Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay

Yan-Ping Liu (刘艳平), Xiang Li (李翔), Jing Qu (屈静), Xue-Juan Gao (高学娟), Qing-Zu He (何情祖), Li-Yu Liu (刘雳宇), Ru-Chuan Liu (刘如川), Jian-Wei Shuai (帅建伟)

PDF(4094 KB)
PDF(4094 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (1) : 13602. DOI: 10.1007/s11467-019-0929-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay

Author information +
History +

Abstract

Cell migration through anisotropic microenvironment is critical to a wide variety of physiological and pathological processes. However, adequate analytical tools to derive motile parameters to characterize the anisotropic migration are lacking. Here, we proposed a method to obtain the four motile parameters of migration cells based on the anisotropic persistent random walk model which is described by two persistence times and two migration speeds at perpendicular directions. The key process is to calculate the velocity power spectra of cell migration along intrinsically perpendicular directions respectively, then to apply maximum likelihood estimation to derive the motile parameters from the power spectra fitting with double exponential decay. The simulation results show that the averaged persistence times and the corrected migration speeds can be good estimations for motile parameters of cell migration.

Keywords

cell migration / heterogeneity / power spectrum / random walk / Langevin equation

Cite this article

Download citation ▾
Yan-Ping Liu (刘艳平), Xiang Li (李翔), Jing Qu (屈静), Xue-Juan Gao (高学娟), Qing-Zu He (何情祖), Li-Yu Liu (刘雳宇), Ru-Chuan Liu (刘如川), Jian-Wei Shuai (帅建伟). Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay. Front. Phys., 2020, 15(1): 13602 https://doi.org/10.1007/s11467-019-0929-9

References

[1]
M. Vicente-Manzanares and A. R. Horwitz, Cell migration: An overview, Methods Mol. Biol. 769, 1 (2011)
CrossRef ADS Google scholar
[2]
D. S. Vasilev, N. M. Dubrovskaya, N. L. Tumanova, and I. A. Zhuravin, Prenatal hypoxia in different periods of embryogenesis differentially affects cell migration, neuronal plasticity, and rat behavior in postnatal ontogenesis, Front. Neurosci. 10, 126 (2016)
CrossRef ADS Google scholar
[3]
M. Zalokar and I. Erk, J. Microsc. Biol. Cell. 25, 97 (1976)
[4]
P. Kulesa, D. L. Ellies, and P. A. Trainor, Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis,Dev. Dyn. 229(1), 14 (2004)
CrossRef ADS Google scholar
[5]
W. S. Krawczyk, A pattern of epidermal cell migration during wound healing, J. Cell Biol. 49(2), 247 (1971)
CrossRef ADS Google scholar
[6]
G. D. Sharma, J. He, and H. E. P. Bazan, p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: Evidence of cross-talk activation between MAP kinase cascades, J. Biol. Chem. 278(24), 21989 (2003)
CrossRef ADS Google scholar
[7]
T. Tao, A. Robichaud, S. Nadeau, R. Savoie, B. Gallant, and R. Ouellette, Effect of cumulus cell removal on the fertilization and the day 3 embryo quality in human IVF, International Congress Series 1271, 135 (2004)
CrossRef ADS Google scholar
[8]
J. Bowszyc, J. Bowszyc, and T. Machońko, 15-years of studies of the immunological cellular response in syphilis in humans using migration inhibition tests, Przegl. Dermatol. 72(2), 134 (1985)
[9]
H. Zhang, Y. Han, J. Tao, S. Liu, C. Yan, and S. Li, Cellular repressor of E1A-stimulated genes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway, Exp. Cell Res. 317(20), 2904 (2011)
CrossRef ADS Google scholar
[10]
X. L. Fang Wei, M. Cai, Y. Liu, P. Jung, and J. W. Shuai, Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells, Front. Phys. 12(3), 128702 (2017)
CrossRef ADS Google scholar
[11]
S. X. Liu, Y. Z. Geng, and S. W. Yan, Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy, Front. Phys. 12(3), 128908 (2017)
CrossRef ADS Google scholar
[12]
H. C. Berg and F. Dyson, Random walks in biology, Phys. Today 40(3), 73 (1987)
CrossRef ADS Google scholar
[13]
L. X. Li, Photon diffusion in a relativistically expanding sphere, Front. Phys. 8(5), 555 (2013)
CrossRef ADS Google scholar
[14]
X. H. Li, G. Yang, and J. P. Huang, Chaotic-periodic transition in a two-sided minority game, Front. Phys. 11(4), 118901 (2016)
CrossRef ADS Google scholar
[15]
S. Huang, C. P. Brangwynne, K. K. Parker, and D. E. Ingber, Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: Role of random-walk persistence, Cell Motil. Cytoskeleton 61(4), 201 (2005)
CrossRef ADS Google scholar
[16]
Z. X. Niu, T. Hang, and Y. Chen, Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces, Front. Phys. 13(5), 137804 (2018)
CrossRef ADS Google scholar
[17]
Y. A. Yan and J. S. Shao, Stochastic description of quantum Brownian dynamics, Front. Phys. 11(4), 110309 (2016)
CrossRef ADS Google scholar
[18]
M. Boguñá, J. M. Porrà, and J. Masoliver, Generalization of the persistent random walk to dimensions greater than 1, Phys. Rev. E 58(6), 6992 (1998)
CrossRef ADS Google scholar
[19]
C. Peggy, A. L. Ny, B. D. Loynes, , Persistent random walks (I): Recurrence versus transience, J. Theor. Probab. 31(1), 1 (2016)
CrossRef ADS Google scholar
[20]
H. I. Wu, B. L. Li, T. A. Springer, and W. H. Neill, Modelling animal movement as a persistent random walk in two dimensions: Expected magnitude of net displacement, Ecol. Modell. 132(1–2), 115 (2000)
CrossRef ADS Google scholar
[21]
M. Schienbein and H. Gruler, Langevin equation, Fokker-Planck equation and cell migration, Bull. Math. Biol. 55(3), 585 (1993)
CrossRef ADS Google scholar
[22]
D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [Sur la théorie du mouvement brownien, C. R. Acad. Sci. (Paris)146, 530–533 (1908)], Am. J. Phys. 65(11), 1079 (1997)
CrossRef ADS Google scholar
[23]
J. L. Parada, G. Carrillo-Castañeda, and M. V. Ortega, Profile of the enzymes of the Krebs cycle in Salmonella typhimurium during the utilization of succinate, acetate, and citrate for growth, Rev. Latinoam. Microbiol. 15, 29 (1973)
[24]
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15(3), 311 (1953)
CrossRef ADS Google scholar
[25]
B. Wang, J. Kuo, S. C. Bae, and S. Granick, When Brownian diffusion is not Gaussian, Nat. Mater. 11(6), 481 (2012)
CrossRef ADS Google scholar
[26]
T. H. Harris, E. J. Banigan, D. A. Christian, C. Konradt, E. D. Tait Wojno, K. Norose, E. H. Wilson, B. John, W. Weninger, A. D. Luster, A. J. Liu, and C. A. Hunter, Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells, Nature 486(7404), 545 (2012)
CrossRef ADS Google scholar
[27]
D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J. A. Bradshaw, J. W. Pitchford, A. James, M. Z. Ahmed, A. S. Brierley, M. A. Hindell, D. Morritt, M. K. Musyl, D. Righton, E. L. C. Shepard, V. J. Wearmouth, R. P. Wilson, M. J. Witt, and J. D. Metcalfe, Scaling laws of marine predator search behaviour, Nature 451(7182), 1098 (2008)
CrossRef ADS Google scholar
[28]
A. Czirók, K. Schlett, E. Madarasz, and T. Vicsek, Exponential distribution of locomotion activity in cell cultures, Phys. Rev. Lett. 81(14), 3038 (1998)
CrossRef ADS Google scholar
[29]
A. Upadhyaya, J. P. Rieu, J. A. Glazier, and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A 293(3–4), 549 (2001)
CrossRef ADS Google scholar
[30]
D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen, and H. Flyvbjerg, Cell motility as persistent random motion: Theories from experiments, Biophys. J. 89(2), 912 (2005)
CrossRef ADS Google scholar
[31]
L. Liu, G. Duclos, B. Sun, J. Lee, A. Wu, Y. Kam, E. D. Sontag, H. A. Stone, J. C. Sturm, R. A. Gatenby, and R. H. Austin, Minimization of thermodynamic costs in cancer cell invasion, Proc. Natl. Acad. Sci. USA 110(5), 1686 (2013)
CrossRef ADS Google scholar
[32]
J. Zhu, L. Liang, Y. Jiao, and L. Liu, Enhanced invasion of metastatic cancer cells via extracellular matrix interface, PLOS One 10(2), e0118058 (2015)
CrossRef ADS Google scholar
[33]
P. H. Wu, A. Giri, S. X. Sun, and D. Wirtz, Threedimensional cell migration does not follow a random walk, Proc. Natl. Acad. Sci. USA 111(11), 3949 (2014)
CrossRef ADS Google scholar
[34]
P. H. Wu, A. Giri, and D. Wirtz, Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model, Nat. Protoc. 10(3), 517 (2015)
CrossRef ADS Google scholar
[35]
B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10(4), 422 (1968)
CrossRef ADS Google scholar
[36]
R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339(1), 1 (2000)
CrossRef ADS Google scholar
[37]
B. Liu and J. Goree, Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma, Phys. Rev. Lett. 100(5), 055003 (2008)
CrossRef ADS Google scholar
[38]
M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells, Biophys. J. 87(5), 3518 (2004)
CrossRef ADS Google scholar
[39]
C. L. Stokes, D. A. Lauffenburger, and S. K. Williams, Migration of individual microvessel endothelial cells: Stochastic model and parameter measurement, J. Cell. Sci. 99(Pt 2), 419 (1991)
[40]
L. Li, E. C. Cox, and H. Flyvbjerg, “Dicty dynamics”: Dictyostelium motility as persistent random motion, Phys. Biol. 8(4), 046006 (2011)
CrossRef ADS Google scholar
[41]
F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76(4), 046602 (2013)
CrossRef ADS Google scholar
[42]
V. Zaburdaev, S. Denisov, and J. Klafter, Lévy walks, Rev. Mod. Phys. 87(2), 483 (2015)
CrossRef ADS Google scholar
[43]
R. T. Tranquillo, D. A. Lauffenburger, and S. H. Zigmond, A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations, J. Cell Biol. 106(2), 303 (1988)
CrossRef ADS Google scholar
[44]
G. A. Dunn, Characterising a kinesis response: Time averaged measures of cell speed and directional persistence, Agents Actions Suppl. 12, 14 (1983)
CrossRef ADS Google scholar
[45]
C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis, J. Theor. Biol. 152(3), 377 (1991)
CrossRef ADS Google scholar
[46]
M. R. Parkhurst and W. M. Saltzman, Quantification of human neutrophil motility in three-dimensional collagen gels: Effect of collagen concentration, Biophys. J. 61(2), 306 (1992)
CrossRef ADS Google scholar
[47]
R. Gorelik and A. Gautreau, Quantitative and unbiased analysis of directional persistence in cell migration, Nat. Protoc. 9(8), 1931 (2014)
CrossRef ADS Google scholar
[48]
J. N. Pedersen, L. Li, C. Grǎdinaru, R. H. Austin, E. C. Cox, and H. Flyvbjerg, How to connect time-lapse recorded trajectories of motile microorganisms with dynamical models in continuous time, Phys. Rev. E 94(6–1), 062401 (2016)
CrossRef ADS Google scholar
[49]
A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B 39(1), 1 (1977)
CrossRef ADS Google scholar
[50]
C. L. Vestergaard, J. N. Pedersen, K. I. Mortensen, and H. Flyvbjerg, Estimation of motility parameters from trajectory data, Eur. Phys. J. Spec. Top. 224(7), 1151 (2015)
CrossRef ADS Google scholar
[51]
C. L. Vestergaard, P. C. Blainey, and H. Flyvbjerg, Optimal estimation of diffusion coefficients from singleparticle trajectories, Phys. Rev. E 89(2), 022726 (2014)
CrossRef ADS Google scholar
[52]
J. H. Chen and H. Y. Fan, On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations, Front. Phys. 10(1), 100301 (2015)
CrossRef ADS Google scholar
[53]
Z. K. Wu, P. Li, and Y. Z. Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203 (2017)
CrossRef ADS Google scholar
[54]
K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res. 30(14), 3059 (2002)
CrossRef ADS Google scholar
[55]
S. B. Weinstein and P. M. Ebert, Data transmission by frequency division multiplexing using the discrete Fourier transform, IEEE Trans. Commun. Tech. 19, 628 (1971)
CrossRef ADS Google scholar
[56]
S. F. Nørrelykke and H. Flyvbjerg, Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers, Rev. Sci. Instrum. 81(7), 075103 (2010)
CrossRef ADS Google scholar
[57]
Y. Liu, X. Zhang, Y. Wu, W. Liu, X. Li, R. Liu, L. Liu, and J. Shuai, Derivation of persistent time for anisotropic migration of cells, Chin. Phys. B 26(12), 128707 (2017)
CrossRef ADS Google scholar
[58]
N. Le Bihan and J. Mars, Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing, Signal Processing 84(7), 1177 (2004)
CrossRef ADS Google scholar
[59]
M. E. Wall, A. Rechtsteiner, and L. M. Rocha, Singular value decomposition and principal component analysis, arXiv: physics/0208101v4 (2002)
[60]
K. Berg-Sørensen and H. Flyvbjerg, Power spectrum analysis for optical tweezers, Rev. Sci. Instrum. 75(3), 594 (2004)
CrossRef ADS Google scholar
[61]
J. R. Xie and B. H. Wang, Modularity-like objective function in annotated networks, Front. Phys. 12(6), 128903 (2017)
CrossRef ADS Google scholar
[62]
R. Gorelik and A. Gautreau, The Arp2/3 inhibitory protein arpin induces cell turning by pausing cell migration, Cytoskeleton (Hoboken) 72(7), 362 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4094 KB)

Accesses

Citations

Detail

Sections
Recommended

/