Extraction of gravitational wave signals with optimized convolutional neural network

Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, Qing-Guo Huang

PDF(1257 KB)
PDF(1257 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (1) : 14601. DOI: 10.1007/s11467-019-0936-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Extraction of gravitational wave signals with optimized convolutional neural network

Author information +
History +

Abstract

Gabbard et al. have demonstrated that convolutional neural networks can achieve the sensitivity of matched filtering in the recognization of the gravitational-wave signals with high efficiency [Phys. Rev. Lett. 120, 141103 (2018)]. In this work we show that their model can be optimized for better accuracy. The convolutional neural networks typically have alternating convolutional layers and max pooling layers, followed by a small number of fully connected layers. We increase the stride in the max pooling layer by 1, followed by a dropout layer to alleviate overfitting in the original model. We find that these optimizations can effectively increase the area under the receiver operating characteristic curve for various tests on the same dataset.

Keywords

gravitational wave / convolutional neural networks / deep learning

Cite this article

Download citation ▾
Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, Qing-Guo Huang. Extraction of gravitational wave signals with optimized convolutional neural network. Front. Phys., 2020, 15(1): 14601 https://doi.org/10.1007/s11467-019-0936-x

References

[1]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837 [gr-qc]
[2]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116, 241103 (2016), arXiv: 1606.04855 [gr-qc]
[3]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW170104: Observation of a 50-solar mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017), [Erratum: Phys. Rev. Lett. 121 (12), 129901 (2018)], arXiv: 1706.01812 [gr-qc]
[4]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW170608: Observation of a 19-solarmass Binary Black Hole Coalescence, Astrophys. J. 851, L35 (2017), arXiv: 1711.05578 [astroph.HE]
[5]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119, 141101 (2017), arXiv: 1709.09660 [gr-qc]
[6]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6, 041015 (2016) [erratum: Phys. Rev. X 8, 039903 (2018)], arXiv: 1606.04856 [gr-qc]
[7]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, arXiv: 1811.12907 [astro-ph.HE] (2018)
[8]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832 [gr-qc]
[9]
G. González, A. Viceré, and L. Wen, Gravitational wave astronomy, Front. Phys. 8(6), 771 (2013)
CrossRef ADS Google scholar
[10]
B. Zhang, The delay time of gravitational wave – gammaray burst associations, Front. Phys. 14, 64402 (2019), arXiv: 1905.00781 [astro-ph.HE]
CrossRef ADS Google scholar
[11]
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration), Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Relativ. 21(1), 3 (2018), arXiv :1304.0670 [gr-qc]
[12]
R. Zhang, P. Isola, and A. A. Efros, Colorful image colorization, arXiv: 1603.08511 (2016)
CrossRef ADS Google scholar
[13]
A. Karpathy, A. Joulin, and F. F. Li, Deep fragment embeddings for bidirectional image sentence mapping, arXiv: 1406.5679 (2014)
[14]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60(6), 84 (2017)
CrossRef ADS Google scholar
[15]
I. Kononenko, Machine learning for medical diagnosis: History, state of the art and perspective, Artif. Intell. Med. 23(1), 89 (2001)
CrossRef ADS Google scholar
[16]
T. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schölkopf, Convwave: Searching for gravitational waves with fully convolutional neural nets, in: Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (2017)
[17]
D. George and E. A. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97, 044039 (2018), arXiv: 1701.00008 [astro-ph.IM]
CrossRef ADS Google scholar
[18]
D. George, H. Y. Shen, and E. A. Huerta, Deep transfer learning: A new deep learning glitch classification method for advanced LIGO, Phys. Rev. D 97, 101501(R) (2018), arXiv: 1706.07446 [gr-qc]
CrossRef ADS Google scholar
[19]
D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced LIGO data, Phys. Lett. B 778, 64 (2018), arXiv: 1711.03121 [gr-qc]
CrossRef ADS Google scholar
[20]
D. George, H. Y. Shen, and E. A. Huerta, Glitch classification and clustering for LIGO with deep transfer learning, Phys. Rev. D 97, 101501 (2018), arXiv: 1711.07468 [astroph.IM]
CrossRef ADS Google scholar
[21]
D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation with LIGO data, in: NiPS Summer School 2017 Gubbio, Perugia, Italy, June 30–July 3, 2017 (2017), arXiv: 1711.07966 [gr-qc]
[22]
H. Y. Shen, D. George, E. A. Huerta, and Z. Z. Zhao, Denoising gravitational waves using deep learning with recurrent denoising autoencoders, arXiv: 1711.09919 [grqc] (2017)
[23]
H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120, 141103 (2018), arXiv: 1712.06041 [astro-ph.IM]
CrossRef ADS Google scholar
[24]
X. R. Li, W. L. Yu, and X. L. Fan, A method of detecting gravitational wave based on time-frequency analysis and convolutional neural networks, arXiv: 1712.00356 [astroph.IM] (2017)
[25]
X. L. Fan, J. Li, X. Li, Y. H. Zhong, and J. W. Cao, Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors, Sci. China Phys. Mech. Astron. 62, 969512 (2019), arXiv: 1811.01380 [astro-ph.IM]
CrossRef ADS Google scholar
[26]
Z. J. Cao, H. Wang, and J. Y. Zhu, Initial study on the application of deep learning to the gravitational wave data analysis, J. Henan Norm. Univ. (Nat. Sci. Ed.) 46, 26 (2018)
[27]
T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schölkopf, Convolutional neural networks: A magic bullet for gravitational-wave detection? arXiv: 1904.08693 [astroph.IM] (2019)
CrossRef ADS Google scholar
[28]
https://github.com/mj-will/intro2ml/blob/master/
[29]
R. Biswas, L. Blackburn, J. Cao, R. Essick, K. A. Hodge, E. Katsavounidis, K. Kim, Y. M. Kim, E. O. Le Bigot, C. H. Lee, J. J. Oh, S. H. Oh, E. J. Son, Y. Tao, R. Vaulin, and X. Wang, Application of machine learning algorithms to the study of noise artifacts in gravitationalwave data, Phys. Rev. D 88(6), 062003 (2013), arXiv: 1303.6984 [astro-ph.IM]
CrossRef ADS Google scholar
[30]
D. George, H. Y. Shen, and E. A. Huerta, Glitch classification and clustering for LIGO with deep transfer learning, in: NiPS Summer School 2017 Gubbio, Perugia, Italy, June 30-July 3, 2017 (2017), arXiv: 1711.07468 [astro-ph.IM]
[31]
M. Cavaglia, K. Staats, and T. Gill, Finding the origin of noise transients in LIGO data with machine learning, Commun. Comput. Phys. 25, 963 (2019), arXiv: 1812.05225 [physics.data-an]
CrossRef ADS Google scholar
[32]
S. B. Coughlin, et al., Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning, Phys. Rev. D 99, 082002 (2019), arXiv: 1903.04058 [astroph.IM]
CrossRef ADS Google scholar
[33]
M. Llorens-Monteagudo, T. F. Alejandro, J. Font, and A. Marquina, Classification of gravitational-wave glitches via dictionary learning, Class. Quant. Grav. 36, 075005 (2019), arXiv: 1811.03867 [astro-ph.IM]
CrossRef ADS Google scholar
[34]
B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration), Prospects for observing and localizing gravitational-wave transients with advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Rel. 21, 3 (2018), arXiv: 1304.0670 [gr-qc]
[35]
S. Husa, S. Khan, M. Hannam, M. Prrer, F. Ohme, X. J. Forteza, and A. Boh, Frequency-domain gravitational waves from nonprecessing black-hole binaries (I): New numerical waveforms and anatomy of the signal, Phys. Rev. D 93, 044006 (2016), arXiv: 1508.07250 [gr-qc]
CrossRef ADS Google scholar
[36]
S. Khan, S. Husa, M. Hannam, F. Ohme, M. Prrer, X. J. Forteza, and A. Boh, Frequency-domain gravitational waves from nonprecessing black-hole binaries (II): A phenomenological model for the advanced detector era, Phys. Rev. D 93, 044007 (2016), arXiv: 1508.07253 [gr-qc]
CrossRef ADS Google scholar
[37]
LIGO Scientific Collaboration, LIGO Algorithm Library- LALSuite, free software (GPL) (2018)
[38]
G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R, Springer Texts in Statistics, Springer New York, 2013
CrossRef ADS Google scholar
[39]
B. D. Ripley and N. L. Hjort, Pattern Recognition and Neural Networks, 1st Ed., Cambridge University Press, New York, NY, USA, 1995
[40]
M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, arXiv: 1311.2901 (2013)
[41]
T. Dozat, Incorporating nesterov momentum into Adam (2015)
[42]
F. Chollet, et al., Keras, https://keras.io (2015)
[43]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15, 1929 (2014)
[44]
J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller, Striving for simplicity: The all convolutional net, arXiv: 1412.6806 (2014)
[45]
T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27(8), 861 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1257 KB)

Accesses

Citations

Detail

Sections
Recommended

/