmidt, W. Grogger, and G. Kothleitner, Fundamentals of electron energy-loss spectroscopy, IOP Conf. Series Mater. Sci. Eng. 109, 012007 (2016)
CrossRef ADS Google scholar
[33]
Y. Cao, X. Liu, M. Kareev, D. Choudhury, S. Middey, D. Meyers, J. W. Kim, P. J. Ryan, J. W. Freeland, and J. Chakhalian, Engineered Mott ground state in a LaTiO3+δ/LaNiO3 heterostructure, Nat. Commun. 7(1), 10418 (2016)
CrossRef ADS Google scholar
[34]
X. Chi, Z. Huang, T. C. Asmara, K. Han, X. Yin, X. Yu, C. Diao, M. Yang, D. Schmidt, P. Yang, P. E. Trevisanutto, T. J. Whitcher, T. Venkatesan, M. B. H. Breese, Ariando, and A. Rusydi, Large enhancement of 2D electron gases mobility induced by interfacial localized electron screening effect, Adv. Mater. 30(22), 1707428 (2018)
CrossRef ADS Google scholar
[35]
G. Fabbris, N. Jaouen, D. Meyers, J. Feng, J. D. Hoffman, R.Sutarto, S. G. Chiuzbǎian, A. Bhattacharya, and M. P. M. Dean, Emergent c-axis magnetic helix in manganite-nickelate superlattices, Phys. Rev. B 98(18), 180401 (2018)
CrossRef ADS Google scholar
[36]
F. Y. Bruno, M. N. Grisolia, C. Visani, S. Valencia, M. Varela, R. Abrudan, J. Tornos, A. Rivera-Calzada, A. A. Ünal, S. J. Pennycook, Z. Sefrioui, C. Leon, J. E. Villegas, J. Santamaria, A. Barthélémy, and M. Bibes, Insight into spin transport in oxide heterostructures from interfaceresolved magnetic mapping, Nat. Commun. 6(1), 6306 (2015)
CrossRef ADS Google scholar
[37]
X. Zhai, L. Cheng, Y. Liu, C. M. Schlepütz, S. Dong, H. Li, X. Zhang, S. Chu, L. Zheng, J. Zhang, A. Zhao, H. Hong, A. Bhattacharya, J. N. Eckstein, and C. Zeng, Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices, Nat. Commun. 5(1), 4283 (2014)
CrossRef ADS Google scholar
[38]
A. Rubano, G. De Luca, J. Schubert, Z. Wang, S. Zhu, D. G. Schlom, L. Marrucci, and D. Paparo, Polar asymmetry of La1−δAl1+δO3/SrTiO3 heterostructures probed by optical second harmonic generation, Appl. Phys. Lett. 107(10), 101603 (2015)
CrossRef ADS Google scholar
[39]
S. Middey, P. Rivero, D. Meyers, M. Kareev, X. Liu, Y. Cao, J. W. Freeland, S. Barraza-Lopez, and J. Chakhalian, Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate, Sci. Rep. 4(1), 6819 (2015)
CrossRef ADS Google scholar
[40]
D. Paparo, A. Rubano, and L. Marrucci, Optical secondharmonic generation selection rules and resonances in buried oxide interfaces: The case of LaAlO3/SrTiO3, J. Opt. Soc. Am. B 30(9), 2452 (2013)
CrossRef ADS Google scholar
[41]
C. Cancellieri and V. Strocov (Eds.), Spectroscopy of Complex Oxide Interfaces, Springer International Publishing, 2018
CrossRef ADS Google scholar
[42]
M. Fiebig, Phase engineering in oxides by interfaces, Philos. Trans. Royal Soc.: Math. Phys. Eng. Sci. 370(1977), 4972 (2012)
CrossRef ADS Google scholar
[43]
S. J. Pennycook and P. D. Nellist (Eds.), Scanning Transmission Electron Microscopy, 1st Ed., Springer-Verlag, New York, 2011
CrossRef ADS Google scholar
[44]
S. J. Pennycook, M. F. Chisholm, A. R. Lupini, M. Varela, A. Y. Borisevich, M. P. Oxley, W. D. Luo, K. van Benthem, S. H. Oh, D. L. Sales, S. I. Molina, J. García-Barriocanal, C. Leon, J. Santamaría, S. N. Rashkeev, and S. T. Pantelides, Aberration-corrected scanning transmission electron microscopy: From atomic imaging and analysis to solving energy problems, Philos. Trans. Royal Soc.: Math. Phys. Eng. Sci. 367(1903), 3709 (2009)
CrossRef ADS Google scholar
[45]
S. J. Pennycook, Seeing the atoms more clearly: STEM imaging from the Crewe era to today, Ultramicroscopy 123, 28 (2012)
CrossRef ADS Google scholar
[46]
Z. Yu, D. A. Muller, and J. Silcox, Study of strain fields at a-Si/c-Si interface, J. Appl. Phys. 95(7), 3362 (2004)
CrossRef ADS Google scholar
[47]
P. J. Phillips, M. De Graef, L. Kovarik, A. Agrawal, W. Windl, and M. J. Mills, Atomic-resolution defect contrast in low angle annular dark-field STEM, Ultramicroscopy 116, 47 (2012)
CrossRef ADS Google scholar
[48]
Y. Zhu, H. Inada, K. Nakamura, and J. Wall, Imaging single atoms using secondary electrons with an aberrationcorrected electron microscope, Nat. Mater. 8(10), 808 (2009)
CrossRef ADS Google scholar
[49]
H. Inada, K. Tamura, K. Nakamura, Y. Suzuki, M. Konno, D. Su, J. Wall, R. Egerton, and Y. Zhu, Atomic resolved secondary electron imaging with an aberration corrected scanning transmission electron microscope, Microsc. Microanal. 17(S2), 1298 (2011)
CrossRef ADS Google scholar
[50]
J. A. Hachtel, J. C. Idrobo, and M. Chi, Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope, Adv. Struct. Chem. Imaging 4(1), 10 (2018)
CrossRef ADS Google scholar
[51]
S. Das, Y. L. Tang, Z. Hong, M. A. P. Gonçalves, M. R. McCarter, et al., Observation of room-temperature polar skyrmions, Nature 568(7752), 368 (2019)
CrossRef ADS Google scholar
[52]
C. Ophus, Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond, Microsc. Microanal. 25(3), 563 (2019)
CrossRef ADS Google scholar
[53]
P. Gao, R. Ishikawa, B. Feng, A. Kumamoto, N. Shibata, and Y. Ikuhara, Atomic-scale structure relaxation, chemistry and charge distribution of dislocation cores in SrTiO3, Ultramicroscopy 184, 217 (2018)
CrossRef ADS Google scholar
[54]
M. B. Salamon and M. Jaime, The physics of manganites: Structure and transport, Rev. Mod. Phys. 73(3), 583 (2001)
CrossRef ADS Google scholar
[55]
G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C. B. Eom, D. H. A. Blank, and M. R. Beasley, Structure, physical properties, and applications of Sr-RuO3 thin films, Rev. Mod. Phys. 84(1), 253 (2012)
CrossRef ADS Google scholar
[56]
J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices, Appl. Phys. Lett. 80(19), 3581 (2002)
CrossRef ADS Google scholar
[57]
M. H. Whangbo, E. E. Gordon, J. L. Jr Bettis, A. Bussmann-Holder, and J. Köhler, Tolerance factor and cation–anion orbital interactions differentiating the polar and antiferrodistortive structures of perovskite oxides ABO3, Z. Anorg. Allg. Chem. 641(6), 1043 (2015)
CrossRef ADS Google scholar
[58]
W. Zhong and D. Vanderbilt, Competing structural istabilities in cubic perovskites, Phys. Rev. Lett. 74(13), 2587 (1995)
CrossRef ADS Google scholar
[59]
U. Aschauer and N. A. Spaldin, Competition and cooperation between antiferrodistortive and ferroelectric instabilities in the model perovskite SrTiO3, J. Phys.: Condens. Matter 26(12), 122203 (2014)
CrossRef ADS Google scholar
[60]
J. M. Rondinelli, S. J. May, and J. W. Freeland, Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery, MRS Bull. 37(3), 261 (2012)
CrossRef ADS Google scholar
[61]
H. Guo, Z. Wang, S. Dong, S. Ghosh, M. Saghayezhian, L. Chen, Y. Weng, A. Herklotz, T. Z. Ward, R. Jin, S. T. Pantelides, Y. Zhu, Jiandi Zhang, and E. W. Plummer, Interface-induced multiferroism by design in complex oxide superlattices, Proc. Natl. Acad. Sci. USA 114(26), E5062 (2017)
CrossRef ADS Google scholar
[62]
J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J. W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, A strong ferroelectric ferromagnet created by means of spin-lattice coupling, Nature 466(7309), 954 (2010)
CrossRef ADS Google scholar
[63]
Z. Liao, M. Huijben, Z. Zhong, N. Gauquelin, S. Macke, R. J. Green, S. Van Aert, J. Verbeeck, G. Van Tendeloo, K. Held, G. A. Sawatzky, G. Koster, and G. Rijnders, Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling, Nat. Mater. 15(4), 425 (2016)
CrossRef ADS Google scholar
[64]
D. Kan, R. Aso, R. Sato, M. Haruta, H. Kurata, and Y. Shimakawa, Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide, Nat. Mater. 15(4), 432 (2016)
CrossRef ADS Google scholar
[65]
E. J. Guo, R. Desautels, D. Lee, M. A. Roldan, Z. Liao, T. Charlton, H. Ambaye, J. Molaison, R. Boehler, D. Keavney, A. Herklotz, T. Z. Ward, H. N. Lee, and M. R. Fitzsimmons, Exploiting symmetry mismatch to control magnetism in a ferroelastic heterostructure, Phys. Rev. Lett. 122(18), 187202 (2019)
CrossRef ADS Google scholar
[66]
Y. Zhu, K. Du, J. Niu, L. Lin, W. Wei, H. Liu, H. Lin, K. Zhang, T. Yang, Y. Kou, J. Shao, X. Gao, X. Xu, X. Wu, S. Dong, L. Yin, and J. Shen, Chemical ordering suppresses large-scale electronic phase separation in doped manganites, Nat. Commun. 7(1), 11260 (2016)
CrossRef ADS Google scholar
[67]
J. A. Mundy, C. M. Brooks, M. E. Holtz, J. A. Moyer, H. Das, A. F. Rébola, J. T. Heron, J. D. Clarkson, S. M. Disseler, Z. Liu, A. Farhan, R. Held, R. Hovden, E. Padgett, Q. Mao, H. Paik, R. Misra, L. F. Kourkoutis, E. Arenholz, A. Scholl, J. A. Borchers, W. D. Ratcliff, R. Ramesh, C. J. Fennie, P. Schiffer, D. A. Muller, and D. G. Schlom, Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic, Nature 537(7621), 523 (2016)
CrossRef ADS Google scholar
[68]
Y. Cao, Z. Wang, S. Y. Park, Y. Yuan, X. Liu, S. M. Nikitin, H. Akamatsu, M. Kareev, S. Middey, D. Meyers, P. Thompson, P. J. Ryan, P. Shafer, A. N’Diaye, E. Arenholz, V. Gopalan, Y. Zhu, K. M. Rabe, and J. Chakhalian, Artificial two-dimensional polar metal at room temperature, Nat. Commun. 9(1), 1547 (2018)
CrossRef ADS Google scholar
[69]
G. Koster, M. Huijben, and G. Rijnders (Eds.), Epitaxial Growth of Complex Metal Oxides, 1st Ed., Elsevier, Woodhead Publishing, 2015
[70]
D. B. Chrisey and G. K. Hubler, Pulse Laser Deposition of Thin Films, John Wiley & Sons Inc., Hoboken, 1994
[71]
I. V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd Ed., World Scientific Publishing Company, 2003
CrossRef ADS Google scholar
[72]
N. Nakagawa, H. Y. Hwang, and D. A. Muller, Why some interfaces cannot be sharp, Nat. Mater. 5(3), 204 (2006)
CrossRef ADS Google scholar
[73]
J. A. Mundy, Y. Hikita, T. Hidaka, T. Yajima, T. Higuchi, H. Y. Hwang, D. A. Muller, and L. F. Kourkoutis, Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal–insulator transition, Nat. Commun. 5(1), 3464 (2014)
CrossRef ADS Google scholar
[74]
M. Gibert, M. Viret, A. Torres-Pardo, C. Piamonteze, P. Zubko, N. Jaouen, J. M. Tonnerre, A. Mougin, J. Fowlie, S. Catalano, A. Gloter, O. Stéphan, and J. M. Triscone, Interfacial control of magnetic properties at LaMnO3/LaNiO3 interfaces, Nano Lett. 15(11), 7355 (2015)
CrossRef ADS Google scholar
[75]
S. R. Spurgeon, P. V. Balachandran, D. M. Kepaptsoglou, A. R. Damodaran, J. Karthik, S. Nejati, L. Jones, H. Ambaye, V. Lauter, Q. M. Ramasse, K. K. S. Lau, L. W. Martin, J. M. Rondinelli, and M. L. Taheri, Polarization screening-induced magnetic phase gradients at complex oxide interfaces, Nat. Commun. 6(1), 6735 (2015)
CrossRef ADS Google scholar
[76]
J. H. Lee, G. Luo, I. C. Tung, S. H. Chang, Z. Luo, M. Malshe, M. Gadre, A. Bhattacharya, S. M. Nakhmanson, J. A. Eastman, H. Hong, J. Jellinek, D. Morgan, D. D. Fong, and J. W. Freeland, Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy, Nat. Mater. 13(9), 879 (2014)
CrossRef ADS Google scholar
[77]
M. Arredondo, M. Saunders, A. Petraru, H. Kohlstedt, I. Vrejoiu, M. Alexe, D. Hesse, N. D. Browning, P. Munroe, and V. Nagarajan, Structural defects and local chemistry across ferroelectric–electrode interfaces in epitaxial heterostructures, J. Mater. Sci. 44(19), 5297 (2009)
CrossRef ADS Google scholar
[78]
L. F. Kourkoutis, D. A. Muller, Y. Hotta, and H. Y. Hwang, Asymmetric interface profiles in LaVO3/SrTiO3 heterostructures grown by pulsed laser deposition, Appl. Phys. Lett. 91(16), 163101 (2007)
CrossRef ADS Google scholar
[79]
M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces, Nat. Commun. 4(1), 2351 (2013)
CrossRef ADS Google scholar
[80]
M. Sing, G. Berner, K. Goβ, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S. A. Pauli, C. W. Schneider, P. R. Willmott, M. Gorgoi, F. Schäfers, and R. Claessen, Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy, Phys. Rev. Lett. 102(17), 176805 (2009)
CrossRef ADS Google scholar
[81]
J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface, Nat. Phys. 7(10), 767 (2011)
CrossRef ADS Google scholar
[82]
Z. Zhong, P. X. Xu, and P. J. Kelly, Polarity-induced oxygen vacancies at LaAlO3/SrTiO3 interfaces, Phys. Rev. B 82(16), 165127 (2010)
CrossRef ADS Google scholar
[83]
P. Maksymovych, M. Huijben, M. Pan, S. Jesse, N. Balke, Y. H. Chu, H. J. Chang, A. Y. Borisevich, A. P. Baddorf, G. Rijnders, D. H. A. Blank, R. Ramesh, and S. V. Kalinin, Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3, Phys. Rev. B 85(1), 014119 (2012)
CrossRef ADS Google scholar
[84]
J. Xia, W. Siemons, G. Koster, M. R. Beasley, and A. Kapitulnik, Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3, Phys. Rev. B 79(14), 140407 (2009)
CrossRef ADS Google scholar
[85]
M. Huijben, L. W. Martin, Y. H.Chu, M. B. Holcomb, P. Yu, G. Rijnders, D. H. A. Blank, and R. Ramesh, critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films, Phys. Rev. B 78(9), 094413 (2008)
CrossRef ADS Google scholar
[86]
J. Junquera and P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature 422(6931), 506 (2003)
CrossRef ADS Google scholar
[87]
Z. Liao, F. Li, P. Gao, L. Li, J. Guo, X. Pan, R. Jin, E. W. Plummer, and Jiandi Zhang, Origin of the metalinsulator transition in ultrathin films of La2/3Sr1/3MnO3, Phys. Rev. B 92(12), 125123 (2015)
CrossRef ADS Google scholar
[88]
E. J. Guo, M. A. Roldan, T. Charlton, Z. Liao, Q. Zheng, H. Ambaye, A. Herklotz, Z. Gai, T. Z. Ward, H. N. Lee, and M. R. Fitzsimmons, Removal of the magnetic dead layer by geometric design, Adv. Funct. Mater. 28(30), 1800922 (2018)
CrossRef ADS Google scholar
[89]
G. Wang, Z. Wang, M. Meng, M. Saghayezhian, L. Chen, C. Chen, H. Guo, Y. Zhu, E. W. Plummer, and Jiandi Zhang, Role of disorder and correlations in the metalinsulator transition in ultrathin SrVO3 films, Phys. Rev. B 100(15), 155114 (2019)
