Tetrapartite entanglement features of W-Class state in uniform acceleration
Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Shi-Hai Dong
Tetrapartite entanglement features of W-Class state in uniform acceleration
Using the single-mode approximation, we first calculate entanglement measures such as negativity (1–3 and 1–1 tangles) and von Neumann entropy for a tetrapartite W-Class system in noninertial frame and then analyze the whole entanglement measures, the residual π4 and geometric Π4 average of tangles. Notice that the difference between π4 and Π4 is very small or disappears with the increasing accelerated observers. The entanglement properties are compared among the different cases from one accelerated observer to four accelerated observers. The results show that there still exists entanglement for the complete system even when acceleration r tends to infinity. The degree of entanglement is disappeared for the 1–1 tangle case when the acceleration r>0.472473. We reexamine the Unruh effect in noninertial frames. It is shown that the entanglement system in which only one qubit is accelerated is more robust than those entangled systems in which two or three or four qubits are accelerated. It is also found that the von Neumann entropy S of the total system always increases with the increasing accelerated observers, but the Sκξ and Sκζδ with two and three involved noninertial qubits first increases and then decreases with the acceleration parameter r, but they are equal to constants 1 and 0.811278 respectively for zero involved noninertial qubit.
tetrapartite / W-Class state / entanglement / Dirac field / noninertial frames
[1] |
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
CrossRef
ADS
Google scholar
|
[2] |
E. Schrödinger, Discussion of probability relations between separated systems, Math. Proc. Camb. Philos. Soc. 31(4), 555 (1935)
CrossRef
ADS
Google scholar
|
[3] |
E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23(48), 807 (1935)
CrossRef
ADS
Google scholar
|
[4] |
E. Schrödinger, Probability relations between separated systems, Math. Proc. Camb. Philos. Soc. 32(3), 446 (1936)
CrossRef
ADS
Google scholar
|
[5] |
R. F. Werner, Quantum states with Einstein–Podolsky– Rosen correlations admitting a hidden-variable model, Phys. Rev. A 54(8), 4277 (1989)
CrossRef
ADS
Google scholar
|
[6] |
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
CrossRef
ADS
Google scholar
|
[7] |
O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474, 1 (2009)
CrossRef
ADS
Google scholar
|
[8] |
J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 1987
|
[9] |
A. Peres, Separability Criterion for density matrices, Phys. Rev. Lett. 77(8), 1413 (1996)
CrossRef
ADS
Google scholar
|
[10] |
K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Volume of the set of separable states, Phys. Rev. A 58(2), 883 (1998)
CrossRef
ADS
Google scholar
|
[11] |
Y. Li, C. Liu, Q. Wang, H. Zhang, and L. Hu, Tetrapartite entanglement of fermionic systems in noninertial frames, Optik (Stuttg.) 127(20), 9788 (2016)
CrossRef
ADS
Google scholar
|
[12] |
V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying Entanglement, Phys. Rev. Lett. 78(12), 2275 (1997)
CrossRef
ADS
Google scholar
|
[13] |
V. Vedral and M. B. Plenio, Entanglement measures and purification procedures, Phys. Rev. A 57(3), 1619 (1998)
CrossRef
ADS
Google scholar
|
[14] |
V. Vedral, M. B. Plenio, K. Jacobs, and P. L. Knight, Statistical inference, distinguishability of quantum states, and quantum entanglement, Phys. Rev. A 56(6), 4452 (1997)
CrossRef
ADS
Google scholar
|
[15] |
M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, Multiparticle entanglement purification protocols, Phys. Rev. A 57(6), R4075 (1998)
CrossRef
ADS
Google scholar
|
[16] |
W. Dür, J. I. Cirac, and R. Tarrach, Separability and distillability of multiparticle quantum systems, Phys. Rev. Lett. 83(17), 3562 (1999)
CrossRef
ADS
Google scholar
|
[17] |
C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Unextendible product bases and bound entanglement, Phys. Rev. Lett. 82(26), 5385 (1999)
CrossRef
ADS
Google scholar
|
[18] |
K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, The classical-quantum boundary for correlations: Discord and related measures, Rev. Mod. Phys. 84(4), 1655 (2012)
CrossRef
ADS
Google scholar
|
[19] |
P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74(3), 032326 (2006)
CrossRef
ADS
Google scholar
|
[20] |
M. Montero, J. León, and E. Martín-Martínez, Fermionic entanglement extinction in noninertial frames, Phys. Rev. A 84(4), 042320 (2011)
CrossRef
ADS
Google scholar
|
[21] |
M. Shamirzaie, B. N. Esfahani, and M. Soltani, Tripartite entanglements in noninertial frames, Int. J. Theor. Phys. 51(3), 787 (2012)
CrossRef
ADS
Google scholar
|
[22] |
N. Metwally, Usefulness classes of traveling entangled channels in noninertial frames, Int. J. Mod. Phys. B 27(28), 1350155 (2013)
CrossRef
ADS
Google scholar
|
[23] |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky– Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[24] |
E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput. 26(5), 1411 (1997)
CrossRef
ADS
Google scholar
|
[25] |
D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer-Verlag, Berlin, 2000
CrossRef
ADS
Google scholar
|
[26] |
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)
CrossRef
ADS
Google scholar
|
[27] |
B. M. Terhal, Is entanglement monogamous? IBM J. Res. Develop. 48(1), 71 (2004)
CrossRef
ADS
Google scholar
|
[28] |
A. Sen De and U. Sen, Quantum advantage in communication networks, Phys. News 40(4), 17 (2010)
|
[29] |
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
CrossRef
ADS
Google scholar
|
[30] |
P. Y. Xiong, X. T. Yu, Z. C. Zhang, H. T. Zhan, and J. Y. Hua, Routing protocol for wireless quantum multihop mesh backbone network based on partially entangled GHZ state, Front. Phys. 12(4), 120302 (2017)
CrossRef
ADS
Google scholar
|
[31] |
K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)
CrossRef
ADS
Google scholar
|
[32] |
R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001)
CrossRef
ADS
Google scholar
|
[33] |
H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, Measurement-based quantum computation, Nat. Phys. 5, 19 (2009)
CrossRef
ADS
Google scholar
|
[34] |
M. R. Hwang, D. Park, and E. Jung, Tripartite entanglement in a noninertial frame, Phys. Rev. A 83, 012111 (2011)
CrossRef
ADS
Google scholar
|
[35] |
J. Wang and J. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83, 022314(2011)
CrossRef
ADS
Google scholar
|
[36] |
Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75, 062308(2007)
CrossRef
ADS
Google scholar
|
[37] |
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985, p. 205, 415–441
|
[38] |
S. Gartzke and A. Osterloh, Generalized W state of four qubits with exclusively the three-tangle, Phys. Rev. A 98(5), 052307 (2018)
CrossRef
ADS
Google scholar
|
[39] |
D. K. Park, Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment, Quantum Inform. Process. 15(8), 3189 (2016)
CrossRef
ADS
Google scholar
|
[40] |
A. J. Torres-Arenas, Q. Dong, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of W-state in noninertial frames, Phys. Lett. B 789, 93 (2019)
CrossRef
ADS
Google scholar
|
[41] |
X. H. Peng and D. Suter, Spin qubits for quantum simulations, Front. Phys. China 5(1), 1 (2010)
CrossRef
ADS
Google scholar
|
[42] |
S. Takagi, Vacuum noise and stress induced by uniform acceleration, Prog. Theor. Phys. Suppl. 88, 1 (1986)
CrossRef
ADS
Google scholar
|
[43] |
E. Martín-Martínez, L. J. Garay, and J. León, Unveiling quantum entanglement degradation near a Schwarzschild black hole, Phys. Rev. D 82(6), 064006 (2010)
CrossRef
ADS
Google scholar
|
[44] |
E. Martín-Martínez, L. J. Garay, and J. León, Quantum entanglement produced in the formation of a black hole, Phys. Rev. D 82(6), 064028 (2010)
CrossRef
ADS
Google scholar
|
[45] |
W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62(6), 062314 (2000)
CrossRef
ADS
Google scholar
|
[46] |
M. Socolovsky, Rindler space and Unruh effect, arXiv: 1304.2833v2 [gr-qc]
|
[47] |
M. Nakahara, Y. Wan, and Y. Sasaki, Diversities in Quantum Computation and Quantum Information, World Scientific, Singapore, 2013
|
[48] |
N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge University, Cambridge, England, 1982
CrossRef
ADS
Google scholar
|
[49] |
A. Smith and R. B. Mann, Persistence of tripartite nonlocality for noninertial observers, Phys. Rev. A 86(1), 012306 (2012)
CrossRef
ADS
Google scholar
|
[50] |
W. C. Qiang, G. H. Sun, Q. Dong, and S. H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98(2), 022320 (2018)
CrossRef
ADS
Google scholar
|
[51] |
W. C. Qiang and L. Zhang, Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames, Phys. Lett. B 742, 383 (2015)
CrossRef
ADS
Google scholar
|
[52] |
Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)
CrossRef
ADS
Google scholar
|
[53] |
H. Mehri-Dehnavi, B. Mirza, H. Mohammadzadeh, and R. Rahimi, Pseudo-entanglement evaluated in noninertial frames, Ann. Phys. 326(5), 1320 (2011)
CrossRef
ADS
Google scholar
|
[54] |
D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation, Phys. Rev. A 82(4), 042332 (2010)
CrossRef
ADS
Google scholar
|
[55] |
E. Martín-Martínez, D. Hosler, and M. Montero, Fundamental limitations to information transfer in accelerated frames, Phys. Rev. A 86(6), 062307 (2012)
CrossRef
ADS
Google scholar
|
[56] |
N. Friis, A. R. Lee, and D. E. Bruschi, Fermionic-mode entanglement in quantum information, Phys. Rev. A 87(2), 022338 (2013)
CrossRef
ADS
Google scholar
|
[57] |
A. Dragan, J. Doukas, E. Martín-Martínez, and D. E. Bruschi, Localized projective measurement of a quantum field in non-inertial frames, Class. Quantum Gravity 30(23), 235006 (2013)
CrossRef
ADS
Google scholar
|
[58] |
J. Doukas, E. G. Brown, A. Dragan, and R. B. Mann, Entanglement and discord: Accelerated observations of local and global modes, Phys. Rev. A 87(1), 012306 (2013)
CrossRef
ADS
Google scholar
|
[59] |
A. Dragan, J. Doukas, and E. Martín-Martínez, Localized detection of quantum entanglement through the event horizon, Phys. Rev. A 87(5), 052326 (2013)
CrossRef
ADS
Google scholar
|
[60] |
C. P. Williams, Explorations in Quantum Computing, Springer Science and Business Media, New York, 2010
|
[61] |
D. S. Oliveira and R. V. Ramos, Residual entanglement with negativity for pure four-qubit quantum states, Quantum Inform. Process. 9(4), 497 (2010)
CrossRef
ADS
Google scholar
|
[62] |
C. Sabín and G. García-Alcaine, A classification of entanglement in three-qubit systems, Eur. Phys. J. D 48(3), 435 (2008)
CrossRef
ADS
Google scholar
|
[63] |
J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, New Jersey, 1996
|
[64] |
B. Lari and H. Hassanabadi, Thermal entanglement, specific heat and quantum discord in open quantum systems including non-markovian processes, Mod. Phys. Lett. A 34(11), 1950059 (2019), arXiv: 1704.02811
CrossRef
ADS
Google scholar
|
[65] |
W. S. Chung and H. Hassanabadi, Black hole temperature and Unruh effect from the extended uncertainty principle, Phys. Lett. B 793, 451 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |