A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers

Zbigniew Tylczyński

PDF(1615 KB)
PDF(1615 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (6) : 63301. DOI: 10.1007/s11467-019-0912-5
VIEWPOINT
VIEWPOINT

A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers

Author information +
History +

Abstract

This collection presents 505 papers on ferroelectricity in single crystals, ceramics and polymers in which pointed or elliptical hysteresis loops would testify to their ferroelectric properties. In some papers, the authors ensure that ferroelectricity can occur even in materials that do not have a polar axis of symmetry.

Keywords

ferroelectricity / hysteresis loop / single crystals / multiferroic / polymers

Cite this article

Download citation ▾
Zbigniew Tylczyński. A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers. Front. Phys., 2019, 14(6): 63301 https://doi.org/10.1007/s11467-019-0912-5

References

[1]
J. Valasek, Piezoelectric and allied phenomena in Rochelle salt, Phys. Rev. 17(4), 475 (1921)
CrossRef ADS Google scholar
[2]
F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press Ltd., Oxford, 1962
[3]
J. F. Scott, Ferroelectrics go bananas, J. Phys.: Condens. Matter 20(2), 021001 (2008)
CrossRef ADS Google scholar
[4]
A. Loidl, S. Krohns, J. Hemberger, and P. Lunkenheimer, Bananas go paraelectric, J. Phys.: Condens. Matter 20(19), 191001 (2008)
CrossRef ADS Google scholar
[5]
L. Pintilie and M. Alexe, Ferroelectric-like hysteresis loop in nonferroelectric system, Appl. Phys. Lett. 87(11), 112903 (2005)
CrossRef ADS Google scholar
[6]
H. Kliem and B. Martin, Pseudo-ferroelectric properties by pace charge polarization, J. Phys.: Condens. Matter 20(32), 321001 (2008)
CrossRef ADS Google scholar
[7]
B. Martin and H. Kliem, Electrode effects in solid electrolyte capacitors, J. Appl. Phys. 98(7), 074102 (2005)
CrossRef ADS Google scholar
[8]
H. Diamant, K. Drenck, and R. Pepinsky, Bridge for accurate measurement of ferroelectric hysteresis, Rev. Sci. Instr. 28(1), 30 (1957)
CrossRef ADS Google scholar
[9]
L. Corbellini, J. Plathier, C. Lacroix, C. Harnagea, D. Menard, and A. Pignolet, Hysteresis loops revisited: An efficient method to analyze ferroic materials, J. Appl. Phys. 120(12), 124101 (2016)
CrossRef ADS Google scholar
[10]
M. Fukunaga and Y. Noda, New technique for measuring ferroelectric and antiferroelectric hysteresis loops, J. Phys. Soc. Jpn. 77(6), 064706 (2008)
CrossRef ADS Google scholar
[11]
V. Chithambaram, S. Jerome Das, S. Krishnan, M. Basheer Ahamed, and R. Arivudai Nambi, Growth and characterization of urea-oxalic acid crystals by solution growth technique, Eur. Phys. J. Appl. Phys. 64(2), 20201 (2013)
CrossRef ADS Google scholar
[12]
R. E. Vizhi, R. Dhivya, and D. R. Babu, Synthesis, grown, optical and mechanical studies of ferroelectric urea-oxalic acid single crystals, J. Cryst. Growth 452, 213 (2016)
CrossRef ADS Google scholar
[13]
R. Dhivya, R. E. Vizhi, and D. R. Babu, Investigation on nucleation kinetics, growth and characterization of urea oxalic acid – ferroelectric single crystal, J. Cryst. Growth 468, 84 (2017)
CrossRef ADS Google scholar
[14]
S. Krishnan, J. Raj, R. Robert, and A. Ramanand, Growth and characterization of succinic acid single crystals, Cryst. Res. Technol. 42(11), 1087 (2007)
CrossRef ADS Google scholar
[15]
S. Krishnan, C. J. Raj, and S. J. Das, Growth and characterization of novel ferroelectric urea-succinic acid single crystal, J. Cryst. Growth 310(14), 3313 (2008)
CrossRef ADS Google scholar
[16]
R. Dhivya, R. Ezhil Vizhi, and D. R. Babu, Nucleation kinetic of urea succinic acid – ferroelectric single crystal, AIP Conf. Proc. 1665, 100020 (2016)
CrossRef ADS Google scholar
[17]
B. K. Singh, N. Sinha, N. Singh, K. Kumar, M. K. Gupta, and B. Kumar, Structural, dielectric, optical and ferroelectric property of urea succinic acid crystals grown in aqueous solution containing maleic acid, J. Phys. Chem. Solids 71(12), 1774 (2010)
CrossRef ADS Google scholar
[18]
R. Priya, S. Krishnan, G. Bhagavannarayana, and S. Jerome Das, Growth and characterization of novel ferroelectric bis (methylammonium) tetrachlorozincate, Physica B 406(8), 1345 (2011)