CrossRef ADS Google scholar
[90]
L. Chen, Z. Wang, G. Wang, H. Guo, M. Saghayezhian, J. Tao, Y. Zhu, E. W. Plummer, and J. Zhang, Surface and interface properties of La2/3Sr1/3MnO3 thin films on SrTiO3 (001), Phys. Rev. Mater. 3(4), 044407 (2019)
CrossRef ADS Google scholar
[91]
J. F. Ge, Z. L. Liu, C. Liu, C. L. Gao, D. Qian, Q. K. Xue, Y. Liu, and J. F. Jia, Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3, Nat. Mater. 14(3), 285 (2015)
CrossRef ADS Google scholar
[92]
W. Zhao, M. Li, C.-Z. Chang, J. Jiang, L. Wu, C. Liu, J. S. Moodera, Y. Zhu, and M. H. W. Chan, Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface, Sci. Adv. 4(3), eaao2682 (2018)
CrossRef ADS Google scholar
[93]
Y. M. Kim, A. Morozovska, E. Eliseev, M. P. Oxley, R. Mishra, S. M. Selbach, T. Grande, S. T. Pantelides, S. V. Kalinin, and A. Y. Borisevich, Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1−xMnO3 interface, Nat. Mater. 13(11), 1019 (2014)
CrossRef ADS Google scholar
[94]
M. N. Grisolia, J. Varignon, G. Sanchez-Santolino, A. Arora, S. Valencia, M. Varela, R. Abrudan, E. Weschke, E. Schierle, J. E. Rault, J. P. Rueff, A. Barthelemy, J. Santamaria, and M. Bibes, Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces, Nat. Phys. 12(5), 484 (2016)
CrossRef ADS Google scholar
[95]
M. Izumi, Y. Ogimoto, Y. Okimoto, T. Manako, P. Ahmet, K. Nakajima, T. Chikyow, M. Kawasaki, and Y. Tokura, Insulator-metal transition induced by interlayer coupling in La0.6Sr0.4MnO3/SrTiO3 superlattices, Phys. Rev. B 64(6), 064429 (2001)
CrossRef ADS Google scholar
[96]
S. Dong, X. Zhang, R. Yu, J. M. Liu, and E. Dagotto, Microscopic model for the ferroelectric field effect in oxide heterostructures, Phys. Rev. B 84(15), 155117 (2011)
CrossRef ADS Google scholar
[97]
L. Jiang, W. S. Choi, H. Jeen, S. Dong, Y. Kim, M. G. Han, Y. Zhu, S. V. Kalinin, E. Dagotto, T. Egami, and H. N. Lee, Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures, Nano Lett. 13(12), 5837 (2013)
CrossRef ADS Google scholar
[98]
D. Lee, B. Chung, Y. Shi, G. Y. Kim, N. Campbell, F. Xue, K. Song, S. Y. Choi, J. P. Podkaminer, T. H. Kim, P. J. Ryan, J. W. Kim, T. R. Paudel, J. H. Kang, J. W. Spinuzzi, D. A. Tenne, E. Y. Tsymbal, M. S. Rzchowski, L. Q. Chen, J. Lee, and C. B. Eom, Isostructural metal-insulator transition in VO2, Science 362(6418), 1037 (2018)
CrossRef ADS Google scholar
[99]
L. F. Kourkoutis, I. El Baggari, B. H. Savitzky, D. J. Baek, B. H. Goodge, R. Hovden, and M. J. Zachman, Aberration-corrected STEM/EELS at cryogenic temperatures, Microsc. Microanal. 23(S1), 428 (2017)
CrossRef ADS Google scholar
[100]
I. El Baggari, G. M. Stiehl, J. Waelder, D. C. Ralph, and L. F. Kourkoutis, Atomic-resolution Cryo-STEM imaging of a structural phase transition in TaTe2, Microsc. Microanal. 24(S1), 86 (2018)
CrossRef ADS Google scholar
[101]
I. El Baggari, D. J. Baek, B. H. Savitzky, M. J. Zachman, R. Hovden, and L. F. Kourkoutis, Low temperature electron microscopy of “charge-ordered” phases, Microsc. Microanal. 25(S2), 934 (2019)
CrossRef ADS Google scholar
[102]
I. El Baggari, B. H. Savitzky, A. S. Admasu, J. Kim, S. W. Cheong, R. Hovden, and L. F. Kourkoutis, Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy, Proc. Natl. Acad. Sci. USA 115(7), 1445 (2018)
CrossRef ADS Google scholar
[103]
B. H. Goodge, D. J. Baek, and L. F. Kourkoutis, Direct electron detection for atomic resolution in situ EELS, Microsc. Microanal. 24(S1), 1844 (2018)
CrossRef ADS Google scholar
[104]
A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Magnetic effects at the interface between non-magnetic oxides, Nat. Mater. 6(7), 493 (2007)
CrossRef ADS Google scholar
[105]
L. Wang, Q. Feng, Y. Kim, R. Kim, K. H. Lee, S. D. Pollard, Y. J. Shin, H. Zhou, W. Peng, D. Lee, W. Meng, H. Yang, J. H. Han, M. Kim, Q. Lu, and T. W. Noh, Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures, Nat. Mater. 17(12), 1087 (2018)
CrossRef ADS Google scholar
[106]
J. Matsuno, N. Ogawa, K. Yasuda, F. Kagawa, W. Koshibae, N. Nagaosa, Y. Tokura, and M. Kawasaki, Interface-driven topological Hall effect in SrRuO3/SrIrO3 bilayer, Sci. Adv. 2(7), e1600304 (2016)
CrossRef ADS Google scholar
[107]
F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. P. Heremans, T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov, S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov, A. Thiaville, and B. L. Zink, Interface-induced phenomena in magnetism, Rev. Mod. Phys. 89(2), 025006 (2017)
CrossRef ADS Google scholar
[108]
C. Phatak, A. K. Petford-Long, and M. De Graef, Recent advances in Lorentz microscopy, Curr. Opin. Solid State Mater. Sci. 20(2), 107 (2016)
CrossRef ADS Google scholar
[109]
D. T. Ngo and L. T. Kuhn, In situ transmission electron microscopy for magnetic nanostructures, Advances in Natural Sciences: Nanoscience and Nanotechnology 7, 45001 (2016)
CrossRef ADS Google scholar
[110]
A. Kovács and R. E. Dunin-Borkowski, Magnetic Imaging of Nanostructures Using Off-Axis Electron Holography, Elsevier, 2018, edited by E. Brück, pp 59–153
CrossRef ADS Google scholar
[111]
Y. Murakami, K. Niitsu, T. Tanigaki, R. Kainuma, H. S. Park, and D. Shindo, Magnetization amplified by structural disorder within nanometre-scale interface region, Nat. Commun. 5(1), 4133 (2014)
CrossRef ADS Google scholar
[112]
J. Zweck, Imaging of magnetic and electric fields by electron microscopy, J. Phys.: Condens. Matter 28(40), 403001 (2016)
CrossRef ADS Google scholar
[113]
C. Chen, H. Li, T. Seki, D. Yin, G. Sanchez-Santolino, K. Inoue, N. Shibata, and Y. Ikuhara, Direct determination of atomic structure and magnetic coupling of magnetite twin boundaries, ACS Nano 12(3), 2662 (2018)
CrossRef ADS Google scholar
[114]
Z. Q. Wang, X. Y. Zhong, R. Yu, Z. Y. Cheng, and J. Zhu, Quantitative experimental determination of site-specific magnetic structures by transmitted electrons, Nat. Commun. 4(1), 1395 (2013)
CrossRef ADS Google scholar
[115]
P. Schattschneider, S. Rubino, C. Hébert, J. Rusz, J. Kuneš, P. Novák, E. Carlino, M. Fabrizioli, G. Panaccione, and G. Rossi, Detection of magnetic circular dichroism using a transmission electron microscope, Nature 441(7092), 486 (2006)
CrossRef ADS Google scholar
[116]
Z. Wang, A. H. Tavabi, L. Jin, J. Rusz, D. Tyutyunnikov, H. Jiang, Y. Moritomo, J. Mayer, R. E. Dunin-Borkowski, R. Yu, J. Zhu, and X. Zhong, Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy, Nat. Mater. 17(3), 221 (2018)
CrossRef ADS Google scholar
[117]
X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465(7300), 901 (2010)
CrossRef ADS Google scholar
[118]
D. Lu, D. J. Baek, S. S. Hong, L. F. Kourkoutis, Y. Hikita, and H. Y. Hwang, Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers, Nat. Mater. 15(12), 1255 (2016)
CrossRef ADS Google scholar
[119]
M. Li, C. Tang, T. R. Paudel, D. Song, W. Lü, K. Han, Z. Huang, S. Zeng, X. Renshaw Wang, P. Yang, J. Ariando, J. Chen, T. Venkatesan, E. Y. Tsymbal, C. Li, and S. J. Pennycook, Controlling the magnetic properties of LaMnO3/SrTiO3 heterostructures by stoichiometry and electronic reconstruction: Atomic-scale evidence, Adv. Mater. 31(27), 1901386 (2019)
CrossRef ADS Google scholar
[120]
M. Varela, M. P. Oxley, W. Luo, J. Tao, M. Watanabe, A. R. Lupini, S. T. Pantelides, and S. J. Pennycook, Atomic-resolution imaging of oxidation states in manganites, Phys. Rev. B 79(8), 085117 (2009)
CrossRef ADS Google scholar
[121]
W. Luo, A. Franceschetti, M. Varela, J. Tao, S. J. Pennycook, and S. T. Pantelides, Orbital-occupancy versus charge ordering and the strength of electron correlations in electron-doped CaMnO3, Phys. Rev. Lett. 99(3), 036402 (2007)
CrossRef ADS Google scholar
[122]
P. G. Radaelli, D. E. Cox, M. Marezio, and S. W. Cheong, Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3, Phys. Rev. B 55(5), 3015 (1997)
CrossRef ADS Google scholar
[123]
M. R. Ibarra, P. A. Algarabel, C. Marquina, J. Blasco, and J. García, Large magnetovolume effect in yttrium doped La-Ca-Mn-O perovskite, Phys. Rev. Lett. 75(19), 3541 (1995)
CrossRef ADS Google scholar
[124]
C. Ritter, M. R. Ibarra, J. M. De Teresa, P. A. Algarabel, C. Marquina, J. Blasco, J. García, S. Oseroff, and S. W. Cheong, Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ, Phys. Rev. B 56(14), 8902 (1997)
CrossRef ADS Google scholar
[125]
J. De Teresa, M. Ibarra, J. Blasco, J. García, C. Marquina, P. Algarabel, Z. Arnold, K. Kamenev, C. Ritter, and R. von Helmolt, Spontaneous behavior and magnetic field and pressure effects on La2/3Ca1/3MnO3 perovskite, Phys. Rev. B 54(2), 1187 (1996)
CrossRef ADS Google scholar
[126]
M. Saghayezhian, S. Kouser, Z. Wang, H. Guo, R. Jin, Jiandi Zhang, Y. Zhu, S. T. Pantelides, and E. W. Plummer, Atomic-scale determination of spontaneous magnetic reversal in oxide heterostructures, Proc. Natl. Acad. Sci. USA 116(21), 10309 (2019)
CrossRef ADS Google scholar
[127]
E. J. Moon, Q. He, S. Ghosh, B. J. Kirby, S. T. Pantelides, A. Y. Borisevich, and S. J. May, Structural “ d doping” to control local magnetization in isovalent oxide heterostructures, Phys. Rev. Lett. 119(19), 197204 (2017)
CrossRef ADS Google scholar
[128]
A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations, Phys. Rev. B 83, 064101 (2011)
CrossRef ADS Google scholar
[129]
K. Zhao, J. E. Taylor, L. H. Haber, Jiandi Zhang, E. W. Plummer, and M. Saghayezhian, Probing the interfacial symmetry using rotational second-harmonic generation in oxide heterostructures, J. Phys. Chem. C 123(37), 23000 (2019)
CrossRef ADS Google scholar
[130]
A. Rockett, The Materials Science of Semiconductors,Springer US, Boston, MA, 2008, pp 289–356
CrossRef ADS Google scholar
[131]
H. Hilgenkamp and J. Mannhart, Grain boundaries in high-Tc superconductors, Rev. Mod. Phys. 74(2), 485 (2002)
CrossRef ADS Google scholar
[132]
S. V. Kalinin and N. A. Spaldin, Functional ion defects in transition metal oxides, Science 341(6148), 858 (2013)
CrossRef ADS Google scholar
[133]
D. B. Holt and B. G. Yaobi, Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures, Cambridge University Press, New York, USA, 2014
[134]
J. D. Richard, Tilley, Defects in Solids, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008
[135]
M. A. Zurbuchen, W. Tian, X. Q. Pan, D. Fong, S. K. Streiffer, M. E. Hawley, J. Lettieri, Y. Jia, G. Asayama, S. J. Fulk, D. J. Comstock, S. Knapp, A. H. Carim, and D. G. Schlom, Morphology, structure, and nucleation of outof- phase boundaries (OPBs) in epitaxial films of layered oxides, J. Mater. Res. 22(6), 1439 (2007)
CrossRef ADS Google scholar
[136]
S. Celotto, W. Eerenstein, and T. Hibma, Characterization of anti-phase boundaries in epitaxial magnetite films, Eur. Phys. J. B 36(2), 271 (2003)
CrossRef ADS Google scholar
[137]
D. Gilks, L. Lari, Z. Cai, O. Cespedes, A. Gerber, S. Thompson, K. Ziemer, and V. K. Lazarov, Magnetism and magnetotransport in symmetry matched spinels: Fe3O4/MgAl2O4, J. Appl. Phys. 113(17), 17B107 (2013)
CrossRef ADS Google scholar
[138]
Z. Wang, H. Guo, S. Shao, M. Saghayezhian, J. Li, R. Fittipaldi, A. Vecchione, P. Siwakoti, Y. Zhu, Jiandi Zhang, and E. W. Plummer, Designing antiphase boundaries by atomic control of heterointerfaces, Proc. Natl. Acad. Sci. USA 115(38), 9485 (2018)
CrossRef ADS Google scholar
[139]
J. S. Jeong, M. Topsakal, P. Xu, B. Jalan, R. M. Wentzcovitch, and K. A. Mkhoyan, A new line defect in NdTiO3 perovskite, Nano Lett. 16(11), 6816 (2016)
CrossRef ADS Google scholar
[140]
N. B. Hannay (Ed.), Treatise on Solid State Chemistry, Volume 3, Crystalline and Noncrystalline Solids, Plenum Press, New York- London, 1976
[141]
W. Greiner, L. Neise, and H. Stöcker, Thermodynamics and Statistical Mechanics, Springer-Verlag, 1995
CrossRef ADS Google scholar
[142]
Y. M. Kim, J. He, M. D. Biegalski, H. Ambaye, V. Lauter, H. M. Christen, S. T. Pantelides, S. J. Pennycook, S. V. Kalinin, and A. Y. Borisevich, Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level, Nat. Mater. 11(10), 888 (2012)
CrossRef ADS Google scholar
[143]
Y. Zhu, J. M. Zuo, A. R. Moodenbaugh, and M. Suenaga, Grain-boundary constraint and oxygen deficiency in YBa2Cu3O7−δ: Application of the coincidence site lattice model to a non-cubic system, Philos. Mag. A 70(6), 969 (1994)
CrossRef ADS Google scholar
[144]
D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430(7000), 657 (2004)
CrossRef ADS Google scholar
[145]
O. L. Krivanek, T. C. Lovejoy, M. F. Murfitt, G. Skone, P. E. Batson, and N. Dellby, Towards sub-10 meV energy resolution STEM-EELS, J. Phys. Conf. Ser. 522, 012023 (2014)
CrossRef ADS Google scholar
[146]
S. Wang, K. March, F. A. Ponce, and P. Rez, Identification of point defects using high-resolution electron energy loss spectroscopy, Phys. Rev. B 99(11), 115312 (2019)
CrossRef ADS Google scholar
[147]
D. S. Su, H. W. Zandbergen, P. C. Tiemeijer, G. Kothleitner, M. Hävecker, C. Hébert, A. Knop-Gericke, B. H. Freitag, F. Hofer, and R. Schlögl, High resolution EELS using monochromator and high performance spectrometer: Comparison of V2O5 ELNES with NEXAFS and band structure calculations, Micron 34(3–5), 235 (2003)
CrossRef ADS Google scholar
[148]
M. Bugnet, D. Rossouw, G. A. Botton, and T. Kolodiazhnyi, High-resolution near-edge structures in EuTiO3, SrTiO3 and BaTiO3, Microsc. Microanal. 18(S2), 1460 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4176 KB)

Accesses

Citations

Detail

Sections
Recommended

/