Comment to “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”

Y. Finkelstein, R. Moreh

PDF(661 KB)
PDF(661 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 53605. DOI: 10.1007/s11467-019-0926-z
COMMENTARY
COMMENTARY

Comment to “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”

Author information +
History +

Abstract

We comment on the findings of “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”, by V. De Michele, G. Romanelli, and A. Cupane [Front. Phys. 13, 138205 (2018)]. We show that the current sensitivity of the deep inelastic neutron scattering (DINS) method, cannot detect with confidence small differences in the proton kinetic energy, Ke(H), involved in a liquid-liquid transition in supercooled water confined in nanoporous silica. We also critisize the calculation of Ke(H) carried out in Front. Phys. 13, 138205 (2018).

Keywords

supercooled water / liquid–liquid transition / deep inelastic neutron scattering / libration / vibrational density of states / proton kinetic energy

Cite this article

Download citation ▾
Y. Finkelstein, R. Moreh. Comment to “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”. Front. Phys., 2019, 14(5): 53605 https://doi.org/10.1007/s11467-019-0926-z

References

[1]
V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
CrossRef ADS Google scholar
[2]
C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, and F. Fernandez-Alonso, Electron-volt neutron spectroscopy: Beyond fundamental systems, Adv. Phys. 66(1), 1 (2017)
CrossRef ADS Google scholar
[3]
C. Andreani, G. Romanelli, and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, J. Phys. Chem. Lett. 7(12), 2216 (2016)
CrossRef ADS Google scholar
[4]
R. Senesi, G. Romanelli, M. A. Adams, and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chem. Phys. 427, 111 (2013)
CrossRef ADS Google scholar
[5]
V. De Michele, G. Romanelli, and A. Cupane, Kinetic energy and radial momentum distribution of hydrogen and oxygen atoms of water confined in silica hydrogel in the temperature interval 170–325 K, Sci. China Phys. Mech. & Astron. 62, 107012 (2019)
CrossRef ADS Google scholar
[6]
Y. Finkelstein and R. Moreh, Applying semi-empirical quantum harmonic calculations for studying the atomic kinetic energies in hydrogen bonded systems, Curr. Phys. Chem. 7(1), 3 (2017)
CrossRef ADS Google scholar
[7]
Y. Finkelstein and R. Moreh, Temperature dependence of the proton kinetic energy in water between 5 and 673 K, Chem. Phys. 431–432, 58 (2014)
CrossRef ADS Google scholar
[8]
A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover, J. Chem. Phys. 141, 18C510 (2014)
CrossRef ADS Google scholar
[9]
Y. Finkelstein and R. Moreh, On H-dynamics of supercooled water confined in nanoporous silica, Chem. Phys. 523, 83 (2019)
CrossRef ADS Google scholar
[10]
A. I. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement, Phys. Rev. Lett. 93(3), 035503 (2004)
CrossRef ADS Google scholar
[11]
F. Lehmkühler, Y. Forov, T. Büning, C. J. Sahle, I. Steinke, K. Julius, T. Buslaps, M. Tolan, M. Hakala, and C. Sternemann, Intramolecular structure and energetics in supercooled water down to 255 K, Phys. Chem. Chem. Phys. 18(9), 6925 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(661 KB)

Accesses

Citations

Detail

Sections
Recommended

/