Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay
Yan-Ping Liu (刘艳平), Xiang Li (李翔), Jing Qu (屈静), Xue-Juan Gao (高学娟), Qing-Zu He (何情祖), Li-Yu Liu (刘雳宇), Ru-Chuan Liu (刘如川), Jian-Wei Shuai (帅建伟)
Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay
Cell migration through anisotropic microenvironment is critical to a wide variety of physiological and pathological processes. However, adequate analytical tools to derive motile parameters to characterize the anisotropic migration are lacking. Here, we proposed a method to obtain the four motile parameters of migration cells based on the anisotropic persistent random walk model which is described by two persistence times and two migration speeds at perpendicular directions. The key process is to calculate the velocity power spectra of cell migration along intrinsically perpendicular directions respectively, then to apply maximum likelihood estimation to derive the motile parameters from the power spectra fitting with double exponential decay. The simulation results show that the averaged persistence times and the corrected migration speeds can be good estimations for motile parameters of cell migration.
cell migration / heterogeneity / power spectrum / random walk / Langevin equation
[1] |
M. Vicente-Manzanares and A. R. Horwitz, Cell migration: An overview, Methods Mol. Biol. 769, 1 (2011)
CrossRef
ADS
Google scholar
|
[2] |
D. S. Vasilev, N. M. Dubrovskaya, N. L. Tumanova, and I. A. Zhuravin, Prenatal hypoxia in different periods of embryogenesis differentially affects cell migration, neuronal plasticity, and rat behavior in postnatal ontogenesis, Front. Neurosci. 10, 126 (2016)
CrossRef
ADS
Google scholar
|
[3] |
M. Zalokar and I. Erk, J. Microsc. Biol. Cell. 25, 97 (1976)
|
[4] |
P. Kulesa, D. L. Ellies, and P. A. Trainor, Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis,Dev. Dyn. 229(1), 14 (2004)
CrossRef
ADS
Google scholar
|
[5] |
W. S. Krawczyk, A pattern of epidermal cell migration during wound healing, J. Cell Biol. 49(2), 247 (1971)
CrossRef
ADS
Google scholar
|
[6] |
G. D. Sharma, J. He, and H. E. P. Bazan, p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: Evidence of cross-talk activation between MAP kinase cascades, J. Biol. Chem. 278(24), 21989 (2003)
CrossRef
ADS
Google scholar
|
[7] |
T. Tao, A. Robichaud, S. Nadeau, R. Savoie, B. Gallant, and R. Ouellette, Effect of cumulus cell removal on the fertilization and the day 3 embryo quality in human IVF, International Congress Series 1271, 135 (2004)
CrossRef
ADS
Google scholar
|
[8] |
J. Bowszyc, J. Bowszyc, and T. Machońko, 15-years of studies of the immunological cellular response in syphilis in humans using migration inhibition tests, Przegl. Dermatol. 72(2), 134 (1985)
|
[9] |
H. Zhang, Y. Han, J. Tao, S. Liu, C. Yan, and S. Li, Cellular repressor of E1A-stimulated genes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway, Exp. Cell Res. 317(20), 2904 (2011)
CrossRef
ADS
Google scholar
|
[10] |
X. L. Fang Wei, M. Cai, Y. Liu, P. Jung, and J. W. Shuai, Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells, Front. Phys. 12(3), 128702 (2017)
CrossRef
ADS
Google scholar
|
[11] |
S. X. Liu, Y. Z. Geng, and S. W. Yan, Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy, Front. Phys. 12(3), 128908 (2017)
CrossRef
ADS
Google scholar
|
[12] |
H. C. Berg and F. Dyson, Random walks in biology, Phys. Today 40(3), 73 (1987)
CrossRef
ADS
Google scholar
|
[13] |
L. X. Li, Photon diffusion in a relativistically expanding sphere, Front. Phys. 8(5), 555 (2013)
CrossRef
ADS
Google scholar
|
[14] |
X. H. Li, G. Yang, and J. P. Huang, Chaotic-periodic transition in a two-sided minority game, Front. Phys. 11(4), 118901 (2016)
CrossRef
ADS
Google scholar
|
[15] |
S. Huang, C. P. Brangwynne, K. K. Parker, and D. E. Ingber, Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: Role of random-walk persistence, Cell Motil. Cytoskeleton 61(4), 201 (2005)
CrossRef
ADS
Google scholar
|
[16] |
Z. X. Niu, T. Hang, and Y. Chen, Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces, Front. Phys. 13(5), 137804 (2018)
CrossRef
ADS
Google scholar
|
[17] |
Y. A. Yan and J. S. Shao, Stochastic description of quantum Brownian dynamics, Front. Phys. 11(4), 110309 (2016)
CrossRef
ADS
Google scholar
|
[18] |
M. Boguñá, J. M. Porrà, and J. Masoliver, Generalization of the persistent random walk to dimensions greater than 1, Phys. Rev. E 58(6), 6992 (1998)
CrossRef
ADS
Google scholar
|
[19] |
C. Peggy, A. L. Ny, B. D. Loynes,
CrossRef
ADS
Google scholar
|
[20] |
H. I. Wu, B. L. Li, T. A. Springer, and W. H. Neill, Modelling animal movement as a persistent random walk in two dimensions: Expected magnitude of net displacement, Ecol. Modell. 132(1–2), 115 (2000)
CrossRef
ADS
Google scholar
|
[21] |
M. Schienbein and H. Gruler, Langevin equation, Fokker-Planck equation and cell migration, Bull. Math. Biol. 55(3), 585 (1993)
CrossRef
ADS
Google scholar
|
[22] |
D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [Sur la théorie du mouvement brownien, C. R. Acad. Sci. (Paris)146, 530–533 (1908)], Am. J. Phys. 65(11), 1079 (1997)
CrossRef
ADS
Google scholar
|
[23] |
J. L. Parada, G. Carrillo-Castañeda, and M. V. Ortega, Profile of the enzymes of the Krebs cycle in Salmonella typhimurium during the utilization of succinate, acetate, and citrate for growth, Rev. Latinoam. Microbiol. 15, 29 (1973)
|
[24] |
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15(3), 311 (1953)
CrossRef
ADS
Google scholar
|
[25] |
B. Wang, J. Kuo, S. C. Bae, and S. Granick, When Brownian diffusion is not Gaussian, Nat. Mater. 11(6), 481 (2012)
CrossRef
ADS
Google scholar
|
[26] |
T. H. Harris, E. J. Banigan, D. A. Christian, C. Konradt, E. D. Tait Wojno, K. Norose, E. H. Wilson, B. John, W. Weninger, A. D. Luster, A. J. Liu, and C. A. Hunter, Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells, Nature 486(7404), 545 (2012)
CrossRef
ADS
Google scholar
|
[27] |
D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J. A. Bradshaw, J. W. Pitchford, A. James, M. Z. Ahmed, A. S. Brierley, M. A. Hindell, D. Morritt, M. K. Musyl, D. Righton, E. L. C. Shepard, V. J. Wearmouth, R. P. Wilson, M. J. Witt, and J. D. Metcalfe, Scaling laws of marine predator search behaviour, Nature 451(7182), 1098 (2008)
CrossRef
ADS
Google scholar
|
[28] |
A. Czirók, K. Schlett, E. Madarasz, and T. Vicsek, Exponential distribution of locomotion activity in cell cultures, Phys. Rev. Lett. 81(14), 3038 (1998)
CrossRef
ADS
Google scholar
|
[29] |
A. Upadhyaya, J. P. Rieu, J. A. Glazier, and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A 293(3–4), 549 (2001)
CrossRef
ADS
Google scholar
|
[30] |
D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen, and H. Flyvbjerg, Cell motility as persistent random motion: Theories from experiments, Biophys. J. 89(2), 912 (2005)
CrossRef
ADS
Google scholar
|
[31] |
L. Liu, G. Duclos, B. Sun, J. Lee, A. Wu, Y. Kam, E. D. Sontag, H. A. Stone, J. C. Sturm, R. A. Gatenby, and R. H. Austin, Minimization of thermodynamic costs in cancer cell invasion, Proc. Natl. Acad. Sci. USA 110(5), 1686 (2013)
CrossRef
ADS
Google scholar
|
[32] |
J. Zhu, L. Liang, Y. Jiao, and L. Liu, Enhanced invasion of metastatic cancer cells via extracellular matrix interface, PLOS One 10(2), e0118058 (2015)
CrossRef
ADS
Google scholar
|
[33] |
P. H. Wu, A. Giri, S. X. Sun, and D. Wirtz, Threedimensional cell migration does not follow a random walk, Proc. Natl. Acad. Sci. USA 111(11), 3949 (2014)
CrossRef
ADS
Google scholar
|
[34] |
P. H. Wu, A. Giri, and D. Wirtz, Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model, Nat. Protoc. 10(3), 517 (2015)
CrossRef
ADS
Google scholar
|
[35] |
B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10(4), 422 (1968)
CrossRef
ADS
Google scholar
|
[36] |
R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339(1), 1 (2000)
CrossRef
ADS
Google scholar
|
[37] |
B. Liu and J. Goree, Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma, Phys. Rev. Lett. 100(5), 055003 (2008)
CrossRef
ADS
Google scholar
|
[38] |
M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells, Biophys. J. 87(5), 3518 (2004)
CrossRef
ADS
Google scholar
|
[39] |
C. L. Stokes, D. A. Lauffenburger, and S. K. Williams, Migration of individual microvessel endothelial cells: Stochastic model and parameter measurement, J. Cell. Sci. 99(Pt 2), 419 (1991)
|
[40] |
L. Li, E. C. Cox, and H. Flyvbjerg, “Dicty dynamics”: Dictyostelium motility as persistent random motion, Phys. Biol. 8(4), 046006 (2011)
CrossRef
ADS
Google scholar
|
[41] |
F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76(4), 046602 (2013)
CrossRef
ADS
Google scholar
|
[42] |
V. Zaburdaev, S. Denisov, and J. Klafter, Lévy walks, Rev. Mod. Phys. 87(2), 483 (2015)
CrossRef
ADS
Google scholar
|
[43] |
R. T. Tranquillo, D. A. Lauffenburger, and S. H. Zigmond, A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations, J. Cell Biol. 106(2), 303 (1988)
CrossRef
ADS
Google scholar
|
[44] |
G. A. Dunn, Characterising a kinesis response: Time averaged measures of cell speed and directional persistence, Agents Actions Suppl. 12, 14 (1983)
CrossRef
ADS
Google scholar
|
[45] |
C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis, J. Theor. Biol. 152(3), 377 (1991)
CrossRef
ADS
Google scholar
|
[46] |
M. R. Parkhurst and W. M. Saltzman, Quantification of human neutrophil motility in three-dimensional collagen gels: Effect of collagen concentration, Biophys. J. 61(2), 306 (1992)
CrossRef
ADS
Google scholar
|
[47] |
R. Gorelik and A. Gautreau, Quantitative and unbiased analysis of directional persistence in cell migration, Nat. Protoc. 9(8), 1931 (2014)
CrossRef
ADS
Google scholar
|
[48] |
J. N. Pedersen, L. Li, C. Grǎdinaru, R. H. Austin, E. C. Cox, and H. Flyvbjerg, How to connect time-lapse recorded trajectories of motile microorganisms with dynamical models in continuous time, Phys. Rev. E 94(6–1), 062401 (2016)
CrossRef
ADS
Google scholar
|
[49] |
A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B 39(1), 1 (1977)
CrossRef
ADS
Google scholar
|
[50] |
C. L. Vestergaard, J. N. Pedersen, K. I. Mortensen, and H. Flyvbjerg, Estimation of motility parameters from trajectory data, Eur. Phys. J. Spec. Top. 224(7), 1151 (2015)
CrossRef
ADS
Google scholar
|
[51] |
C. L. Vestergaard, P. C. Blainey, and H. Flyvbjerg, Optimal estimation of diffusion coefficients from singleparticle trajectories, Phys. Rev. E 89(2), 022726 (2014)
CrossRef
ADS
Google scholar
|
[52] |
J. H. Chen and H. Y. Fan, On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations, Front. Phys. 10(1), 100301 (2015)
CrossRef
ADS
Google scholar
|
[53] |
Z. K. Wu, P. Li, and Y. Z. Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203 (2017)
CrossRef
ADS
Google scholar
|
[54] |
K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res. 30(14), 3059 (2002)
CrossRef
ADS
Google scholar
|
[55] |
S. B. Weinstein and P. M. Ebert, Data transmission by frequency division multiplexing using the discrete Fourier transform, IEEE Trans. Commun. Tech. 19, 628 (1971)
CrossRef
ADS
Google scholar
|
[56] |
S. F. Nørrelykke and H. Flyvbjerg, Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers, Rev. Sci. Instrum. 81(7), 075103 (2010)
CrossRef
ADS
Google scholar
|
[57] |
Y. Liu, X. Zhang, Y. Wu, W. Liu, X. Li, R. Liu, L. Liu, and J. Shuai, Derivation of persistent time for anisotropic migration of cells, Chin. Phys. B 26(12), 128707 (2017)
CrossRef
ADS
Google scholar
|
[58] |
N. Le Bihan and J. Mars, Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing, Signal Processing 84(7), 1177 (2004)
CrossRef
ADS
Google scholar
|
[59] |
M. E. Wall, A. Rechtsteiner, and L. M. Rocha, Singular value decomposition and principal component analysis, arXiv: physics/0208101v4 (2002)
|
[60] |
K. Berg-Sørensen and H. Flyvbjerg, Power spectrum analysis for optical tweezers, Rev. Sci. Instrum. 75(3), 594 (2004)
CrossRef
ADS
Google scholar
|
[61] |
J. R. Xie and B. H. Wang, Modularity-like objective function in annotated networks, Front. Phys. 12(6), 128903 (2017)
CrossRef
ADS
Google scholar
|
[62] |
R. Gorelik and A. Gautreau, The Arp2/3 inhibitory protein arpin induces cell turning by pausing cell migration, Cytoskeleton (Hoboken) 72(7), 362 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |