Perfect optical nonreciprocity in a double-cavity optomechanical system

Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang

PDF(847 KB)
PDF(847 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 52601. DOI: 10.1007/s11467-019-0922-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Perfect optical nonreciprocity in a double-cavity optomechanical system

Author information +
History +

Abstract

Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here, we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system. Particularly, we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission. These results can be used to control optical transmission in quantum information processing.

Keywords

optomechanics / optical nonreciprocity / nonreciprocal transmission

Cite this article

Download citation ▾
Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601 https://doi.org/10.1007/s11467-019-0922-3

References

[1]
D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is – and what is not – an optical isolator, Nat. Photonics 7(8), 579 (2013)
CrossRef ADS Google scholar
[2]
C. L. Hogan, The ferromagnetic faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J. 31(1), 1 (1952)
CrossRef ADS Google scholar
[3]
L. J. Aplet and J. W. Carson, A Faraday effect optical isolator, Appl. Opt. 3(4), 544 (1964)
CrossRef ADS Google scholar
[4]
L. Ranzani and J. Aumentado, Graph-based analysis of nonreciprocity in coupled-mode systems, New J. Phys. 17(2), 023024 (2015)
CrossRef ADS Google scholar
[5]
B. He, L. Yang, X. Jiang, and M. Xiao, Transmission nonreciprocity in a mutually coupled circulating structure, Phys. Rev. Lett. 120(20), 203904 (2018)
CrossRef ADS Google scholar
[6]
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6(1), 6193 (2015)
CrossRef ADS Google scholar
[7]
K. Fang, Z. Yu, and S. Fan, Photonic Aharonov–Bohm effect based on dynamic modulation, Phys. Rev. Lett. 108(15), 153901 (2012)
CrossRef ADS Google scholar
[8]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
CrossRef ADS Google scholar
[9]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)
CrossRef ADS Google scholar
[10]
K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
CrossRef ADS Google scholar
[11]
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
CrossRef ADS Google scholar
[12]
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
CrossRef ADS Google scholar
[13]
B. He, L. Yang, Q. Lin, and M. Xiao, Radiation pressure cooling as a quantum dynamical process, Phys. Rev. Lett. 118(23), 233604 (2017)
CrossRef ADS Google scholar
[14]
G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)
CrossRef ADS Google scholar
[15]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330(6010), 1520 (2010)
CrossRef ADS Google scholar
[16]
C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Transient optomechanically induced transparency in a silica microsphere, Phys. Rev. A 87(5), 055802 (2013)
CrossRef ADS Google scholar
[17]
Y. C. Liu, B. B. Li, and Y. F. Xiao, Electromagnetically induced transparency in optical microcavities, Nanophotonics 6(5), 789 (2017)
CrossRef ADS Google scholar
[18]
H. Xiong and Y. Wu, Fundamentals and applications of optomechanically induced transparency, Appl. Phys. Rev. 5(3), 031305 (2018)
CrossRef ADS Google scholar
[19]
H. Zhang, F. Saif, Y. Jiao, and H. Jing, Loss-induced transparency in optomechanics, Opt. Express 26(19), 25199 (2018)
CrossRef ADS Google scholar
[20]
X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 104202 (2015)
CrossRef ADS Google scholar
[21]
F. X. Sun, D. Mao, Y. T. Dai, Z. Ficek, Q. Y. He, and Q. H. Gong, Phase control of entanglement and quantum steering in a three-mode optomechanical system, New J. Phys. 19(12), 123039 (2017)
CrossRef ADS Google scholar
[22]
L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110(23), 233602 (2013)
CrossRef ADS Google scholar
[23]
Z. J. Deng, S. J. M. Habraken, and F. Marquardt, Entanglement rate for Gaussian continuous variable beams, New J. Phys. 18(6), 063022 (2016)
CrossRef ADS Google scholar
[24]
Z. J. Deng, X. B. Yan, Y. D. Wang, and C. W. Wu, Optimizing the output-photon entanglement in multimode optomechanical systems, Phys. Rev. A 93(3), 033842 (2016)
CrossRef ADS Google scholar
[25]
X. B. Yan, Enhanced output entanglement with reservoir engineering, Phys. Rev. A 96(5), 053831 (2017)
CrossRef ADS Google scholar
[26]
X. B. Yan, Z. J. Deng, X. D. Tian, and J. H. Wu, Entanglement optimization of filtered output fields in cavity optomechanics, Opt. Express 27(17), 24393 (2019)
CrossRef ADS Google scholar
[27]
Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)
CrossRef ADS Google scholar
[28]
J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)
CrossRef ADS Google scholar
[29]
K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett. 111(5), 053603 (2013)
CrossRef ADS Google scholar
[30]
X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)
CrossRef ADS Google scholar
[31]
X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express 22(5), 4886 (2014)
CrossRef ADS Google scholar
[32]
G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys. 16(3), 033023 (2014)
CrossRef ADS Google scholar
[33]
M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601 (2019)
CrossRef ADS Google scholar
[34]
S. Manipatruni, J. T. Robinson, and M. Lipson, Optical nonreciprocity in optomechanical structures, Phys. Rev. Lett. 102(21), 213903 (2009)
CrossRef ADS Google scholar
[35]
M. Hafezi and P. Rabl, Optomechanically induced nonreciprocity in microring resonators, Opt. Express 20(7), 7672 (2012)
CrossRef ADS Google scholar
[36]
Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, Optical nonreciprocity in asymmetric optomechanical couplers, Sci. Rep. 5(1), 8657 (2015)
CrossRef ADS Google scholar
[37]
M. A. Miri, F. Ruesink, E. Verhagen, and A. Alú, Optical nonreciprocity based on optomechanical coupling, Phys. Rev. Appl. 7(6), 064014 (2017)
CrossRef ADS Google scholar
[38]
D. L. Sounas and A. Alú, Non-reciprocal photonics based on time modulation, Nat. Photonics 11(12), 774 (2017)
CrossRef ADS Google scholar
[39]
F. Ruesink, M. A. Miri, A. Alú, and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7(1), 13662 (2016)
CrossRef ADS Google scholar
[40]
Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10(10), 657 (2016)
CrossRef ADS Google scholar
[41]
G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7(3), 031001 (2017)
CrossRef ADS Google scholar
[42]
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8(1), 604 (2017)
CrossRef ADS Google scholar
[43]
S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle, O. Painter, and J. M. Fink, Mechanical on-chip microwave circulator, Nat. Commun. 8(1), 953 (2017)
CrossRef ADS Google scholar
[44]
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13(5), 465 (2017)
CrossRef ADS Google scholar
[45]
F. Ruesink, J. P. Mathew, M. A. Miri, A. Alú, and E. Verhagen, Optical circulation in a multimode optomechanical resonator, Nat. Commun. 9(1), 1798 (2018)
CrossRef ADS Google scholar
[46]
X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91(5), 053854 (2015)
CrossRef ADS Google scholar
[47]
X. W. Xu, Y. Li, A. X. Chen, and Y. Liu, Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems, Phys. Rev. A 93(2), 023827 (2016)
CrossRef ADS Google scholar
[48]
L. Tian and Z. Li, Nonreciprocal quantum-state conversion between microwave and optical photons, Phys. Rev. A 96(1), 013808 (2017)
CrossRef ADS Google scholar
[49]
C. C. Xia, X. B. Yan, X. D. Tian, and F. Gao, Ideal optical isolator with a two-cavity optomechanical system, Opt. Commun. 451, 197 (2019)
CrossRef ADS Google scholar
[50]
D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, Quantum-limited directional amplifiers with optomechanics, Phys. Rev. Lett. 120(2), 023601 (2018)
CrossRef ADS Google scholar
[51]
S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, and P. Rabl, Continuous mode cooling and phonon routers for phononic quantum networks, New J. Phys. 14(11), 115004 (2012)
CrossRef ADS Google scholar
[52]
A. Seif, W. DeGottardi, K. Esfarjani, and M. Hafezi, Thermal management and non-reciprocal control of phonon flow via optomechanics, Nat. Commun. 9(1), 1207 (2018)
CrossRef ADS Google scholar
[53]
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)
CrossRef ADS Google scholar
[54]
A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, Dispersive optomechanics: a membrane inside a cavity, New J. Phys. 10(9), 095008 (2008)
CrossRef ADS Google scholar
[55]
J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)
CrossRef ADS Google scholar
[56]
M. Ludwig, A. Safavi-Naeini, O. Painter, and F. Marquardt, Enhanced quantum nonlinearities in a two-mode optomechanical system, Phys. Rev. Lett. 109(6), 063601 (2012)
CrossRef ADS Google scholar
[57]
D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, Berlin, 1994
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(847 KB)

Accesses

Citations

Detail

Sections
Recommended

/