Topological quantum walks: Theory and experiments

Jizhou Wu, Wei-Wei Zhang, Barry C. Sanders

PDF(582 KB)
PDF(582 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (6) : 61301. DOI: 10.1007/s11467-019-0918-z
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

Topological quantum walks: Theory and experiments

Author information +
History +

Cite this article

Download citation ▾
Jizhou Wu, Wei-Wei Zhang, Barry C. Sanders. Topological quantum walks: Theory and experiments. Front. Phys., 2019, 14(6): 61301 https://doi.org/10.1007/s11467-019-0918-z

References

[1]
C. H. Li, O. M. J. van’t Erve, J. T. Robinson, Y. Liu, L. Li, and B. T. Jonker, Electrical detection of chargecurrent- induced spin polarization due to spin-momentum locking in Bi2Se3, Nat. Nanotechnol. 9(3), 218 (2014)
CrossRef ADS Google scholar
[2]
Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang, M. Novak, S. Sasaki, K. Segawa, Y. Ando, and M. Shiraishi, Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi1.5Sb0.5Te1.7Se1.3, Nano Lett. 14(11), 6226 (2014)
CrossRef ADS Google scholar
[3]
D. C. Mahendra, R. Grassi, J.-Y. Chen, M. Jamali, D. R. Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J.-P. Wang, Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe1–x films, Nat. Mater. 17, 800 (2018)
CrossRef ADS Google scholar
[4]
A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)
CrossRef ADS Google scholar
[5]
T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Exploring topological phases with quantum walks, Phys. Rev. A 82(3), 033429 (2010)
CrossRef ADS Google scholar
[6]
T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B 82(23), 235114 (2010)
CrossRef ADS Google scholar
[7]
T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)
CrossRef ADS Google scholar
[8]
J. K. Asbóth, Symmetries, topological phases, and bound states in the one-dimensional quantum walk, Phys. Rev. B 86, 195414 (2012)
CrossRef ADS Google scholar
[9]
M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X 3(3), 031005 (2013)
CrossRef ADS Google scholar
[10]
W. W. Zhang, B. C. Sanders, S. Apers, S. K. Goyal, and D. L. Feder, Detecting topological transitions in two dimensions by Hamiltonian evolution, Phys. Rev. Lett. 119(19), 197401 (2017)
CrossRef ADS Google scholar
[11]
L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Observation of topological edge states in parity–time-symmetric quantum walks, Nat. Phys. 13(11), 1117 (2017)
CrossRef ADS Google scholar
[12]
C. Chen, X. Ding, J. Qin, Y. He, Y. H. Luo, M. C. Chen, C. Liu, X. L. Wang, W. J. Zhang, H. Li, L. X. You, Z. Wang, D. W. Wang, B. C. Sanders, C. Y. Lu, and J. W. Pan, Observation of topologically protected edge states in a photonic two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100502 (2018)
CrossRef ADS Google scholar
[13]
W. Sun, C. R. Yi, B. Z. Wang, W. W. Zhang, B. C. Sanders, X. T. Xu, Z. Y. Wang, J. Schmiedmayer, Y. Deng, X. J. Liu, S. Chen, and J. W. Pan, Uncover topology by quantum quench dynamics, Phys. Rev. Lett. 121(25), 250403 (2018)
CrossRef ADS Google scholar
[14]
M. Sajid, J. K. Asbóth, D. Meschede, R. F. Werner, and A. Alberti, Creating anomalous Floquet Chern insulators with magnetic quantum walks, Phys. Rev. B 99(21), 214303 (2019)
CrossRef ADS Google scholar
[15]
J. Kempe, Quantum random walks: An introductory overview, Contemp. Phys. 44(4), 307 (2003)
CrossRef ADS Google scholar
[16]
Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
CrossRef ADS Google scholar
[17]
D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 50–59
[18]
A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 37–49
[19]
T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. A 35(12), 2745 (2002)
CrossRef ADS Google scholar
[20]
A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, in: Proc. 35th Annual ACM Symposium on Theory of Computing, ACM, New York, 2003, pp 59–68
[21]
A. Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Comput. 37(1), 210 (2007)
CrossRef ADS Google scholar
[22]
F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle problem, SIAM J. Comput. 37(2), 413 (2007)
CrossRef ADS Google scholar
[23]
E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory Comput. 4(1), 169 (2008)
CrossRef ADS Google scholar
[24]
B. L. Douglas, and J. Wang, A classical approach to the graph isomorphism problem using quantum walks, J. Phys. A 41(7), 075303 (2008)
CrossRef ADS Google scholar
[25]
A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)
CrossRef ADS Google scholar
[26]
S. Godoy and S. Fujita, A quantum random-walk model for tunneling diffusion in a 1D lattice: A quantum correction to Fick’s law, J. Chem. Phys. 97(7), 5148 (1992)
CrossRef ADS Google scholar
[27]
O. Mülken and A. Blumen, Continuous-time quantum walks: Models for coherent transport on complex networks, Phys. Rep. 502(2), 37 (2011)
CrossRef ADS Google scholar
[28]
G. Di Molfetta, M. Brachet, and F. Debbasch, Quantum walks as massless Dirac fermions in curved space-time, Phys. Rev. A 88(4), 042301 (2013)
CrossRef ADS Google scholar
[29]
W. W. Zhang, S. K. Goyal, F. Gao, B. C. Sanders, and C. Simon, Creating cat states in one-dimensional quantum walks using delocalized initial states, New J. Phys. 18(9), 093025 (2016)
CrossRef ADS Google scholar
[30]
H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)
CrossRef ADS Google scholar
[31]
F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104, 100503 (2010)
CrossRef ADS Google scholar
[32]
E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao, and I. Siddiqi, Observing topological invariants using quantum walks in superconducting circuits, Phys. Rev. X 7(3), 031023 (2017)
CrossRef ADS Google scholar
[33]
Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
CrossRef ADS Google scholar
[34]
J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Experimental implementation of the quantum randomwalk algorithm, Phys. Rev. A 67(4), 042316 (2003)
CrossRef ADS Google scholar
[35]
C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor, Phys. Rev. A 72(6), 062317 (2005)
CrossRef ADS Google scholar
[36]
M. Karski, L. Forster, J. M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)
CrossRef ADS Google scholar
[37]
S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S. Summy, Quantum walk in momentum space with a Bose–Einstein condensate, Phys. Rev. Lett. 121(7), 070402 (2018)
CrossRef ADS Google scholar
[38]
B. Do, M. L. Stohler, S. Balasubramanian, D. S. Elliott, C. Eash, E. Fischbach, M. A. Fischbach, A. Mills, and B. Zwickl, Experimental realization of a quantum quincunx by use of linear optical elements, J. Opt. Soc. Am. B 22(2), 499 (2005)
CrossRef ADS Google scholar
[39]
F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons, Sci. Adv. 1(2), e1500087 (2015)
CrossRef ADS Google scholar
[40]
H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices, Phys. Rev. Lett. 100(17), 170506 (2008)
CrossRef ADS Google scholar
[41]
H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.- F. Qiao, A.-L. Yang, and X.-M. Jin, Experimental twodimensional quantum walk on a photonic chip, Sci. Adv. 4, eaat3174 (2018)
CrossRef ADS Google scholar
[42]
S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)
CrossRef ADS Google scholar
[43]
E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58(2), 915 (1998)
CrossRef ADS Google scholar
[44]
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)
CrossRef ADS Google scholar
[45]
A. T. Schmitz and W. A. Schwalm, Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk, Phys. Lett. A 380(11–12), 1125 (2016)
CrossRef ADS Google scholar
[46]
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)
CrossRef ADS Google scholar
[47]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[48]
S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. Math. 47(1), 85 (1946)
CrossRef ADS Google scholar
[49]
S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math. 99(1), 48 (1974)
CrossRef ADS Google scholar
[50]
F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, Statistical moments of quantum-walk dynamics reveal topological quantum transitions, Nat. Commun. 7(1), 11439 (2016)
CrossRef ADS Google scholar
[51]
F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons, Nat. Commun. 8(1), 15516 (2017)
CrossRef ADS Google scholar
[52]
Y. Wang, Y. H. Lu, F. Mei, J. Gao, Z. M. Li, H. Tang, S. L. Zhu, S. Jia, and X. M. Jin, Direct observation of topology from single-photon dynamics, Phys. Rev. Lett. 122(19), 193903 (2019)
CrossRef ADS Google scholar
[53]
T. Groh, S. Brakhane, W. Alt, D. Meschede, J. K. Asbóth, and A. Alberti, Robustness of topologically protected edge states in quantum walk experiments with neutral atoms, Phys. Rev. A 94(1), 013620 (2016)
CrossRef ADS Google scholar
[54]
S. Mugel, A. Celi, P. Massignan, J. K. Asbóth, M. Lewenstein, and C. Lobo, Topological bound states of a quantum walk with cold atoms, Phys. Rev. A 94(2), 023631 (2016)
CrossRef ADS Google scholar
[55]
T. Nitsche, T. Geib, C. Stahl, L. Lorz, C. Cedzich, S. Barkhofen, R. F. Werner, and C. Silberhorn, Eigenvalue measurement of topologically protected edge states in split-step quantum walks, New J. Phys. 21(4), 043031 (2019)
CrossRef ADS Google scholar
[56]
W. W. Zhang, S. K. Goyal, C. Simon, and B. C. Sanders, Decomposition of split-step quantum walks for simulating Majorana modes and edge states, Phys. Rev. A 95(5), 052351 (2017)
CrossRef ADS Google scholar
[57]
S. Yao, Z. Yan, and Z. Wang, Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects, Phys. Rev. B 96(19), 195303 (2017)
CrossRef ADS Google scholar
[58]
B. Tarasinski, J. K. Asbóth, and J. P. Dahlhaus, Scattering theory of topological phases in discrete-time quantum walks, Phys. Rev. A 89(4), 042327 (2014)
CrossRef ADS Google scholar
[59]
S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, Measuring topological invariants in disordered discrete-time quantum walks, Phys. Rev. A 96(3), 033846 (2017)
CrossRef ADS Google scholar
[60]
J. K. Asbóth and H. Obuse, Bulk-boundary correspondence for chiral symmetric quantum walks, Phys. Rev. B 88, 121406(R) (2013)
CrossRef ADS Google scholar
[61]
J. K. Asbóth, B. Tarasinski, and P. Delplace, Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems, Phys. Rev. B 90, 125143 (2014)
CrossRef ADS Google scholar
[62]
H. Obuse, J. K. Asbóth, Y. Nishimura, and N. Kawakami, Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk, Phys. Rev. B 92(4), 045424 (2015)
CrossRef ADS Google scholar
[63]
C. Cedzich, F. A. Grünbaum, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner, Bulk-edge correspondence of one-dimensional quantum walks, J. Phys. A 49(21), 21LT01 (2016)
CrossRef ADS Google scholar
[64]
C. Cedzich, T. Geib, F. A. Grünbaum, C. Stahl, L. Veläzquez, A. H. Werner, and R. F. Werner, The topological classification of one-dimensional symmetric quantum walks, Annales Henri Poincaré 19, 325 (2018)
CrossRef ADS Google scholar
[65]
C. Cedzich, T. Geib, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner, Complete homotopy invariants for translation invariant symmetric quantum walks on a chain, Quantum 2, 95 (2018)
CrossRef ADS Google scholar
[66]
C. Cedzich, and T. Geib, F. A. Grünbaum, L. Veläzquez, A. H. Werner, and R. F. Werner, Quantum walks: Schur functions meet symmetry protected topological phases, arXiv: 1903.07494 [math-ph] (2019)
[67]
J. K. Asbóth and J. M. Edge, Edge-state-enhanced transport in a two-dimensional quantum walk, Phys. Rev. A 91, 022324 (2015)
CrossRef ADS Google scholar
[68]
B. Wang, T. Chen, and X. Zhang, Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100501 (2018)
CrossRef ADS Google scholar
[69]
X. Y. Xu, Q. Q. Wang, W. W. Pan, K. Sun, J. S. Xu, G. Chen, J. S. Tang, M. Gong, Y. J. Han, C. F. Li, and G. C. Guo, Measuring the winding number in a large-scale chiral quantum walk, Phys. Rev. Lett. 120(26), 260501 (2018)
CrossRef ADS Google scholar
[70]
V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao, Direct probe of topological invariants using Bloch oscillating quantum walks, Phys. Rev. Lett. 118(13), 130501 (2017)
CrossRef ADS Google scholar
[71]
A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, Topological optical waveguiding in silicon and the transition between topological and trivial defect states, Phys. Rev. Lett. 116(16), 163901 (2016)
CrossRef ADS Google scholar
[72]
L. Zhang, L. Zhang, S. Niu, and X. J. Liu, Dynamical classification of topological quantum phases, Sci. Bull. 63(21), 1385 (2018)
CrossRef ADS Google scholar
[73]
C. M. Bender, and S. Boettcher, Real spectra in non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
CrossRef ADS Google scholar
[74]
K. Mochizuki, D. Kim, and H. Obuse, Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss, Phys. Rev. A 93(6), 062116 (2016)
CrossRef ADS Google scholar
[75]
K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, B. C. Sanders, W. Yi, and P. Xue, Observation of emergent momentum–time skyrmions in parity–time-symmetric non-unitary quench dynamics, Nat. Commun. 10(1), 2293 (2019)
CrossRef ADS Google scholar
[76]
Y. Ming, C. T. Lin, S. D. Bartlett, and W. W. Zhang, Quantum topology identification with deep neural networks and quantum walks, arXiv: 1811.12630 [quant-ph] (2018)
[77]
B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker, K. Sengstock, and C. Weitenberg, Identifying quantum phase transitions using artificial neural networks on experimental data, Nat. Phys. (2019), DOI: 10.1038/s41567-019-0554-0
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(582 KB)

Accesses

Citations

Detail

Sections
Recommended

/