Recovering information in probabilistic quantum teleportation

Luis Roa, Andrea Espinoza, Ariana Muñoz, María L. Ladrón de Guevara

PDF(586 KB)
PDF(586 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (6) : 61602. DOI: 10.1007/s11467-019-0939-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Recovering information in probabilistic quantum teleportation

Author information +
History +

Abstract

In this paper we redesign the probabilistic teleportation scheme considered in Phys. Rev. A 61, 034301 (2000) by Wan-Li Li et al., where the optimal state extraction protocolcomplements the basic teleportation process with a partially entangled pure state channel, in order to transfer the unknown state with fidelity 1. Unlike that scheme, where the information of the unknown state is lost if the state extraction fails, our proposal teleports exactly and optimally an unknown state, and allows to recover faithfully that state when the process has not succeeded. In order to study the resilience of the scheme, we apply it to the teleportation problem through a quantum channel in a mixed state with pure dephasing. We find that a successful process transfers an unfaithful state, namely, the outcome state acquires the decoherence of the channel, but the unknown state is recovered by the sender with fidelity 1 if the teleportation fails. In addition, in this case, the fidelity of the teleported state has quantum features only if the channel has an amount of entanglement different from zero.

Keywords

quantum information / teleportation

Cite this article

Download citation ▾
Luis Roa, Andrea Espinoza, Ariana Muñoz, María L. Ladrón de Guevara. Recovering information in probabilistic quantum teleportation. Front. Phys., 2019, 14(6): 61602 https://doi.org/10.1007/s11467-019-0939-7

References

[1]
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky– Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[2]
D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
CrossRef ADS Google scholar
[3]
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)
CrossRef ADS Google scholar
[4]
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
CrossRef ADS Google scholar
[5]
N. Gisin, Quantum-teleportation experiments turn 20, Nature 552(7683), 42 (2017)
CrossRef ADS Google scholar
[6]
R. Lo Franco and G. Compagno, Indistinguishability of elementary systems as a resource for quantum information processing, Phys. Rev. Lett. 120(24), 240403 (2018)
CrossRef ADS Google scholar
[7]
J. G. Ren, P. Xu, H. L. Yong, L. Zhang, Sh. K. Liao, et al., Ground-to-satellite quantum teleportation, Nature 549(7670), 70 (2017)
CrossRef ADS Google scholar
[8]
H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, Deterministic quantum teleportation between distant atomic objects, Nat. Phys. 9(7), 400 (2013)
CrossRef ADS Google scholar
[9]
Sh. Takeda, T. Mizuta, M. Fuwa, P. van Loock, and A. Furusawa, Deterministic quantum teleportation of photonic quantum bits by a hybrid technique, Nature 500(7462), 315 (2013)
CrossRef ADS Google scholar
[10]
K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Deterministic teleportation of a quantum gate between two logical qubits, Nature 561, 368 (2018)
CrossRef ADS Google scholar
[11]
K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state,Front. Phys. 13, 130320 (2018)
CrossRef ADS Google scholar
[12]
G. Brassard, S. L. Braunstein, and R. Cleve, Teleportation as a quantum computation,Physica D 120(1–2), 43 (1998)
CrossRef ADS Google scholar
[13]
D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402(6760), 390 (1999)
CrossRef ADS Google scholar
[14]
S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
CrossRef ADS Google scholar
[15]
X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9, 646 (2014)
CrossRef ADS Google scholar
[16]
X. Q. Gao, Z. C. Zhang, and B. Sheng, Multi-hop teleportation in a quantum network based on mesh topology, Front. Phys. 13, 130314 (2018)
CrossRef ADS Google scholar
[17]
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)
CrossRef ADS Google scholar
[18]
M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60(3), 1888 (1999)
CrossRef ADS Google scholar
[19]
L. Roa, R. Gómez, A. Muñoz, G. Rai, and M. Hecker, Entanglement thresholds for displaying the quantum nature of teleportation, Ann. Phys. 371, 228 (2016)
CrossRef ADS Google scholar
[20]
L. Roa, M. L. Ladrón de Guevara, M. Soto-Moscoso, and P. Catalan, The joint measurement entanglement can significantly offset the effect of a noisy channel in teleportation, J. Phys. A: Math. Theor. 51(21), 215301 (2018)
CrossRef ADS Google scholar
[21]
T. Mor and P. Horodecki, Teleportation via generalized measurements, and conclusive teleportation, arXiv: quant-ph/9906039 (1999)
[22]
S. Bandyopadhyay, Teleportation and secret sharing with pure entangled states, Phys. Rev. A 62(1), 012308 (2000)
CrossRef ADS Google scholar
[23]
W. L. Li, C. F. Li, and G. C. Guo, Probabilistic teleportation and entanglement matching, Phys. Rev. A 61, 034301 (2000)
CrossRef ADS Google scholar
[24]
P. Agrawal and A. K. Pati, Probabilistic quantum teleportation, Phys. Lett. A 305(1–2), 12 (2002)
CrossRef ADS Google scholar
[25]
L. Roa, A. Delgado, and I. Fuentes-Guridi, Optimal conclusive teleportation of quantum states, Phys. Rev. A 68(2), 022310 (2003)
CrossRef ADS Google scholar
[26]
L. Roa and C. Groiseau, Probabilistic teleportation without loss of information, Phys. Rev. A 91(1), 012344 (2015)
CrossRef ADS Google scholar
[27]
L. Roa, A. Muñoz, A. Hutin, and M. Hecker, Threefold entanglement matching, Quantum Inform. Process. 14(11), 4113 (2015)
CrossRef ADS Google scholar
[28]
T. Rashvand, Teleporting an unknown quantum state with unit fidelity and unit probability via a nonmaximally entangled channel and an auxiliary system, Quantum Inform. Process. 15(11), 4839 (2016)
CrossRef ADS Google scholar
[29]
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11, 110303 (2016)
CrossRef ADS Google scholar
[30]
L. Y. Hsu, Optimal information extraction in probabilistic teleportation, Phys. Rev. A 66(1), 012308 (2002)
CrossRef ADS Google scholar
[31]
M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
CrossRef ADS Google scholar
[32]
J. L. Skinner and D. Hsu, Pure dephasing of a two-level system, J. Phys. Chem. 90(21), 4931 (1986)
CrossRef ADS Google scholar
[33]
F. K. Wilhelm, Quantum oscillations in the spin-boson model, reduced visibility from non-Markovian effects and initial entanglement, New J. Phys. 10(11), 115011 (2008)
CrossRef ADS Google scholar
[34]
B. Bellomo, G. Compagno, A. D’Arrigo, G. Falci, R. Lo Franco, and E. Paladino, Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise, Phys. Rev. A 81(6), 062309 (2010)
CrossRef ADS Google scholar
[35]
L. Mazzola, B. Bellomo, R. Lo Franco, and G. Compagno, Connection among entanglement, mixedness, and nonlocality in a dynamical context, Phys. Rev. A 81(5), 052116 (2010)
CrossRef ADS Google scholar
[36]
B. Aaronson, R. Lo Franco, and G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence, Phys. Rev. A 88(1), 012120 (2013)
CrossRef ADS Google scholar
[37]
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
CrossRef ADS Google scholar
[38]
S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett. 78(26), 5022 (1997)
CrossRef ADS Google scholar
[39]
A. Uhlmann, The “transition probability” in the state space of a *-algebra, Rep. Math. Phys. 9(2), 273 (1976)
CrossRef ADS Google scholar
[40]
R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41(12), 2315 (1994)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(586 KB)

Accesses

Citations

Detail

Sections
Recommended

/