Perfect optical nonreciprocity in a double-cavity optomechanical system

Xiao-Bo Yan , He-Lin Lu , Feng Gao , Feng Gao , Liu Yang

Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 52601

PDF (847KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 52601 DOI: 10.1007/s11467-019-0922-3
RESEARCH ARTICLE

Perfect optical nonreciprocity in a double-cavity optomechanical system

Author information +
History +
PDF (847KB)

Abstract

Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here, we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system. Particularly, we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission. These results can be used to control optical transmission in quantum information processing.

Keywords

optomechanics / optical nonreciprocity / nonreciprocal transmission

Cite this article

Download citation ▾
Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601 DOI:10.1007/s11467-019-0922-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is – and what is not – an optical isolator, Nat. Photonics 7(8), 579 (2013)

[2]

C. L. Hogan, The ferromagnetic faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J. 31(1), 1 (1952)

[3]

L. J. Aplet and J. W. Carson, A Faraday effect optical isolator, Appl. Opt. 3(4), 544 (1964)

[4]

L. Ranzani and J. Aumentado, Graph-based analysis of nonreciprocity in coupled-mode systems, New J. Phys. 17(2), 023024 (2015)

[5]

B. He, L. Yang, X. Jiang, and M. Xiao, Transmission nonreciprocity in a mutually coupled circulating structure, Phys. Rev. Lett. 120(20), 203904 (2018)

[6]

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6(1), 6193 (2015)

[7]

K. Fang, Z. Yu, and S. Fan, Photonic Aharonov–Bohm effect based on dynamic modulation, Phys. Rev. Lett. 108(15), 153901 (2012)

[8]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)

[9]

Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)

[10]

K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)

[11]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)

[12]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)

[13]

B. He, L. Yang, Q. Lin, and M. Xiao, Radiation pressure cooling as a quantum dynamical process, Phys. Rev. Lett. 118(23), 233604 (2017)

[14]

G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)

[15]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330(6010), 1520 (2010)

[16]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Transient optomechanically induced transparency in a silica microsphere, Phys. Rev. A 87(5), 055802 (2013)

[17]

Y. C. Liu, B. B. Li, and Y. F. Xiao, Electromagnetically induced transparency in optical microcavities, Nanophotonics 6(5), 789 (2017)

[18]

H. Xiong and Y. Wu, Fundamentals and applications of optomechanically induced transparency, Appl. Phys. Rev. 5(3), 031305 (2018)

[19]

H. Zhang, F. Saif, Y. Jiao, and H. Jing, Loss-induced transparency in optomechanics, Opt. Express 26(19), 25199 (2018)

[20]

X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 104202 (2015)

[21]

F. X. Sun, D. Mao, Y. T. Dai, Z. Ficek, Q. Y. He, and Q. H. Gong, Phase control of entanglement and quantum steering in a three-mode optomechanical system, New J. Phys. 19(12), 123039 (2017)

[22]

L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110(23), 233602 (2013)

[23]

Z. J. Deng, S. J. M. Habraken, and F. Marquardt, Entanglement rate for Gaussian continuous variable beams, New J. Phys. 18(6), 063022 (2016)

[24]

Z. J. Deng, X. B. Yan, Y. D. Wang, and C. W. Wu, Optimizing the output-photon entanglement in multimode optomechanical systems, Phys. Rev. A 93(3), 033842 (2016)

[25]

X. B. Yan, Enhanced output entanglement with reservoir engineering, Phys. Rev. A 96(5), 053831 (2017)

[26]

X. B. Yan, Z. J. Deng, X. D. Tian, and J. H. Wu, Entanglement optimization of filtered output fields in cavity optomechanics, Opt. Express 27(17), 24393 (2019)

[27]

Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)

[28]

J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)

[29]

K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett. 111(5), 053603 (2013)

[30]

X. Y. , W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)

[31]

X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express 22(5), 4886 (2014)

[32]

G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys. 16(3), 033023 (2014)

[33]

M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601 (2019)

[34]

S. Manipatruni, J. T. Robinson, and M. Lipson, Optical nonreciprocity in optomechanical structures, Phys. Rev. Lett. 102(21), 213903 (2009)

[35]

M. Hafezi and P. Rabl, Optomechanically induced nonreciprocity in microring resonators, Opt. Express 20(7), 7672 (2012)

[36]

Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, Optical nonreciprocity in asymmetric optomechanical couplers, Sci. Rep. 5(1), 8657 (2015)

[37]

M. A. Miri, F. Ruesink, E. Verhagen, and A. Alú, Optical nonreciprocity based on optomechanical coupling, Phys. Rev. Appl. 7(6), 064014 (2017)

[38]

D. L. Sounas and A. Alú, Non-reciprocal photonics based on time modulation, Nat. Photonics 11(12), 774 (2017)

[39]

F. Ruesink, M. A. Miri, A. Alú, and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7(1), 13662 (2016)

[40]

Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10(10), 657 (2016)

[41]

G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7(3), 031001 (2017)

[42]

N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8(1), 604 (2017)

[43]

S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle, O. Painter, and J. M. Fink, Mechanical on-chip microwave circulator, Nat. Commun. 8(1), 953 (2017)

[44]

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13(5), 465 (2017)

[45]

F. Ruesink, J. P. Mathew, M. A. Miri, A. Alú, and E. Verhagen, Optical circulation in a multimode optomechanical resonator, Nat. Commun. 9(1), 1798 (2018)

[46]

X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91(5), 053854 (2015)

[47]

X. W. Xu, Y. Li, A. X. Chen, and Y. Liu, Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems, Phys. Rev. A 93(2), 023827 (2016)

[48]

L. Tian and Z. Li, Nonreciprocal quantum-state conversion between microwave and optical photons, Phys. Rev. A 96(1), 013808 (2017)

[49]

C. C. Xia, X. B. Yan, X. D. Tian, and F. Gao, Ideal optical isolator with a two-cavity optomechanical system, Opt. Commun. 451, 197 (2019)

[50]

D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, Quantum-limited directional amplifiers with optomechanics, Phys. Rev. Lett. 120(2), 023601 (2018)

[51]

S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, and P. Rabl, Continuous mode cooling and phonon routers for phononic quantum networks, New J. Phys. 14(11), 115004 (2012)

[52]

A. Seif, W. DeGottardi, K. Esfarjani, and M. Hafezi, Thermal management and non-reciprocal control of phonon flow via optomechanics, Nat. Commun. 9(1), 1207 (2018)

[53]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)

[54]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, Dispersive optomechanics: a membrane inside a cavity, New J. Phys. 10(9), 095008 (2008)

[55]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)

[56]

M. Ludwig, A. Safavi-Naeini, O. Painter, and F. Marquardt, Enhanced quantum nonlinearities in a two-mode optomechanical system, Phys. Rev. Lett. 109(6), 063601 (2012)

[57]

D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, Berlin, 1994

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (847KB)

1123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/