Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response

Zhao-Yang Shen, He-Lin Yang, Xuan Liu, Xiao-Jun Huang, Tian-Yu Xiang, Jiong Wu, Wei Chen

PDF(3371 KB)
PDF(3371 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (1) : 12601. DOI: 10.1007/s11467-019-0928-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response

Author information +
History +

Abstract

We demonstrated a novel metamaterial with dual-band electromagnetically induced transparency (EIT) via simulation, experiment and numerical analysis, with resonance frequencies of the transparency peaks of 7.60 and 10.27 GHz. The E–ε metamaterial unit cells were composed of E-shaped and ε-shaped patterns. By analyzing the surface current distribution and the magnetic field, we qualitatively verified the toroidal dipole response in the E–ε metamaterial at 10.27 GHz. Meanwhile, by calculating the multipole’s radiated power, we found that the two transparency peaks were due to the excitation of the electric and toroidal dipole responses. By changing the incident angle from 0° to 60°, we observed changes in transmission spectra, and the quality factors (Q-factors) of the two transparency peaks increased. In addition, the proposed E–ε metamaterial can be designed to act as a refractive index sensor or other electronic equipment for the control of electromagnetic waves.

Keywords

metamaterial / dual band electromagnetically induced transparency / toroidal dipole response

Cite this article

Download citation ▾
Zhao-Yang Shen, He-Lin Yang, Xuan Liu, Xiao-Jun Huang, Tian-Yu Xiang, Jiong Wu, Wei Chen. Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response. Front. Phys., 2020, 15(1): 12601 https://doi.org/10.1007/s11467-019-0928-x

References

[1]
J. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. China 5(3), 291 (2010)
CrossRef ADS Google scholar
[2]
C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, Wire metamaterials: Physics and applications, Adv. Mater. 24(31), 4229 (2012)
CrossRef ADS Google scholar
[3]
Z. Shen, H. Yang, X. Huang, and Z. Yu, Design of negative refractive index metamaterial with water droplets using, J. Opt. 19(11), 115101 (2017)
CrossRef ADS Google scholar
[4]
H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. Au Kong, Left-handed materials composed of only S-shaped resonators, Phys. Rev. E 70(5), 057605 (2004)
CrossRef ADS Google scholar
[5]
Z. Shen, X. Huang, H. Yang, T. Xiang, C. Wang, Z. Yu, and J. Wu, An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water, J. Appl. Phys. 123(22), 225106 (2018)
CrossRef ADS Google scholar
[6]
G. Y. Song, W. X. Jiang, Q. Cheng, L. T. Wu, H. Y. Dong, and T. J. Cui, Acoustic magnifying lens for far-field high resolution imaging based on transformation acoustics, Adv. Mater. Technol. 2(9), 1700089 (2017)
CrossRef ADS Google scholar
[7]
Z. L. Mei and T. J. Cui, Transparent shells-invisible to electromagnetic waves, Prog. Electromagn. Res. B 18, 149 (2009)
CrossRef ADS Google scholar
[8]
S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, Topology optimization design of a lightweight ultra-broadband wideangle resistance frequency selective surface absorber, J. Phys. D Appl. Phys. 48(21), 215101 (2015)
CrossRef ADS Google scholar
[9]
J. Wu, P. Wang, X. J. Huang, F. Rao, X. Y. Chen, Z. Y. Shen, and H. L. Yang, Design and validation of liquid permittivity sensor based on RCRR microstrip metamaterial, Sens. Actuators A Phys. 280, 222 (2018)
CrossRef ADS Google scholar
[10]
M. Kraft, Y. Luo, S. A. Maier, and J. B. Pendry, Designing plasmonic gratings with transformation optics, Phys. Rev. X 5(3), 031029 (2015)
CrossRef ADS Google scholar
[11]
Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding, ACS Nano 6(7), 6492 (2012)
CrossRef ADS Google scholar
[12]
Y. Y. Fu, Y. D. Xu, and H. Y. Chen, Negative refraction based on purely imaginary metamaterials, Front. Phys. 13(4), 134206 (2018)
CrossRef ADS Google scholar
[13]
K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, Toroidal metamaterial, New J. Phys. 9(9), 324 (2007)
CrossRef ADS Google scholar
[14]
I. B. Zel’dovich, Electromagnetic interaction with parity violation,Sov. J. Exp. Theor. Phys. 6, 1184 (1958)
[15]
A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, Extremely high Q-factor metamaterials due to anapole excitation, Phys. Rev. B 95(3), 035104 (2017)
CrossRef ADS Google scholar
[16]
H. Jiang, W. Zhao, and Y. Jiang, Frequency-tunable and functionality-switchable polarization device using silicon strip array integrated with a graphene sheet, Opt. Mater. Express 7(12), 4277 (2017)
CrossRef ADS Google scholar
[17]
N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, Electromagnetic toroidal excitations in matter and free space, Nat. Mater. 15(3), 263 (2016)
CrossRef ADS Google scholar
[18]
T. Xiang, T. Lei, S. Hu, J. Chen, X. Huang, and H. Yang, Resonance transparency with low-loss in toroidal planar metamaterial, J. Appl. Phys. 123(9), 095104 (2018)
CrossRef ADS Google scholar
[19]
S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
CrossRef ADS Google scholar
[20]
M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, Tailoring mode interference in plasmon-induced transparency metamaterials, J. Phys. D Appl. Phys. 51(17), 174005 (2018)
CrossRef ADS Google scholar
[21]
J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, Electromagnetically induced transparency in metamaterials at near-infrared frequency, Opt. Express 18(16), 17187 (2010)
CrossRef ADS Google scholar
[22]
W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles, Adv. Mater. 28(14), 2709 (2016)
CrossRef ADS Google scholar
[23]
Z. Y. Shen, T. Y. Xiang, J. Wu, Z. T. Yu, and H. L. Yang, Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial, J. Magn. Magn. Mater. 476, 69 (2019)
CrossRef ADS Google scholar
[24]
T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal – graphene metamaterial, J. Phys. D Appl. Phys. 51(41), 415105 (2018)
CrossRef ADS Google scholar
[25]
Z. Y. Shen, T. Y. Xiang, N. Wu, J. Wu, Y. Tian, and H. L. Yang, Dual-band electromagnetically induced transparency based on electric dipole-quadrupole coupling in metamaterials, J. Phys. D Appl. Phys. 52(1), 015003 (2019)
CrossRef ADS Google scholar
[26]
S. Hu, D. Liu, and H. L. Yang, Electromagnetically induced transparency in an integrated metasurface based on bright-dark-bright mode coupling, J. Phys. D Appl. Phys. 52(17), 175305 (2019)
CrossRef ADS Google scholar
[27]
J. Zhang and A. Zayats, Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures, Opt. Express 21(7), 8426 (2013)
CrossRef ADS Google scholar
[28]
V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, Resonant transparency and nontrivial non-radiating excitations in toroidal metamaterials, Sci. Rep. 3(1), 2967 (2013)
CrossRef ADS Google scholar
[29]
L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)
CrossRef ADS Google scholar
[30]
S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials, Ann. Phys. 528(5), 352 (2016)
CrossRef ADS Google scholar
[31]
M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, Sharp toroidal resonances in planar terahertz metasurfaces, Adv. Mater. 28(37), 8206 (2016)
CrossRef ADS Google scholar
[32]
L. Zhu, L. Dong, J. Guo, F. Meng, J. He, C. H. Zhao, and Q. Wu, A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles, RSC Advances 7(88), 55897 (2017)
CrossRef ADS Google scholar
[33]
L. Cong, V. Savinov, Y. K. Srivastava, S. Han, and R. Singh, A metamaterial analog of the Ising model, Adv. Mater. 30(40), 1804210 (2018)
CrossRef ADS Google scholar
[34]
M. Gupta, Y. K. Srivastava, and R. Singh, A toroidal metamaterial switch, Adv. Mater. 30(4), 1704845 (2018)
CrossRef ADS Google scholar
[35]
Y. Tian, S. Hu, X. J. Huang, Z. T. Yu, H. Lin, and H. L. Yang, Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing, J. Phys. D Appl. Phys. 50(40), 405105 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3371 KB)

Accesses

Citations

Detail

Sections
Recommended

/