Topological quantum walks: Theory and experiments
Jizhou Wu, Wei-Wei Zhang, Barry C. Sanders
Topological quantum walks: Theory and experiments
[1] |
C. H. Li, O. M. J. van’t Erve, J. T. Robinson, Y. Liu, L. Li, and B. T. Jonker, Electrical detection of chargecurrent- induced spin polarization due to spin-momentum locking in Bi2Se3, Nat. Nanotechnol. 9(3), 218 (2014)
CrossRef
ADS
Google scholar
|
[2] |
Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang, M. Novak, S. Sasaki, K. Segawa, Y. Ando, and M. Shiraishi, Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi1.5Sb0.5Te1.7Se1.3, Nano Lett. 14(11), 6226 (2014)
CrossRef
ADS
Google scholar
|
[3] |
D. C. Mahendra, R. Grassi, J.-Y. Chen, M. Jamali, D. R. Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J.-P. Wang, Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe1–x films, Nat. Mater. 17, 800 (2018)
CrossRef
ADS
Google scholar
|
[4] |
A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)
CrossRef
ADS
Google scholar
|
[5] |
T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Exploring topological phases with quantum walks, Phys. Rev. A 82(3), 033429 (2010)
CrossRef
ADS
Google scholar
|
[6] |
T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B 82(23), 235114 (2010)
CrossRef
ADS
Google scholar
|
[7] |
T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)
CrossRef
ADS
Google scholar
|
[8] |
J. K. Asbóth, Symmetries, topological phases, and bound states in the one-dimensional quantum walk, Phys. Rev. B 86, 195414 (2012)
CrossRef
ADS
Google scholar
|
[9] |
M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X 3(3), 031005 (2013)
CrossRef
ADS
Google scholar
|
[10] |
W. W. Zhang, B. C. Sanders, S. Apers, S. K. Goyal, and D. L. Feder, Detecting topological transitions in two dimensions by Hamiltonian evolution, Phys. Rev. Lett. 119(19), 197401 (2017)
CrossRef
ADS
Google scholar
|
[11] |
L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Observation of topological edge states in parity–time-symmetric quantum walks, Nat. Phys. 13(11), 1117 (2017)
CrossRef
ADS
Google scholar
|
[12] |
C. Chen, X. Ding, J. Qin, Y. He, Y. H. Luo, M. C. Chen, C. Liu, X. L. Wang, W. J. Zhang, H. Li, L. X. You, Z. Wang, D. W. Wang, B. C. Sanders, C. Y. Lu, and J. W. Pan, Observation of topologically protected edge states in a photonic two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100502 (2018)
CrossRef
ADS
Google scholar
|
[13] |
W. Sun, C. R. Yi, B. Z. Wang, W. W. Zhang, B. C. Sanders, X. T. Xu, Z. Y. Wang, J. Schmiedmayer, Y. Deng, X. J. Liu, S. Chen, and J. W. Pan, Uncover topology by quantum quench dynamics, Phys. Rev. Lett. 121(25), 250403 (2018)
CrossRef
ADS
Google scholar
|
[14] |
M. Sajid, J. K. Asbóth, D. Meschede, R. F. Werner, and A. Alberti, Creating anomalous Floquet Chern insulators with magnetic quantum walks, Phys. Rev. B 99(21), 214303 (2019)
CrossRef
ADS
Google scholar
|
[15] |
J. Kempe, Quantum random walks: An introductory overview, Contemp. Phys. 44(4), 307 (2003)
CrossRef
ADS
Google scholar
|
[16] |
Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
CrossRef
ADS
Google scholar
|
[17] |
D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 50–59
|
[18] |
A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 37–49
|
[19] |
T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. A 35(12), 2745 (2002)
CrossRef
ADS
Google scholar
|
[20] |
A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, in: Proc. 35th Annual ACM Symposium on Theory of Computing, ACM, New York, 2003, pp 59–68
|
[21] |
A. Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Comput. 37(1), 210 (2007)
CrossRef
ADS
Google scholar
|
[22] |
F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle problem, SIAM J. Comput. 37(2), 413 (2007)
CrossRef
ADS
Google scholar
|
[23] |
E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory Comput. 4(1), 169 (2008)
CrossRef
ADS
Google scholar
|
[24] |
B. L. Douglas, and J. Wang, A classical approach to the graph isomorphism problem using quantum walks, J. Phys. A 41(7), 075303 (2008)
CrossRef
ADS
Google scholar
|
[25] |
A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)
CrossRef
ADS
Google scholar
|
[26] |
S. Godoy and S. Fujita, A quantum random-walk model for tunneling diffusion in a 1D lattice: A quantum correction to Fick’s law, J. Chem. Phys. 97(7), 5148 (1992)
CrossRef
ADS
Google scholar
|
[27] |
O. Mülken and A. Blumen, Continuous-time quantum walks: Models for coherent transport on complex networks, Phys. Rep. 502(2), 37 (2011)
CrossRef
ADS
Google scholar
|
[28] |
G. Di Molfetta, M. Brachet, and F. Debbasch, Quantum walks as massless Dirac fermions in curved space-time, Phys. Rev. A 88(4), 042301 (2013)
CrossRef
ADS
Google scholar
|
[29] |
W. W. Zhang, S. K. Goyal, F. Gao, B. C. Sanders, and C. Simon, Creating cat states in one-dimensional quantum walks using delocalized initial states, New J. Phys. 18(9), 093025 (2016)
CrossRef
ADS
Google scholar
|
[30] |
H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)
CrossRef
ADS
Google scholar
|
[31] |
F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104, 100503 (2010)
CrossRef
ADS
Google scholar
|
[32] |
E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao, and I. Siddiqi, Observing topological invariants using quantum walks in superconducting circuits, Phys. Rev. X 7(3), 031023 (2017)
CrossRef
ADS
Google scholar
|
[33] |
Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
CrossRef
ADS
Google scholar
|
[34] |
J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Experimental implementation of the quantum randomwalk algorithm, Phys. Rev. A 67(4), 042316 (2003)
CrossRef
ADS
Google scholar
|
[35] |
C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor, Phys. Rev. A 72(6), 062317 (2005)
CrossRef
ADS
Google scholar
|
[36] |
M. Karski, L. Forster, J. M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)
CrossRef
ADS
Google scholar
|
[37] |
S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S. Summy, Quantum walk in momentum space with a Bose–Einstein condensate, Phys. Rev. Lett. 121(7), 070402 (2018)
CrossRef
ADS
Google scholar
|
[38] |
B. Do, M. L. Stohler, S. Balasubramanian, D. S. Elliott, C. Eash, E. Fischbach, M. A. Fischbach, A. Mills, and B. Zwickl, Experimental realization of a quantum quincunx by use of linear optical elements, J. Opt. Soc. Am. B 22(2), 499 (2005)
CrossRef
ADS
Google scholar
|
[39] |
F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons, Sci. Adv. 1(2), e1500087 (2015)
CrossRef
ADS
Google scholar
|
[40] |
H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices, Phys. Rev. Lett. 100(17), 170506 (2008)
CrossRef
ADS
Google scholar
|
[41] |
H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.- F. Qiao, A.-L. Yang, and X.-M. Jin, Experimental twodimensional quantum walk on a photonic chip, Sci. Adv. 4, eaat3174 (2018)
CrossRef
ADS
Google scholar
|
[42] |
S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)
CrossRef
ADS
Google scholar
|
[43] |
E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58(2), 915 (1998)
CrossRef
ADS
Google scholar
|
[44] |
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)
CrossRef
ADS
Google scholar
|
[45] |
A. T. Schmitz and W. A. Schwalm, Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk, Phys. Lett. A 380(11–12), 1125 (2016)
CrossRef
ADS
Google scholar
|
[46] |
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)
CrossRef
ADS
Google scholar
|
[47] |
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef
ADS
Google scholar
|
[48] |
S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. Math. 47(1), 85 (1946)
CrossRef
ADS
Google scholar
|
[49] |
S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math. 99(1), 48 (1974)
CrossRef
ADS
Google scholar
|
[50] |
F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, Statistical moments of quantum-walk dynamics reveal topological quantum transitions, Nat. Commun. 7(1), 11439 (2016)
CrossRef
ADS
Google scholar
|
[51] |
F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons, Nat. Commun. 8(1), 15516 (2017)
CrossRef
ADS
Google scholar
|
[52] |
Y. Wang, Y. H. Lu, F. Mei, J. Gao, Z. M. Li, H. Tang, S. L. Zhu, S. Jia, and X. M. Jin, Direct observation of topology from single-photon dynamics, Phys. Rev. Lett. 122(19), 193903 (2019)
CrossRef
ADS
Google scholar
|
[53] |
T. Groh, S. Brakhane, W. Alt, D. Meschede, J. K. Asbóth, and A. Alberti, Robustness of topologically protected edge states in quantum walk experiments with neutral atoms, Phys. Rev. A 94(1), 013620 (2016)
CrossRef
ADS
Google scholar
|
[54] |
S. Mugel, A. Celi, P. Massignan, J. K. Asbóth, M. Lewenstein, and C. Lobo, Topological bound states of a quantum walk with cold atoms, Phys. Rev. A 94(2), 023631 (2016)
CrossRef
ADS
Google scholar
|
[55] |
T. Nitsche, T. Geib, C. Stahl, L. Lorz, C. Cedzich, S. Barkhofen, R. F. Werner, and C. Silberhorn, Eigenvalue measurement of topologically protected edge states in split-step quantum walks, New J. Phys. 21(4), 043031 (2019)
CrossRef
ADS
Google scholar
|
[56] |
W. W. Zhang, S. K. Goyal, C. Simon, and B. C. Sanders, Decomposition of split-step quantum walks for simulating Majorana modes and edge states, Phys. Rev. A 95(5), 052351 (2017)
CrossRef
ADS
Google scholar
|
[57] |
S. Yao, Z. Yan, and Z. Wang, Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects, Phys. Rev. B 96(19), 195303 (2017)
CrossRef
ADS
Google scholar
|
[58] |
B. Tarasinski, J. K. Asbóth, and J. P. Dahlhaus, Scattering theory of topological phases in discrete-time quantum walks, Phys. Rev. A 89(4), 042327 (2014)
CrossRef
ADS
Google scholar
|
[59] |
S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, Measuring topological invariants in disordered discrete-time quantum walks, Phys. Rev. A 96(3), 033846 (2017)
CrossRef
ADS
Google scholar
|
[60] |
J. K. Asbóth and H. Obuse, Bulk-boundary correspondence for chiral symmetric quantum walks, Phys. Rev. B 88, 121406(R) (2013)
CrossRef
ADS
Google scholar
|
[61] |
J. K. Asbóth, B. Tarasinski, and P. Delplace, Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems, Phys. Rev. B 90, 125143 (2014)
CrossRef
ADS
Google scholar
|
[62] |
H. Obuse, J. K. Asbóth, Y. Nishimura, and N. Kawakami, Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk, Phys. Rev. B 92(4), 045424 (2015)
CrossRef
ADS
Google scholar
|
[63] |
C. Cedzich, F. A. Grünbaum, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner, Bulk-edge correspondence of one-dimensional quantum walks, J. Phys. A 49(21), 21LT01 (2016)
CrossRef
ADS
Google scholar
|
[64] |
C. Cedzich, T. Geib, F. A. Grünbaum, C. Stahl, L. Veläzquez, A. H. Werner, and R. F. Werner, The topological classification of one-dimensional symmetric quantum walks, Annales Henri Poincaré 19, 325 (2018)
CrossRef
ADS
Google scholar
|
[65] |
C. Cedzich, T. Geib, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner, Complete homotopy invariants for translation invariant symmetric quantum walks on a chain, Quantum 2, 95 (2018)
CrossRef
ADS
Google scholar
|
[66] |
C. Cedzich, and T. Geib, F. A. Grünbaum, L. Veläzquez, A. H. Werner, and R. F. Werner, Quantum walks: Schur functions meet symmetry protected topological phases, arXiv: 1903.07494 [math-ph] (2019)
|
[67] |
J. K. Asbóth and J. M. Edge, Edge-state-enhanced transport in a two-dimensional quantum walk, Phys. Rev. A 91, 022324 (2015)
CrossRef
ADS
Google scholar
|
[68] |
B. Wang, T. Chen, and X. Zhang, Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100501 (2018)
CrossRef
ADS
Google scholar
|
[69] |
X. Y. Xu, Q. Q. Wang, W. W. Pan, K. Sun, J. S. Xu, G. Chen, J. S. Tang, M. Gong, Y. J. Han, C. F. Li, and G. C. Guo, Measuring the winding number in a large-scale chiral quantum walk, Phys. Rev. Lett. 120(26), 260501 (2018)
CrossRef
ADS
Google scholar
|
[70] |
V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao, Direct probe of topological invariants using Bloch oscillating quantum walks, Phys. Rev. Lett. 118(13), 130501 (2017)
CrossRef
ADS
Google scholar
|
[71] |
A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, Topological optical waveguiding in silicon and the transition between topological and trivial defect states, Phys. Rev. Lett. 116(16), 163901 (2016)
CrossRef
ADS
Google scholar
|
[72] |
L. Zhang, L. Zhang, S. Niu, and X. J. Liu, Dynamical classification of topological quantum phases, Sci. Bull. 63(21), 1385 (2018)
CrossRef
ADS
Google scholar
|
[73] |
C. M. Bender, and S. Boettcher, Real spectra in non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
CrossRef
ADS
Google scholar
|
[74] |
K. Mochizuki, D. Kim, and H. Obuse, Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss, Phys. Rev. A 93(6), 062116 (2016)
CrossRef
ADS
Google scholar
|
[75] |
K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, B. C. Sanders, W. Yi, and P. Xue, Observation of emergent momentum–time skyrmions in parity–time-symmetric non-unitary quench dynamics, Nat. Commun. 10(1), 2293 (2019)
CrossRef
ADS
Google scholar
|
[76] |
Y. Ming, C. T. Lin, S. D. Bartlett, and W. W. Zhang, Quantum topology identification with deep neural networks and quantum walks, arXiv: 1811.12630 [quant-ph] (2018)
|
[77] |
B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker, K. Sengstock, and C. Weitenberg, Identifying quantum phase transitions using artificial neural networks on experimental data, Nat. Phys. (2019), DOI: 10.1038/s41567-019-0554-0
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |