Perfect optical nonreciprocity in a double-cavity optomechanical system
Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang
Perfect optical nonreciprocity in a double-cavity optomechanical system
Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here, we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system. Particularly, we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission. These results can be used to control optical transmission in quantum information processing.
optomechanics / optical nonreciprocity / nonreciprocal transmission
[1] |
D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is – and what is not – an optical isolator, Nat. Photonics 7(8), 579 (2013)
CrossRef
ADS
Google scholar
|
[2] |
C. L. Hogan, The ferromagnetic faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J. 31(1), 1 (1952)
CrossRef
ADS
Google scholar
|
[3] |
L. J. Aplet and J. W. Carson, A Faraday effect optical isolator, Appl. Opt. 3(4), 544 (1964)
CrossRef
ADS
Google scholar
|
[4] |
L. Ranzani and J. Aumentado, Graph-based analysis of nonreciprocity in coupled-mode systems, New J. Phys. 17(2), 023024 (2015)
CrossRef
ADS
Google scholar
|
[5] |
B. He, L. Yang, X. Jiang, and M. Xiao, Transmission nonreciprocity in a mutually coupled circulating structure, Phys. Rev. Lett. 120(20), 203904 (2018)
CrossRef
ADS
Google scholar
|
[6] |
C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6(1), 6193 (2015)
CrossRef
ADS
Google scholar
|
[7] |
K. Fang, Z. Yu, and S. Fan, Photonic Aharonov–Bohm effect based on dynamic modulation, Phys. Rev. Lett. 108(15), 153901 (2012)
CrossRef
ADS
Google scholar
|
[8] |
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
CrossRef
ADS
Google scholar
|
[9] |
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)
CrossRef
ADS
Google scholar
|
[10] |
K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
CrossRef
ADS
Google scholar
|
[11] |
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
CrossRef
ADS
Google scholar
|
[12] |
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
CrossRef
ADS
Google scholar
|
[13] |
B. He, L. Yang, Q. Lin, and M. Xiao, Radiation pressure cooling as a quantum dynamical process, Phys. Rev. Lett. 118(23), 233604 (2017)
CrossRef
ADS
Google scholar
|
[14] |
G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)
CrossRef
ADS
Google scholar
|
[15] |
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330(6010), 1520 (2010)
CrossRef
ADS
Google scholar
|
[16] |
C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Transient optomechanically induced transparency in a silica microsphere, Phys. Rev. A 87(5), 055802 (2013)
CrossRef
ADS
Google scholar
|
[17] |
Y. C. Liu, B. B. Li, and Y. F. Xiao, Electromagnetically induced transparency in optical microcavities, Nanophotonics 6(5), 789 (2017)
CrossRef
ADS
Google scholar
|
[18] |
H. Xiong and Y. Wu, Fundamentals and applications of optomechanically induced transparency, Appl. Phys. Rev. 5(3), 031305 (2018)
CrossRef
ADS
Google scholar
|
[19] |
H. Zhang, F. Saif, Y. Jiao, and H. Jing, Loss-induced transparency in optomechanics, Opt. Express 26(19), 25199 (2018)
CrossRef
ADS
Google scholar
|
[20] |
X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 104202 (2015)
CrossRef
ADS
Google scholar
|
[21] |
F. X. Sun, D. Mao, Y. T. Dai, Z. Ficek, Q. Y. He, and Q. H. Gong, Phase control of entanglement and quantum steering in a three-mode optomechanical system, New J. Phys. 19(12), 123039 (2017)
CrossRef
ADS
Google scholar
|
[22] |
L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110(23), 233602 (2013)
CrossRef
ADS
Google scholar
|
[23] |
Z. J. Deng, S. J. M. Habraken, and F. Marquardt, Entanglement rate for Gaussian continuous variable beams, New J. Phys. 18(6), 063022 (2016)
CrossRef
ADS
Google scholar
|
[24] |
Z. J. Deng, X. B. Yan, Y. D. Wang, and C. W. Wu, Optimizing the output-photon entanglement in multimode optomechanical systems, Phys. Rev. A 93(3), 033842 (2016)
CrossRef
ADS
Google scholar
|
[25] |
X. B. Yan, Enhanced output entanglement with reservoir engineering, Phys. Rev. A 96(5), 053831 (2017)
CrossRef
ADS
Google scholar
|
[26] |
X. B. Yan, Z. J. Deng, X. D. Tian, and J. H. Wu, Entanglement optimization of filtered output fields in cavity optomechanics, Opt. Express 27(17), 24393 (2019)
CrossRef
ADS
Google scholar
|
[27] |
Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)
CrossRef
ADS
Google scholar
|
[28] |
J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)
CrossRef
ADS
Google scholar
|
[29] |
K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett. 111(5), 053603 (2013)
CrossRef
ADS
Google scholar
|
[30] |
X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)
CrossRef
ADS
Google scholar
|
[31] |
X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express 22(5), 4886 (2014)
CrossRef
ADS
Google scholar
|
[32] |
G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys. 16(3), 033023 (2014)
CrossRef
ADS
Google scholar
|
[33] |
M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601 (2019)
CrossRef
ADS
Google scholar
|
[34] |
S. Manipatruni, J. T. Robinson, and M. Lipson, Optical nonreciprocity in optomechanical structures, Phys. Rev. Lett. 102(21), 213903 (2009)
CrossRef
ADS
Google scholar
|
[35] |
M. Hafezi and P. Rabl, Optomechanically induced nonreciprocity in microring resonators, Opt. Express 20(7), 7672 (2012)
CrossRef
ADS
Google scholar
|
[36] |
Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, Optical nonreciprocity in asymmetric optomechanical couplers, Sci. Rep. 5(1), 8657 (2015)
CrossRef
ADS
Google scholar
|
[37] |
M. A. Miri, F. Ruesink, E. Verhagen, and A. Alú, Optical nonreciprocity based on optomechanical coupling, Phys. Rev. Appl. 7(6), 064014 (2017)
CrossRef
ADS
Google scholar
|
[38] |
D. L. Sounas and A. Alú, Non-reciprocal photonics based on time modulation, Nat. Photonics 11(12), 774 (2017)
CrossRef
ADS
Google scholar
|
[39] |
F. Ruesink, M. A. Miri, A. Alú, and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7(1), 13662 (2016)
CrossRef
ADS
Google scholar
|
[40] |
Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10(10), 657 (2016)
CrossRef
ADS
Google scholar
|
[41] |
G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7(3), 031001 (2017)
CrossRef
ADS
Google scholar
|
[42] |
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8(1), 604 (2017)
CrossRef
ADS
Google scholar
|
[43] |
S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle, O. Painter, and J. M. Fink, Mechanical on-chip microwave circulator, Nat. Commun. 8(1), 953 (2017)
CrossRef
ADS
Google scholar
|
[44] |
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13(5), 465 (2017)
CrossRef
ADS
Google scholar
|
[45] |
F. Ruesink, J. P. Mathew, M. A. Miri, A. Alú, and E. Verhagen, Optical circulation in a multimode optomechanical resonator, Nat. Commun. 9(1), 1798 (2018)
CrossRef
ADS
Google scholar
|
[46] |
X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91(5), 053854 (2015)
CrossRef
ADS
Google scholar
|
[47] |
X. W. Xu, Y. Li, A. X. Chen, and Y. Liu, Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems, Phys. Rev. A 93(2), 023827 (2016)
CrossRef
ADS
Google scholar
|
[48] |
L. Tian and Z. Li, Nonreciprocal quantum-state conversion between microwave and optical photons, Phys. Rev. A 96(1), 013808 (2017)
CrossRef
ADS
Google scholar
|
[49] |
C. C. Xia, X. B. Yan, X. D. Tian, and F. Gao, Ideal optical isolator with a two-cavity optomechanical system, Opt. Commun. 451, 197 (2019)
CrossRef
ADS
Google scholar
|
[50] |
D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, Quantum-limited directional amplifiers with optomechanics, Phys. Rev. Lett. 120(2), 023601 (2018)
CrossRef
ADS
Google scholar
|
[51] |
S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, and P. Rabl, Continuous mode cooling and phonon routers for phononic quantum networks, New J. Phys. 14(11), 115004 (2012)
CrossRef
ADS
Google scholar
|
[52] |
A. Seif, W. DeGottardi, K. Esfarjani, and M. Hafezi, Thermal management and non-reciprocal control of phonon flow via optomechanics, Nat. Commun. 9(1), 1207 (2018)
CrossRef
ADS
Google scholar
|
[53] |
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)
CrossRef
ADS
Google scholar
|
[54] |
A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, Dispersive optomechanics: a membrane inside a cavity, New J. Phys. 10(9), 095008 (2008)
CrossRef
ADS
Google scholar
|
[55] |
J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)
CrossRef
ADS
Google scholar
|
[56] |
M. Ludwig, A. Safavi-Naeini, O. Painter, and F. Marquardt, Enhanced quantum nonlinearities in a two-mode optomechanical system, Phys. Rev. Lett. 109(6), 063601 (2012)
CrossRef
ADS
Google scholar
|
[57] |
D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, Berlin, 1994
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |