Recovering information in probabilistic quantum teleportation
Luis Roa, Andrea Espinoza, Ariana Muñoz, María L. Ladrón de Guevara
Recovering information in probabilistic quantum teleportation
In this paper we redesign the probabilistic teleportation scheme considered in Phys. Rev. A 61, 034301 (2000) by Wan-Li Li et al., where the optimal state extraction protocolcomplements the basic teleportation process with a partially entangled pure state channel, in order to transfer the unknown state with fidelity 1. Unlike that scheme, where the information of the unknown state is lost if the state extraction fails, our proposal teleports exactly and optimally an unknown state, and allows to recover faithfully that state when the process has not succeeded. In order to study the resilience of the scheme, we apply it to the teleportation problem through a quantum channel in a mixed state with pure dephasing. We find that a successful process transfers an unfaithful state, namely, the outcome state acquires the decoherence of the channel, but the unknown state is recovered by the sender with fidelity 1 if the teleportation fails. In addition, in this case, the fidelity of the teleported state has quantum features only if the channel has an amount of entanglement different from zero.
quantum information / teleportation
[1] |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky– Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[2] |
D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
CrossRef
ADS
Google scholar
|
[3] |
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)
CrossRef
ADS
Google scholar
|
[4] |
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
CrossRef
ADS
Google scholar
|
[5] |
N. Gisin, Quantum-teleportation experiments turn 20, Nature 552(7683), 42 (2017)
CrossRef
ADS
Google scholar
|
[6] |
R. Lo Franco and G. Compagno, Indistinguishability of elementary systems as a resource for quantum information processing, Phys. Rev. Lett. 120(24), 240403 (2018)
CrossRef
ADS
Google scholar
|
[7] |
J. G. Ren, P. Xu, H. L. Yong, L. Zhang, Sh. K. Liao, et al., Ground-to-satellite quantum teleportation, Nature 549(7670), 70 (2017)
CrossRef
ADS
Google scholar
|
[8] |
H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, Deterministic quantum teleportation between distant atomic objects, Nat. Phys. 9(7), 400 (2013)
CrossRef
ADS
Google scholar
|
[9] |
Sh. Takeda, T. Mizuta, M. Fuwa, P. van Loock, and A. Furusawa, Deterministic quantum teleportation of photonic quantum bits by a hybrid technique, Nature 500(7462), 315 (2013)
CrossRef
ADS
Google scholar
|
[10] |
K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Deterministic teleportation of a quantum gate between two logical qubits, Nature 561, 368 (2018)
CrossRef
ADS
Google scholar
|
[11] |
K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state,Front. Phys. 13, 130320 (2018)
CrossRef
ADS
Google scholar
|
[12] |
G. Brassard, S. L. Braunstein, and R. Cleve, Teleportation as a quantum computation,Physica D 120(1–2), 43 (1998)
CrossRef
ADS
Google scholar
|
[13] |
D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402(6760), 390 (1999)
CrossRef
ADS
Google scholar
|
[14] |
S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
CrossRef
ADS
Google scholar
|
[15] |
X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9, 646 (2014)
CrossRef
ADS
Google scholar
|
[16] |
X. Q. Gao, Z. C. Zhang, and B. Sheng, Multi-hop teleportation in a quantum network based on mesh topology, Front. Phys. 13, 130314 (2018)
CrossRef
ADS
Google scholar
|
[17] |
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)
CrossRef
ADS
Google scholar
|
[18] |
M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60(3), 1888 (1999)
CrossRef
ADS
Google scholar
|
[19] |
L. Roa, R. Gómez, A. Muñoz, G. Rai, and M. Hecker, Entanglement thresholds for displaying the quantum nature of teleportation, Ann. Phys. 371, 228 (2016)
CrossRef
ADS
Google scholar
|
[20] |
L. Roa, M. L. Ladrón de Guevara, M. Soto-Moscoso, and P. Catalan, The joint measurement entanglement can significantly offset the effect of a noisy channel in teleportation, J. Phys. A: Math. Theor. 51(21), 215301 (2018)
CrossRef
ADS
Google scholar
|
[21] |
T. Mor and P. Horodecki, Teleportation via generalized measurements, and conclusive teleportation, arXiv: quant-ph/9906039 (1999)
|
[22] |
S. Bandyopadhyay, Teleportation and secret sharing with pure entangled states, Phys. Rev. A 62(1), 012308 (2000)
CrossRef
ADS
Google scholar
|
[23] |
W. L. Li, C. F. Li, and G. C. Guo, Probabilistic teleportation and entanglement matching, Phys. Rev. A 61, 034301 (2000)
CrossRef
ADS
Google scholar
|
[24] |
P. Agrawal and A. K. Pati, Probabilistic quantum teleportation, Phys. Lett. A 305(1–2), 12 (2002)
CrossRef
ADS
Google scholar
|
[25] |
L. Roa, A. Delgado, and I. Fuentes-Guridi, Optimal conclusive teleportation of quantum states, Phys. Rev. A 68(2), 022310 (2003)
CrossRef
ADS
Google scholar
|
[26] |
L. Roa and C. Groiseau, Probabilistic teleportation without loss of information, Phys. Rev. A 91(1), 012344 (2015)
CrossRef
ADS
Google scholar
|
[27] |
L. Roa, A. Muñoz, A. Hutin, and M. Hecker, Threefold entanglement matching, Quantum Inform. Process. 14(11), 4113 (2015)
CrossRef
ADS
Google scholar
|
[28] |
T. Rashvand, Teleporting an unknown quantum state with unit fidelity and unit probability via a nonmaximally entangled channel and an auxiliary system, Quantum Inform. Process. 15(11), 4839 (2016)
CrossRef
ADS
Google scholar
|
[29] |
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11, 110303 (2016)
CrossRef
ADS
Google scholar
|
[30] |
L. Y. Hsu, Optimal information extraction in probabilistic teleportation, Phys. Rev. A 66(1), 012308 (2002)
CrossRef
ADS
Google scholar
|
[31] |
M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
CrossRef
ADS
Google scholar
|
[32] |
J. L. Skinner and D. Hsu, Pure dephasing of a two-level system, J. Phys. Chem. 90(21), 4931 (1986)
CrossRef
ADS
Google scholar
|
[33] |
F. K. Wilhelm, Quantum oscillations in the spin-boson model, reduced visibility from non-Markovian effects and initial entanglement, New J. Phys. 10(11), 115011 (2008)
CrossRef
ADS
Google scholar
|
[34] |
B. Bellomo, G. Compagno, A. D’Arrigo, G. Falci, R. Lo Franco, and E. Paladino, Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise, Phys. Rev. A 81(6), 062309 (2010)
CrossRef
ADS
Google scholar
|
[35] |
L. Mazzola, B. Bellomo, R. Lo Franco, and G. Compagno, Connection among entanglement, mixedness, and nonlocality in a dynamical context, Phys. Rev. A 81(5), 052116 (2010)
CrossRef
ADS
Google scholar
|
[36] |
B. Aaronson, R. Lo Franco, and G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence, Phys. Rev. A 88(1), 012120 (2013)
CrossRef
ADS
Google scholar
|
[37] |
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
CrossRef
ADS
Google scholar
|
[38] |
S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett. 78(26), 5022 (1997)
CrossRef
ADS
Google scholar
|
[39] |
A. Uhlmann, The “transition probability” in the state space of a *-algebra, Rep. Math. Phys. 9(2), 273 (1976)
CrossRef
ADS
Google scholar
|
[40] |
R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41(12), 2315 (1994)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |