Self-trapped spatially localized states in combined linear-nonlinear periodic potentials

Jin-Cheng Shi, Jian-Hua Zeng

PDF(2105 KB)
PDF(2105 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (1) : 12602. DOI: 10.1007/s11467-019-0930-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Self-trapped spatially localized states in combined linear-nonlinear periodic potentials

Author information +
History +

Abstract

We analyze the existence and stability of two kinds of self-trapped spatially localized gap modes, gap solitons and truncated nonlinear Bloch waves, in one- and two-dimensional optical or matter-wave media with self-focusing nonlinearity, supported by a combination of linear and nonlinear periodic lattice potentials. The former is found to be stable once placed inside a single well of the nonlinear lattice, it is unstable otherwise. Contrary to the case with constant self-focusing nonlinearity, where the latter solution is always unstable, here, we demonstrate that it nevertheless can be stabilized by the nonlinear lattice since the model under consideration combines the unique properties of both the linear and nonlinear lattices. The practical possibilities for experimental realization of the predicted solutions are also discussed.

Keywords

gap solitons and gap waves / Bose–Einstein condensates / linear and nonlinear periodic potentials

Cite this article

Download citation ▾
Jin-Cheng Shi, Jian-Hua Zeng. Self-trapped spatially localized states in combined linear-nonlinear periodic potentials. Front. Phys., 2020, 15(1): 12602 https://doi.org/10.1007/s11467-019-0930-3

References

[1]
D. E. Pelinovsky, Localization in Periodic Potential: From Schrödinger Operators to the Gross–Pitaevskii Equation, Cambridge: Cambridge University Press, 2011
[2]
Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic, San Diego, CA, 2003
CrossRef ADS Google scholar
[3]
V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in PT-symmetric systems, Rev. Mod. Phys. 88(3), 035002 (2016)
CrossRef ADS Google scholar
[4]
C. Kittel, Introduction to Solid State Physics, 8th Ed., New York: John Wiley & Sons, 2005
[5]
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton: Princeton University Press, 2008
[6]
C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, Hybrid photonic-crystal fiber, Rev. Mod. Phys. 89(4), 045003 (2017)
CrossRef ADS Google scholar
[7]
J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature 422(6928), 147 (2003)
CrossRef ADS Google scholar
[8]
F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463(1–3), 1 (2008)
CrossRef ADS Google scholar
[9]
I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518(1–2), 1 (2012)
CrossRef ADS Google scholar
[10]
E. A. Ostrovskaya and Y. S. Kivshar, Matter-wave gap vortices in optical lattices, Phys. Rev. Lett. 93(16), 160405 (2004)
CrossRef ADS Google scholar
[11]
J. Shi and J. Zeng, Asymmetric localized states in periodic potentials with a domain-wall-like Kerr nonlinearity, J. Phys. Commun. 3(3), 035003 (2019)
CrossRef ADS Google scholar
[12]
L. Zeng and J. Zeng, Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices, Adv. Photon. 1(04), 046004 (2019)
CrossRef ADS Google scholar
[13]
F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463(1–3), 1 (2008)
CrossRef ADS Google scholar
[14]
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape and mobility control in optical lattices, Prog. Opt. 52, 63 (2009)
CrossRef ADS Google scholar
[15]
P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González (Eds.), Emergent Nonlinear Phenomena in Bose–Einstein Condensates, Berlin: Springer, 2008
CrossRef ADS Google scholar
[16]
Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial solitons: Historical overview and recent advances, Rep. Prog. Phys. 75(8), 086401 (2012)
CrossRef ADS Google scholar
[17]
B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Bragg grating solitons, Phys. Rev. Lett. 76(10), 1627 (1996)
CrossRef ADS Google scholar
[18]
A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, Observation of two-dimensional surface solitons in asymmetric waveguid arrays, Phys. Rev. Lett. 98(17), 173903 (2007)
CrossRef ADS Google scholar
[19]
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Surface gap solitons, Phys. Rev. Lett. 96(7), 073901 (2006)
CrossRef ADS Google scholar
[20]
D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, Gap solitons in waveguide arrays, Phys. Rev. Lett. 92(9), 093904 (2004)
CrossRef ADS Google scholar
[21]
O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, Conical diffraction and gap solitons in honeycomb photonic lattices, Phys. Rev. Lett. 98(10), 103901 (2007)
CrossRef ADS Google scholar
[22]
A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C. Denz, Composite band-gap solitons in nonlinear optically induced lattices, Phys. Rev. Lett. 91(15), 153902 (2003)
CrossRef ADS Google scholar
[23]
E. A. Ostrovskaya, J. Abdullaev, M. D. Fraser, A. S. Desyatnikov, and Y. S. Kivshar, Self-localization of polariton condensates in periodic potentials, Phys. Rev. Lett. 110(17), 170407 (2013)
CrossRef ADS Google scholar
[24]
E. A. Cerda-Méndez, D. Sarkar, D. N. Krizhanovskii, S. S. Gavrilov, K. Biermann, M. S. Skolnick, and P. V. Santos, Exciton–polariton gap solitons in two-dimensional lattices, Phys. Rev. Lett. 111(14), 146401 (2013)
CrossRef ADS Google scholar
[25]
D. Tanese, H. Flayac, D. Solnyshkov, A. Amo, A. Lemaître, E. Galopin, R. Braive, P. Senellart, I. Sagnes, G. Malpuech, and J. Bloch, Polariton condensation in solitonic gap states in a one-dimensional periodic potential, Nat. Commun. 4(1), 1749 (2013)
CrossRef ADS Google scholar
[26]
B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K. P. Marzlin, and M. K. Oberthaler, Bright Bose–Einstein gap solitons of atoms with repulsive interaction, Phys. Rev. Lett. 92(23), 230401 (2004)
CrossRef ADS Google scholar
[27]
Y. Sivan, G. Fibich, and M. I. Weinstein, Waves in nonlinear lattices: Ultrashort optical pulses and Bose–Einstein condensates, Phys. Rev. Lett. 97, 193902 (2006)
CrossRef ADS Google scholar
[28]
J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik, and P. J. Torres, Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities, Phys. Rev. Lett. 98(6), 064102 (2007)
CrossRef ADS Google scholar
[29]
J. Zeng and B. A. Malomed, Stabilization of onedimensional solitons against the critical collapse by quintic nonlinear lattices, Phys. Rev. A 85(2), 023824 (2012)
CrossRef ADS Google scholar
[30]
X. Gao and J. Zeng, Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices, Front. Phys. 13(1), 130501 (2018)
CrossRef ADS Google scholar
[31]
J. Shi, J. Zeng, and B. A. Malomed, Suppression of the critical collapse for one-dimensional solitons by saturable quintic nonlinear lattices, Chaos 28(7), 075501 (2018)
CrossRef ADS Google scholar
[32]
L. Zeng and J. Zeng, One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: Nonlinear lattice, Opt. Lett. 44(11), 2661 (2019)
CrossRef ADS Google scholar
[33]
Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in nonlinear lattices, Rev. Mod. Phys. 83(1), 247 (2011)
CrossRef ADS Google scholar
[34]
R. Carretero-González, D. J. Frantzeskakis, and P. G. Kevrekidis, Nonlinear waves in Bose–Einstein condensates: Physical relevance and mathematical techniques, Nonlinearity 21(7), R139 (2008)
CrossRef ADS Google scholar
[35]
D. L. Machacek, E. A. Foreman, Q. E. Hoq, P. G. Kevrekidis, A. Saxena, D. J. Frantzeskakis, and A. R. Bishop, Statics and dynamics of an inhomogeneously nonlinear lattice, Phys. Rev. E 74(3), 036602 (2006)
CrossRef ADS Google scholar
[36]
R. Carretero-González, P. G. Kevrekidis, B. A. Malomed, and D. J. Frantzeskakis, Three-dimensional nonlinear lattices: From oblique vortices and octupoles to discrete diamonds and vortex cubes, Phys. Rev. Lett. 94(20), 203901 (2005)
CrossRef ADS Google scholar
[37]
V. Achilleos, G. Theocharis, P. G. Kevrekidis, N. I. Karachalios, F. K. Diakonos, and D. J. Frantzeskakis, Stationary states of a nonlinear Schrödinger lattice with a harmonic trap, J. Math. Phys. 52(9), 092701 (2011)
CrossRef ADS Google scholar
[38]
P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, B. A. Malomed, and A. R. Bishop, Discrete solitons and vortices on anisotropic lattices, Phys. Rev. E 72(4), 046613 (2005)
CrossRef ADS Google scholar
[39]
L. Salasnich, A. Cetoli, B. A. Malomed, F. Toigo, and L. Reatto, Bose–Einstein condensates under a spatially modulated transverse confinement, Phys. Rev. A 76(1), 013623 (2007)
CrossRef ADS Google scholar
[40]
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity, Opt. Lett. 33(15), 1747 (2008)
CrossRef ADS Google scholar
[41]
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Powerdependent shaping of vortex solitons in optical lattices with spatially modulated nonlinear refractive index, Opt. Lett. 33(19), 2173 (2008)
CrossRef ADS Google scholar
[42]
H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)
CrossRef ADS Google scholar
[43]
J. Zeng and B. A. Malomed, Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials, Phys. Scr. T 149, 014035 (2012)
CrossRef ADS Google scholar
[44]
Y. V. Bludov and V. V. Konotop, Localized modes in arrays of boson–fermion mixtures, Phys. Rev. A 74(4), 043616 (2006)
CrossRef ADS Google scholar
[45]
Y. V. Bludov, V. A. Brazhnyi, and V. V. Konotop, Delocalizing transition in one-dimensional condensates in optical lattices due to inhomogeneous interactions, Phys. Rev. A 76(2), 023603 (2007)
CrossRef ADS Google scholar
[46]
Z. Rapti, P. G. Kevrekidis, V. V. Konotop, and C. K. R. T. Jones, Solitary waves under the competition of linear and nonlinear periodic potentials, J. Phys. A Math. Theor. 40(47), 14151 (2007)
CrossRef ADS Google scholar
[47]
J. Belmonte-Beitia, V. V. Konotop, V. M. Perez-García, and V. E. Vekslerchik, Localized and periodic exact solutions to the nonlinear Schrödinger equation with spatially modulated parameters: Linear and nonlinear lattices, Chaos Solitons Fractals 41(3), 1158 (2009)
CrossRef ADS Google scholar
[48]
Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, and M. K. Oberthaler, Nonlinear self-trapping of matter waves in periodic potentials, Phys. Rev. Lett. 94(2), 020403 (2005)
CrossRef ADS Google scholar
[49]
T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, Self-trapped nonlinear matter waves in periodic potentials, Phys. Rev. Lett. 96(4), 040401 (2006)
CrossRef ADS Google scholar
[50]
Y. Zhang and B. Wu, Composition relation between gap solitons and bloch waves in nonlinear periodic systems, Phys. Rev. Lett. 102(9), 093905 (2009)
CrossRef ADS Google scholar
[51]
F. H. Bennet, T. J. Alexander, F. Haslinger, A. Mitchell, D. N. Neshev, and Y. S. Kivshar, Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays, Phys. Rev. Lett. 106(9), 093901 (2011)
CrossRef ADS Google scholar
[52]
C. Bersch, G. Onishchukov, and U. Peschel, Optical gap solitons and truncated nonlinear Bloch waves in temporal lattices, Phys. Rev. Lett. 109(9), 093903 (2012)
CrossRef ADS Google scholar
[53]
J. Wang, J. Yang, T. J. Alexander, and Y. S. Kivshar, Truncated-Bloch-wave solitons in optical lattices, Phys. Rev. A 79(4), 043610 (2009)
CrossRef ADS Google scholar
[54]
Z. Shi, J. Wang, Z. Chen, and J. Yang, Linear instability of two-dimensional low-amplitude gap solitons near band edges in periodic media, Phys. Rev. A 78(6), 063812 (2008)
CrossRef ADS Google scholar
[55]
J. Zeng and B. A. Malomed, Two-dimensional intra-band solitons in lattice potentials with local defects and selffocusing nonlinearity, J. Opt. Soc. Am. B 30(7), 1786 (2013)
CrossRef ADS Google scholar
[56]
N. Dror and B. A. Malomed, Stability of two-dimensional gap solitons in periodic potentials: Beyond the fundamental modes, Phys. Rev. E 87(6), 063203 (2013)
CrossRef ADS Google scholar
[57]
H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)
CrossRef ADS Google scholar
[58]
P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Y. S. Kivshar, Bose–Einstein condensates in optical lattices: Bandgap structure and solitons, Phys. Rev. A 67(1), 013602 (2003)
CrossRef ADS Google scholar
[59]
N. K. Efremidis and D. N. Christodoulides, Lattice solitons in Bose–Einstein condensates, Phys. Rev. A 67(6), 063608 (2003)
CrossRef ADS Google scholar
[60]
Z. Shi and J. Yang, Solitary waves bifurcated from Blochband edges in two-dimensional periodic media, Phys. Rev. E 75(5), 056602 (2007)
CrossRef ADS Google scholar
[61]
E. A. Ostrovskaya and Y. S. Kivshar, Matter-wave gap solitons in atomic band-gap structures, Phys. Rev. Lett. 90(16), 160407 (2003)
CrossRef ADS Google scholar
[62]
T. Mayteevarunyoo, B. A. Malomed, B. B. Baizakov, and M. Salerno, Matter-wave vortices and solitons in anisotropic optical lattices, Physica D 238(15), 1439 (2009)
CrossRef ADS Google scholar
[63]
M. Vakhitov, and A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron. 16(7), 783 (1973)
CrossRef ADS Google scholar
[64]
V. A. Brazhnyi and V. V. Konotop, Theory of nonlinear matter waves in optical lattice, Mod. Phys. Lett. B 18(14), 627 (2004)
CrossRef ADS Google scholar
[65]
O. Morsch and M. Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)
CrossRef ADS Google scholar
[66]
R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, Submicron spatial modulation of an interatomic interaction in a Bose–Einstein condensate, Phys. Rev. Lett. 105(5), 050405 (2010)
CrossRef ADS Google scholar
[67]
M. Yan, B. J. DeSalvo, B. Ramachandhran, H. Pu, and T. C. Killian, Controlling condensate collapse and expansion with an optical Feshbach resonance, Phys. Rev. Lett. 110(12), 123201 (2013)
CrossRef ADS Google scholar
[68]
L. W. Clark, L. C. Ha, C. Y. Xu, and C. Chin, Quantum dynamics with spatiotemporal control of interactions in a stable Bose–Einstein condensate, Phys. Rev. Lett. 115(15), 155301 (2015)
CrossRef ADS Google scholar
[69]
S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, Permanent magnetic lattices for ultracold atoms and quantum degenerate gases, J. Phys. At. Mol. Opt. Phys. 39(4), 847 (2006)
CrossRef ADS Google scholar
[70]
O. Romero-Isart, C. Navau, A. Sanchez, P. Zoller, and J. I. Cirac, Superconducting vortex lattices for ultracold atoms, Phys. Rev. Lett. 111(14), 145304 (2013)
CrossRef ADS Google scholar
[71]
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
CrossRef ADS Google scholar
[72]
P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and B. A. Malomed, Feshbach resonance management for Bose–Einstein condensates, Phys. Rev. Lett. 90(23), 230401 (2003)
CrossRef ADS Google scholar
[73]
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef ADS Google scholar
[74]
Y. Li, Z. Fan, Z. Luo, Y. Liu, H. He, J. Lü, J. Xie, C. Huang, and H. Tan, Cross-symmetry breaking of twocomponent discrete dipolar matter-wave solitons, Front. Phys. 12(5), 124206 (2017)
CrossRef ADS Google scholar
[75]
R. Zhong, Z. Chen, C. Huang, Z. Luo, H. Tan, B. A. Malomed, and Y. Li, Self-trapping under two-dimensional spin–orbit coupling and spatially growing repulsive nonlinearity, Front. Phys. 13(4), 130311 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2105 KB)

Accesses

Citations

Detail

Sections
Recommended

/