CrossRef ADS Google scholar
[19]
S. Suresh, A. Ramanand, D. Jayaraman, S. M. Priya, and R. Vasanthakumari, Synthesis, structural and dielectric properties of ferroelectric dichloridoglycine zinc dihydrate single crystals, J. Miner. Mater. Charact. Eng. 10(04), 339 (2011)
CrossRef ADS Google scholar
[20]
B. Uma, Rajnikant, K. SakthiMurugesan, S. Krishnan, and B. MiltonBoaz, Growth, structural, optical, thermal and dielectric properties of a novel semi-organic nonlinear optical crystal: Dichloro-diglycine zinc II, Progr. Nat. Sci.: Mater. Inter. 24, 378 (2014)
CrossRef ADS Google scholar
[21]
M. Shakir, B. K. Singh, B. Kumar, and G. Bhagavannarayana, Ferroelectricity in glycine picrate: An astonishing observation in a centrosymmetric crystal,Appl. Phys. Lett. 95(25), 252902 (2009)
CrossRef ADS Google scholar
[22]
C. Balarew, V. Spasov, and S. Tepavitcharova, Pyro- and ferroelectric properties of nGly·MeCl2·2H2O (Me= Mn, Co; n= 1, 2), Ferroelectrics 158(1), 157 (1994)
CrossRef ADS Google scholar
[23]
P. Justin and K. Anitha, Influence of formic acid on optical and electrical properties of glycine crystal, Mater. Res. Express 4(11), 115101 (2017)
CrossRef ADS Google scholar
[24]
M. Ben Bechir, K. Karoui, M. Tabellout, K. Guidara, and A. Ben Rhaiem, Electric and dielectric studies of the [N(CH3)3H]2CuCl4 compound at low temperature, J. Alloys. Compounds 588, 551 (2014)
CrossRef ADS Google scholar
[25]
J. Y. Park, J. H. Park, Y. K. Jeong, and H. M. Jang, Dynamic magnetoelectric coupling in “electronic ferroelectric” LuFe2O4, Appl. Phys. Lett. 91(15), 152903 (2007)
CrossRef ADS Google scholar
[26]
E. Jerusha, R. I. Shyam Kumar, S. S. Kirupavathy, and R. Gopalakrishnan, Investigations on the growth and characterisation of an isomorphous ammonium tetroxalate dihydrate superacid crystal, Optik (Stuttg.) 127(9), 3896 (2016)
CrossRef ADS Google scholar
[27]
M. Ben Bechir, K. Karoui, A. Bulou, M. Tabellout, K. Guidara, and A. Ben Rhaiem, [N(CH3)3H]2ZnCl4: Ferroelectric properties and characterization of phase transitions by Raman spectroscopy, J. Appl. Phys. 116(21), 214104 (2014)
CrossRef ADS Google scholar
[28]
S. Yadava, B. K. Pandey, S. P. Dubey, and J. P. Seth, Ferroelectricity and phase transitions in disodium hydrogen orthophosphste, Asian J. Chem. 20, 2051 (2008)
[29]
H. M. Mande and P. S. Ghalsasi, Designing chiral, propolar structures for observing ferroelectricity: Molecular analogue of KNO3, Cryst. Growth Des. 16(1), 3 (2016)
CrossRef ADS Google scholar
[30]
C. C. Desai and A. H. Patel, Some aspects of the electrical conductivity of ferroelectric rubidium hydrogen tartrate single crystals, J. Mater. Sci. Lett. 6(9), 1066 (1987)
CrossRef ADS Google scholar
[31]
H. Cui, Z. Wang, K. Takahashi, Y. Okano, H. Kobayashi, and A. Kobayashi, Ferroelectric porous molecular crystal, [Mn3(HCOO)6](C2H5OH), exhibiting ferrimagnetic transition, J. Am. Chem. Soc. 128(47), 15074 (2006)
CrossRef ADS Google scholar
[32]
H. Tokoro and S. Ohkoshi, Novel magnetic functionalities of Prussian blue analogs, Dalton Trans. 40(26), 6825 (2011)
CrossRef ADS Google scholar
[33]
V. Subhashini, S. Ponnusamy, and C. Muthamizhchelvan, Growth, optical, thermal, piezo and ferroelectric studies on ethylenediamine ditartrate dihydrate (EDADTDH) single crystals, J. Cryst. Growth 312(7), 1040 (2010)
CrossRef ADS Google scholar
[34]
S. Kalyanaraman, P. M. Shajinshinu, and S. Vijayalakshmi, Refractive index, band gap energy, dielectric constant and polarizability calculations of ferroelectric Ethylenediaminium Tetrachlorozincate crystal, J. Phys. Chem. Solids 86, 108 (2015)
CrossRef ADS Google scholar
[35]
M. Loganayaki and P. Murugakoothan, Studies on dielectric and ferroelectric behaviour of L-alanine single crystal, Asian J. Chem. 23, 5089 (2011)
[36]
B. Want and R. Samad, Dielectric, ferroelectric and optical behaviour of terbium hydrogen tartrate trihydrate crystals, J. Mater. Sci. 49(14), 4891 (2014)
CrossRef ADS Google scholar
[37]
G. Ray, S. Kumar, N. Sinha, and B. Kumar, Enhanced dielectric piezo-/ferro-/electric properties of dye doped sodium acid phthalate crystal, Curr. Appl. Phys. 17(5), 813 (2017)
CrossRef ADS Google scholar
[38]
E. Jerusha, R. I. S. Kumar, S. S. Kirupavathy, and R. Gopalakrishnan, Investigations on the growth and characterisation of an isomorphous ammonium tetroxalate dihydrate superacid crystal, Optik (Stuttg.) 127(9), 3896 (2016)
CrossRef ADS Google scholar
[39]
B. Uma, K. S. Murugesan, S. Krishnan, S. J. Das, and B. M. Boaz, Optical and dielectric studies on organic nonlinear optical 2-furoic acid single crystals, Optik (Stuttg.) 124(17), 2754 (2013)
CrossRef ADS Google scholar
[40]
I. B. Hadj Sadok, F. Hajlaoui, K. Karoui, N. Audebrand, T. Roisnel, and N. Zouari, Crystal structure, optical and electrical properties of metal-halide compound [C7H16N2][ZnCl4], J. Phys. Chem. Solids 129, 71 (2019)
CrossRef ADS Google scholar
[41]
O. M. Mailoud, A. H. Elsayed, H. A. El Fetouh, and A. H. A. ELazm, Synthesis and characterization of paramagnetic isotropic glycine manganese chloride single crystal with various dopant concentrations, Results Phys. 12, 925 (2019)
CrossRef ADS Google scholar
[42]
N. Bhuvaneswari and K. Venkatachalam, Structural, vibrational and physical properties on tetramethyammonium cadmium bromide ferroelectric single crystals, Asian J. Chem. 30(2), 386 (2018)
CrossRef ADS Google scholar
[43]
S. Yadava, B. K. Pandey, S. P. Dubey, and R. N. Gupta, Dielectric behaviour of lead nitrate with its phase transition, Asian J. Chem. 20, 731 (2008)
[44]
C. C. Desai and K. N. Patel, Synthesis and characterization of ferroelectric magnesium hydrogen phosphate single crystals, Cryst. Res. Technol. 24(7), 681 (1989)
CrossRef ADS Google scholar
[45]
R. Dhivya, R. Ezhil Vizhi, and D. Rajan Babu, Investigation on nucleation kinetics, growth and characterization of urea oxalic acid – ferroelectric single crystal, J. Cryst. Growth 468, 84 (2017)
CrossRef ADS Google scholar
[46]
S. Krishnan, C. J. Raj, S. Dinakaran, R. Uthrakumar, R. Robert, and S. J. Das, Optical, thermal, dielectric and ferroelectric behaviour of sodium acid phthalate (SAP) single crystals, J. Phys. Chem. Solids 69(11), 2883 (2008)
CrossRef ADS Google scholar
[47]
C. C. Stoumpos, Ch. D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem. 52(15), 9019 (2013)
CrossRef ADS Google scholar
[48]
S. Fujimoto, N. Yasuda, H. Hibino, and P. S. Narayanan, Ferroelectricity in lithium potassium sulphate, J. Phys. D Appl. Phys. 17(2), L35 (1984)
CrossRef ADS Google scholar
[49]
J. Dalal and B. Kumar, Remarkable enhancement in dielectric, piezoelectric, ferroelectric and SHG properties by iron doping in sodium para-nitrophenolate dihydrate single crystals, Mater. Lett. 165, 99 (2016)
CrossRef ADS Google scholar
[50]
J. Dalal, N. Sinha, H. Yadav, and B. Kumar, Structural, electrical, ferroelectric and mechanical properties with Hirshfeld surface analysis of novel NLO semiorganic sodium p-nitrophenolate dihydrate piezoelectric single crystal, RSC Advances 5(71), 57735 (2015)
CrossRef ADS Google scholar
[51]
A. C. Sajikumar, S. Vinu, and C. Krishnan, Studies on structural, optical and thermal properties of L-histidine doped potassium hydrogen phthalate single crystal, Inter. J. Engn. Res. Technol. 4(01), 525 (2015)
[52]
A. C. Sajikumar, S. Vinu, and C. Krishnan, Growth and characterization of barium doped potassium hydrogen phthalate single crystal, Int. J. Eng. Res. Appl. 5, 50 (2015)
[53]
R. E. Vizhi and D. R. Babu, A study on structural, optical, mechanical and ferroelectric properties of triglycine barium nitrate single crystals, Ferroelectr. Lett. Sect. 40(1–3), 1 (2013)
CrossRef ADS Google scholar
[54]
V. Duraikkan, S. A. Bahadur, N. Nallamuthu, S. Athimoolam, and A. Manikandan, Investigation of phase transition in some ferroelectrics calcium and zinc doped diammonium dibromodichlorinate, J. Inorg. Organomet. Polym. Mater. 27(1), 363 (2017)
CrossRef ADS Google scholar
[55]
S. C. Abrahams, J. Ravez, A. Simon, A. Reller, and H. R. Oswald, Cu(OH)2: A new ferroelectric, J. Appl. Cryst. 28(5), 594 (1995)
CrossRef ADS Google scholar
[56]
A. C. Y. Pan, H. D. Mai, and G. Y. Yang, A new zeotype borogermanate β-K2B2Ge3O10: Synthesis, structure, property and conformational polymorphism, Microporous Mesoporous Mater. 168, 183 (2013)
CrossRef ADS Google scholar
[57]
T. G. J. Cao, W. H. Fang, S. T. Zheng, and G. Y. Yang, (CH3NH3)2[Ge(B4O9)]: An organically-templated chiral borogermanate with second-order nonlinear and ferroelectric properties, Inorg. Chem. Commun. 13(9), 1047 (2010)
CrossRef ADS Google scholar
[58]
J. H. Zhang, F. Kong, and J. G. Mao, Ba3[Ge2B7O16(OH)2](OH)(H2O) and Ba3Ge2B6O16: Novel alkaline-earth borogermanates based on two types of polymeric borate units and GeO4 tetrahedra, Inorg. Chem. 50(7), 3037 (2011)
CrossRef ADS Google scholar
[59]
C. Jiang, N. Zhong, C. Luo, H. Lin, Y. Zhang, H. Peng, and C. G. Duan, (Diisopropylammonium)2MnBr4: A multifunctional ferroelectric with efficient green-emission and excellent gas sensing properties, Chem. Commun. (Camb.) 53(44), 5954 (2017)
CrossRef ADS Google scholar
[60]
P. S. L. Mageshwari, R. Priya, S. Krishnan, V. Joseph, and S. J. Das, Optical, dielectric and ferroelectric behaviour on doped lithium sulphate crystals, Optik (Stuttg.) 125(10), 2289 (2014)
CrossRef ADS Google scholar
[61]
S. Moitra and T. Kar, Second harmonic generation of a new nonlinear optical material L-valine hydrobromide, J. Cryst. Growth 310(21), 4539 (2008)
CrossRef ADS Google scholar
[62]
N. Tyagi, N. Sinha, H. Yadav, and B. Kumar, Growth, morphology, structure and characterization of L-histidinium dihydrogen arsenate orthoarsenic acid single crystal, Acta Crystallogr. B 72(4), 593 (2016)
CrossRef ADS Google scholar
[63]
K. Thukral, N. Vijayan, B. Singh, I. Bdikin, D. Haranath, K. K. Maurya, J. Philip, H. Soumya, P. Sreekanth, and G. Bhagavannarayana, Growth, structural and mechanical analysis of a single crystal of L-prolinium tartrate: A promising material for nonlinear optical applications, CrystEngComm 16(39), 9245 (2014)
CrossRef ADS Google scholar
[64]
S. Kumar, N. Sinha, H. Yadav, and B. Kumar, Growth, structural, dielectric, ferroelectric, and mechanical properties of L-prolinium tartrate single crystal, J. Mater. Sci. 51(16), 7614 (2016)
CrossRef ADS Google scholar
[65]
U. Charoen-In and P. Manyum, Growth of ferroelectric crystals: 4-aminopyridinium hydrogen maleate single crystals and their characterization, Ceram. Int. 41, S76 (2015)
CrossRef ADS Google scholar
[66]
D. W. Fu, Y. M. Song, G. X. Wang, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral trinuclear nickel(II) complex, J. Am. Chem. Soc. 129(17), 5346 (2007)
CrossRef ADS Google scholar
[67]
Z. Sun, T. Chen, J. Luo, and M. Hong, Bis(imidazolium) L-tartrate: A hydrogen-bonded displacive-type molecular ferroelectric material, Angew. Chem. Int. Ed. 51(16), 3871 (2012)
CrossRef ADS Google scholar
[68]
K. Senthilkumar, S. M. Babu, B. Kumar, and G. Bhagavannarayana, Effect of rare earth ions on the properties of glycine phosphite single crystals, J. Cryst. Growth 362, 343 (2013)
CrossRef ADS Google scholar
[69]
K. Senthilkumar, S. M. Babu, B. Kumar, and G. Bhagavannarayana, Improvement in structural, dielectric, ferroelectric and mechanical properties in metal ions doped glycine phosphite single crystals, Ferroelectrics 437(1), 126 (2012)
CrossRef ADS Google scholar
[70]
A. Shanthi, C. Krishnan, and P. Selvarajan, Studies on growth and characterization of a novel nonlinear optical and ferroelectric material, N,N-dimethylurea picrate single crystal, J. Cryst. Growth 393, 7 (2014)
CrossRef ADS Google scholar
[71]
B. Uma, R. S. Selvaraj, S. Krishnan, and B. M. Boaz, Growth and characterization of a novel organic nonlinear optical material: L-alanine 2-furoic acid, Optik (Stuttg.) 125(2), 651 (2014)
CrossRef ADS Google scholar
[72]
J. Dalal and B. Kumar, Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal, Opt. Mater. 51, 139 (2016)
CrossRef ADS Google scholar
[73]
C. F. Sun, C. L. Hu, and J. G. Mao, PbPt(IO3)6(H2O): A new polar material with two types of stereoactive lonepairs and a very large SHG response, Chem. Commun. (Camb.) 48(35), 4220 (2012)
CrossRef ADS Google scholar
[74]
Y. Yamamura, E. Saito, H. Saitoh, N. Hoshino, and K. Saito, New organic ferroelectrics: Cocrystal of 5; 5′- dimethyl-2; 2′-bipyridine and bromanilic acid, Chem. Lett. 41(1), 119 (2012)
CrossRef ADS Google scholar
[75]
M. Vij, H. K. Sonia, H. K. Verma, M. S. Jayalakshmy, B. Singh, S. Verma, and K. K. Maurya, Nonlinear optical single crystal of L-cystine hydrochloride: Insights into the crystalline perfection, thermal, mechanical and optical properties for device fabrication, Physica B 550, 250 (2018)
CrossRef ADS Google scholar
[76]
S. Sonia, N. Vijayan, M. Vij, P. Kumar, B. Singh, S. Das, R. Rajnikant, and H. Soumya, Assessment of the imperative features of an L-arginine 4-nitrophenolate 4- nitrophenol dihydrate single crystal for nonlinear optical applications., Mater. Chem. Front. 1(6), 1107 (2017)
CrossRef ADS Google scholar
[77]
V. Duraikkan, S. A. Bahadur, N. Nallamuthu, S. Athimoolam, and A. Manikandan, Investigation of phase transition in some ferroelectrics calcium and zinc doped diammonium dibromodichlorinate, J. Inorg. Organomet. Polym. 27(1), 363 (2017)
CrossRef ADS Google scholar
[78]
N. M. Khusayfan, Ferroelectric properties of Ce doped hydroxyapatite nanoceramics, J. Alloys Compd. 685, 350 (2016)
CrossRef ADS Google scholar
[79]
R. AL-Wafi, Ferroelectric properties of Sr doped hydroxyapatite bioceramics for biotechnological applications, J. Alloys Compd. 689, 169 (2016)
CrossRef ADS Google scholar
[80]
A. A. Hendi, Hydroxyapatite based nanocomposite ceramics, J. Alloys Compd. 712, 147 (2017)
CrossRef ADS Google scholar
[81]
R. V. K. Mangalam, P. Mandal, E. Suard, and A. Sundaresan, Ferroelectricity in ordered perovskite BaBi3+0.5(Bi5+0.2Nb5+0.3)O3with Bi3+:6s2 lone pair at the B-site, Chem. Mater. 19(17), 4114 (2007)
CrossRef ADS Google scholar
[82]
A. M. Kusainova, P. Lightfoot, W. Zhou, S. Y. Stefanovich, A. V. Mosunov, and V. A. Dolgikh, Ferroelectric properties and crystal structure of the layered intergrowth phase Bi3Pb2Nb2O11Cl, Chem. Mater. 13(12), 4731 (2001)
CrossRef ADS Google scholar
[83]
C. Jin, Ferroelectric behavior of nonlinear optical material MnTeMoO6, Optik (Stuttg.) 130, 1021 (2017)
CrossRef ADS Google scholar
[84]
Z. Zhong, W. Ding, W. Hou, Y. Chen, X. Chen, Y. Zhu, and N. Min, Preparation, characterization, and ferroelectric properties of the alkylamine-intercalated layered perovskite-type oxides (CnH2n+1NH3–Sr2Nb3O10, n= 1–6), Chem. Mater. 13(2), 538 (2001)
CrossRef ADS Google scholar
[85]
V. Isaza-Zapata, A. Arias, C. Maya, W. Martínez, A. Agudelo, B. Álvarez, A. Gómez, and J. L. Izquierdo, Ferroelectric response of Na0.9Li0.1NbO3 at room temperature, J. Phys. Conf. Ser. 850, 012009 (2017)
CrossRef ADS Google scholar
[86]
O. Khamman, J. Jainumpone, A. Watcharapasorn, and S. Ananta, Fabrication, phase formation and microstructure of Ni4Nb2O9 ceramics fabricated by using the twostage sintering technique, J. Korean Phys. Soc. 69(3), 365 (2016)
CrossRef ADS Google scholar
[87]
R. N. P. Kumar, R. N. P. Choudhary, and B. P. Singh, Structural, dielectric and electrical properties of Te modified barium stannates using impedance analysis, J. Mater. Sci. 42(19), 8306 (2007)
CrossRef ADS Google scholar
[88]
P. R. Das, R. N. P. Choudhary, and B. K. Samantray, Diffuse ferroelectric phase transition in Na2Pb2Sm2W2Ti4 Nb4O30 ceramics, Mater. Chem. Phys. 101(1), 228 (2007)
CrossRef ADS Google scholar
[89]
P. R. Das, B. N. Parida, R. Padhee, and R. N. P. Choudhary, Structural and dielectric properties of Na2Pb2Nd2W2Ti4V4O30 ferroelectric ceramics, Indian J. Phys. 90(2), 155 (2016)
CrossRef ADS Google scholar
[90]
X. M. Chen, Y. T. Lu, D. Z. Jin, and X. Q. Liu, Dielectric and ferroelectric characterization of Na(Ta, Nb)O3 solid solution ceramics, J. Electroceram. 15(1), 21 (2005)
CrossRef ADS Google scholar
[91]
Y.-D. Hou, Y. Shi, H.-Y. Ge, M.-K. Zhu, and H. Yan, Comparative studies of ferroelectric behavior in rutile type FeTiTaO6 and AlTiTaO6, Mater. Res. Bull. 47(2), 184 (2012)
CrossRef ADS Google scholar
[92]
L. Biswal, P. R. Das, B. Behera, and R. N. P. Choudhury, Structural, dielectric and conductivity studies of Na2Pb2La2W2Ti4Nb4O30 ferroelectric ceramic, J. Electroceram. 29(3), 204 (2012)
CrossRef ADS Google scholar
[93]
X. Tian, S. Qu, Y. Zhou, B. Xu, and Z. Xu, Effects of Mn-addition on the microstructure and ferroelectric properties of high-temperature CaBi2Nb2O9 ceramics, J. Inorg. Organomet. Polym. 23(4), 877 (2013)
CrossRef ADS Google scholar
[94]
S. J. Patwe, V. Katari, N. P. Salke, S. K. Deshpande, R. Rao, M. K. Gupta, R. Mittal, S. N. Achary, and A. K. Tyag, Structural and electrical properties of layered perovskite type Pr2Ti2O7: Experimental and theoretical investigations, J. Mater. Chem. C 3(17), 4570 (2015)
CrossRef ADS Google scholar
[95]
X. L. Zhu, Y. Bai, X. Q. Liu, and X. M. Chen, Ferroelectric and dielectric properties in Ba5SmFe1.5Nb8.5O30 tungsten bronze ceramics, Adv. Appl. Ceramics 112(7), 412 (2013)
CrossRef ADS Google scholar
[96]
Z. Lei, T. Chen, W. Li, M. Liu, W. Ge, and Y. Lu, Cobalt-substituted seven-layer aurivillius Bi8Fe4Ti3O24 ceramics: Enhanced ferromagnetism and ferroelectricity, Crystals (Basel) 7(3), 76 (2017)
CrossRef ADS Google scholar
[97]
P. R. Das, L. Biswal, B. Behera, and R. N. P. Choudhary, Structural and electrical properties of Na2Pb2Eu2W2Ti4X4O30 (X= Nb, Ta) ferroelectric ceramics, Mater. Res. Bull. 44(6), 1214 (2009)
CrossRef ADS Google scholar
[98]
O. Subohi, G. S. Kumar, M. M. Malik, and R. Kurchania, Synthesis of bismuth titanate with urea as fuel by solution combustion route and its dielectric and ferroelectric properties, Optik (Stuttg.) 125(2), 820 (2014)
CrossRef ADS Google scholar
[99]
P. A. Jha, P. K. Jha, A. K. Jha, and R. K. Dwivedi, Dielectric behavior of (1–x)BaZr0.025Ti0.975O3–(x)BiFeO3 solid solutions, Mater. Res. Bull. 48(1), 101 (2013)
CrossRef ADS Google scholar
[100]
K. Nakagawa, H. Tokoro, and S. Ohkoshi, Observation of ferroelectricity in paramagnetic copper octacyanomolybdate, Inorg. Chem. 47(23), 10810 (2008)
CrossRef ADS Google scholar
[101]
B. Kaur, K. Singh, O. P. Pandey, and S. Thakur, Influence of modifier on dielectric and ferroelectric properties of aluminosilicate glasses, J. Non-Cryst. Solids 465, 26 (2017)
CrossRef ADS Google scholar
[102]
B. W. Li, M. Osada, T. C. Ozawa, and T. Sasaki, Rb-BiNb2O7: A new lead-free high-Tc ferroelectric, Chem. Mater. 24(16), 3111 (2012)
CrossRef ADS Google scholar
[103]
R. Muduli, P. Kumar, R. K. Panda, and S. Panigrahi, Dielectric, ferroelectric and impedance spectroscopic studies of Mn and W modified AgNbO3 ceramics, Mater. Chem. Phys. 180, 422 (2016)
CrossRef ADS Google scholar
[104]
W. Zhang, N. Kumada, Y. Yonesaki, T. Takei, N. Kinomura, T. Hayashi, M. Azuma, and M. Takano, Ferroelectric perovskite-type barium copper niobate: BaCu1/3Nb2/3O3, J. Solid State Chem. 179(12), 4052 (2006)
CrossRef ADS Google scholar
[105]
M. Pastor and K. Biswas, Synthesis and electrical characterization of Ba(Cd1/3Nb2/3)O3 ferroelectric compound, Mater. Chem. Phys. 139(2–3), 634 (2013)
CrossRef ADS Google scholar
[106]
C. Hu, L. Fang, X. Peng, C. Li, B. Wu, and L. Liu, Dielectric and ferroelectric properties of tungsten bronze ferroelectrics in SrO–Pr2O3–TiO2–Nb2O5 system, Mater. Chem. Phys. 121(1–2), 114 (2010)
CrossRef ADS Google scholar
[107]
N. V. Quyet, L. H. Bac, and D. D. Dung, Enhancement of the electrical-field-induced strain in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric ceramics: Role of the phase transition, J. Korean Phys. Soc. 66(8), 1317 (2015)
CrossRef ADS Google scholar
[108]
X. Tian, S. Qu, Y. Zhou, B. Xu, and Z. Xu, Effects of Mn-addition on the microstructure and ferroelectric properties of high-temperature CaBi2Nb2O9 ceramics, J. Inorg. Organomet. Polym. 23(4), 877 (2013)
CrossRef ADS Google scholar
[109]
S. K. Ramasesha, A. K. Singh, and K. B. R. Varma, Effect of pressure on dielectric and ferroelectric properties of bismuth vanadate, Mater. Chem. Phys. 48(2), 136 (1997)
CrossRef ADS Google scholar
[110]
C. A. Diaz-Moreno, Y. Ding, J. Portelles, J. Heiras, A. H. Macias, A. Syeed, A. Paez, C. Li, J. López, and R. Wicker, Optical properties of ferroelectric lanthanum lithium niobite, Ceram. 44, 4727 (2018)
CrossRef ADS Google scholar
[111]
Q. Yin, Z. Sun, S. Shi, J. Yang, C. Tian, and M. Bao, Structure and electrical properties of lead-free piezoelectric ceramics Bi0.5Na0.5TiO3- Ba0.94Sr0.06(Sn0.08Ti0.92)O3, Asian J. Chem. 26(6), 1698 (2014)
CrossRef ADS Google scholar
[112]
S. Somwan, A. Ngamjarurojana, and A. Limpichaipanit, Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi2O3 and CuO codoping, Ceram. Int. 42(9), 10690 (2016)
CrossRef ADS Google scholar
[113]
P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R= Sm, Dy) ceramics, Cent. Eur. J. Phys. 6, 843 (2008)
CrossRef ADS Google scholar
[114]
P. S. Sahoo and A. Panigrahi, Dielectric properties of Ba3Sr2DyTi3V7O30 ceramics, Cent. Eur. J. Phys. 8(4), 639 (2010)
CrossRef ADS Google scholar
[115]
S. K. Barik, R. N. P. Choudhary, and P. K. Mahapatra, Structural and dielectric studies of lead-free ceramics: Na1/2Y1/2TiO3, Cent. Eur. J. Phys. 6(4), 849 (2008)
CrossRef ADS Google scholar
[116]
B. Behera, P. Nayak, and R. N. P. Choudhary, Structural and electrical properties of KCa2Nb5O15 ceramics,Cent. Eur. J. Phys. 6, 289 (2008)
CrossRef ADS Google scholar
[117]
O. Subohi, G. S. Kumar, M. M. Malik, and R. Kurchania, Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique, Mater. Res. Express 2(3), 036302 (2015)
CrossRef ADS Google scholar
[118]
X. Tian, S. Qu, B. Wang, and Z. Xu, Microstructure and electrical properties of ultra high temperature (1–x)CaBi2Nb2O9–xNa0.5Bi2.5Nb2O9 ceramics, Mater. Res. Innov. 19(3), 171 (2015)
CrossRef ADS Google scholar
[119]
C. Huang, W. Wong-Ng, W. F. Liu, X. N. Zhang, Y. Jiang, P. Wu, B. Y. Tong, H. Zhao, and S. Y. Wang, Major improvement of ferroelectric and optical properties in Na-doped Ruddlesden–Popper layered hybrid improper ferroelectric compound, Ca3Ti2O7, J. Alloys Compd. 770, 582 (2019)
CrossRef ADS Google scholar
[120]
N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, and R. N. P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe0.9La0.1)O3, Ceram. Int. 44(17), 21330 (2018)
CrossRef ADS Google scholar
[121]
P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural and electrical characteristics of an aurivillius family compound Bi2LaTiVO9, Cryst. Res. Technol. 53(12), 1800045 (2018)
CrossRef ADS Google scholar
[122]
H. Wattanasarn, S. Sansupan, P. Srinuanlae, A. Namthaisong, S. Phewphong, W. Phontankham, T. Sumphao, J. Kongphimai, W. Chaiphaksa, and J. Kaewkhao, Effect of Fe2O3-dopped on ferroelectric properties of (55–x)SiO2:xFe2O3:1Al2O3:6.3CaO:0.2Sb2O3. 13B2O3:4.5BaO:20Na2O, Mater. Today 5, 13934 (2018)
CrossRef ADS Google scholar
[123]
Y. Qiao, Y. Zhou, S. Wang, L. Yuan, Y. Du, D. Lu, G. Che, and H. Che, Composition dependent magnetic and ferroelectric properties of hydrothermally synthesized GdFe1–xCrxO3 (0.1≤x≤0.9) perovskites, Dalton Trans. 46(18), 5930 (2017)
CrossRef ADS Google scholar
[124]
S. Madolappa, A. V. Anupama, P. W. Jaschin, K. B. R. Varma, and B. Sahoo, Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics, Bull. Mater. Sci. 39(2), 593 (2016)
CrossRef ADS Google scholar
[125]
S. R. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S. D. Kaushik, S. Rath, and A. K. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics, Ceram. Int. 42(10), 12352 (2016)
CrossRef ADS Google scholar
[126]
X. Wang, J. Yu, J. C. Zhang, X. Yan, C. Song, Y. Long, K. Ruan, and X. Li, Structural evolution, magnetization enhancement, and ferroelectric properties of Er3+- doped SmFeO3, Ceram. Int. 43(18), 16903 (2017)
CrossRef ADS Google scholar
[127]
D. Varshney, P. Sharma, S. Satapathy, and P. K. Gupta, Structural, electrical and magnetic properties of Bi0.825Pb0.175FeO3, and Bi0.725La0.1Pb0.175FeO3 multiferroics, Mater. Res. Bull. 49, 345 (2014)
CrossRef ADS Google scholar
[128]
Y. Han, W. Mao, C. Quan, X. Wang, J. Yang, T. Yang, X. Li, and W. Huang, Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping, Mater. Sci. Eng. B 188, 26 (2014)
CrossRef ADS Google scholar
[129]
T. Kaur, J. Sharma, S. Kumar, and A. K. Srivastava, Optical and multiferroic properties of Gd-Co substituted barium hexaferrite, Cryst. Res. Technol. 52(9), 1700098 (2017)
CrossRef ADS Google scholar
[130]
P. T. Lin, X. Li, L. Zhang, J. H. Yin, X. W. Cheng, Z. H. Wang, Y. C. Wu, and G. H. Wu, La-doped BiFeO3. Synthesis and multiferroic property study, Chin. Phys. B 23(4), 047701 (2014)
CrossRef ADS Google scholar
[131]
B. Chatterjee, H. Kevin, G. D. Dwivedi, H. D. Yang, S. Chatterjee, and A. K. Ghosh, Enhancement of ferromagnetic and ferroelectric properties in Co-doped BiFeO3, Asian J. Chem. 23(12), 5563 (2011)
[132]
L. Yi, Coexistence of magnetic and ferroelectric properties in Y0.1Co1.9MnO4, Chin. Phys. B 19(7), 077201 (2010)
CrossRef ADS Google scholar
[133]
N. Raju, S. S. Kumar Reddy, J. Ramesh, C. G. Reddy, P. Y. Reddy, K. R. Reddy, V. G. Sathe, and V. R. Reddy, Magnetic, ferroelectric, and spin phonon coupling studies of Sr3Co2Fe24O41 multiferroic Z-type hexaferrite, J. Appl. Phys. 120(5), 054103 (2016)
CrossRef ADS Google scholar
[134]
Z. M. Tian, S. L. Yuan, X. L. Wang, X. F. Zheng, S. Y. Yin, C. H. Wang, and L. Liu, Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics, J. Appl. Phys. 106(10), 103912 (2009)
CrossRef ADS Google scholar
[135]
Z. M. Tian, Y. Qiu, S. L. Yuan, M. S. Wu, S. X. Huo, and H. N. Duan, Enhanced multiferroic properties in Tidoped Bi2Fe4O9 ceramics, J. Appl. Phys. 108(6), 064110 (2010)
CrossRef ADS Google scholar
[136]
M. Naveed-Ul-Haq, V. V. Shvartsman, G. Constantinescu, H. Trivedi, S. Salamon, J. Landers, H. Wende, and D. C. Lupascu, Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoelectric effect in BCZT–CFO multiferroic composites, J. Mater. Sci. 52(23), 13402 (2017)
CrossRef ADS Google scholar
[137]
J. S. Kim, C. I. Cheon, W.-S. Oh, and P. W. Jang, Crystal structure and multiferroic properties of the BiFeO3– PrFeO3–DyFeO3–BaTiO3 system, phys. stat. sol. (b) 241(7), 1629 (2004)
CrossRef ADS Google scholar
[138]
M. Muneeswaran, R. Dhanalakshmi, and N. V. Giridharan, Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3, J. Mater. Sci. Mater. Electron. 26(6), 3827 (2015)
CrossRef ADS Google scholar
[139]
Y. Qiu, Z. J. Zou, R. R. Sang, H. Wang, D. Xue, Z. M. Tian, G. S. Gong, and S. L. Yuan, Enhanced magnetic and ferroelectric properties in Cr doped Bi2Fe4O9 ceramics, J. Mater. Sci. Mater. Electron. 26(3), 1732 (2015)
CrossRef ADS Google scholar
[140]
Y. Ma, Y. J. Wu, Y. Q. Lin, and X. M. Chen, Microstructures and multiferroic properties of YFe1–xMnxO3 ceramics prepared by spark plasma sintering, J. Mater. Sci. Mater. Electron. 21(8), 838 (2010)
CrossRef ADS Google scholar
[141]
S. Samantaray and B. K. Roul, Dielectric and magnetic properties of DyMnO3 ceramics, J. Mater. Sci. Mater. Electron. 24(9), 3387 (2013)
CrossRef ADS Google scholar
[142]
J. A. Moreira, A. Almeida, W. S. Ferreira, M. R. Chaves, J. B. Oliveira, J. M. Machado da Silva, M. A. Sá, S. M. F. Vilela, and P. B. Tavares, Ferroelectricity in antiferromagnetic phases of Eu1–xYxMnO3, Solid State Commun. 151(5), 368 (2011)
CrossRef ADS Google scholar
[143]
S. Huang, L. R. Shi, Z. M. Tian, S. L. Yuan, C. M. Zhu, G. S. Gong, and Y. Qiu, Effect of Al3+ substitution on the structural, magnetic, and electric properties in multiferroic Bi2Fe4O9 ceramics, J. Solid State Chem. 227, 79 (2015)
CrossRef ADS Google scholar
[144]
A. Mitra, A. S. Mahapatra, A. Mallick, A. Shaw, M. Ghosh, and P. K. Chakrabarti, Simultaneous enhancement of magnetic and ferroelectric properties of LaFeO3 by co-doping with Dy3+ and Ti4+, J. Alloys Compd. 726, 1195 (2017)
CrossRef ADS Google scholar
[145]
P. P. Rout, S. K. Pradhan, S. K. Das, S. Samantaray, and B. K. Roul, Enhancement of magnetic and ferroelectric behaviour in (Ca, Co) co-doped HoMnO3 multiferroics, J. Magn. Magn. Mater. 345, 106 (2013)
CrossRef ADS Google scholar
[146]
Y. Tian, F. Xue, Q. Fu, D. Zhou, Y. Hu, L. Zhou, Z. Zheng, and Z. Xin, Impedance spectroscopy and ferromagnetic properties of Bi0.8Gd0.2FeO3 multiferroics, J. Magn. Magn. Mater. 435, 154 (2017)
CrossRef ADS Google scholar
[147]
B. K. Vashisth, J. S. Bangruwa, A. Beniwal, S. P. Gairola, A. Kumar, N. Singh, and V. Verma, Modified ferroelectric/magnetic and leakage current density properties of Co and Sm co-doped bismuth ferrites, J. Alloys Compd. 698, 699 (2017)
CrossRef ADS Google scholar
[148]
S. K. Das, and B. K. Roul, Room temperature magnetism and ferroelectricity in BaTi0.95–xHf0.05CoxO3 ceramics, J. Magn. Magn. Mater. 363, 77 (2014)
CrossRef ADS Google scholar
[149]
X. Yuan, L. Shi, J. Zhao, S. Zhou, Y. Li, C. Xie, and J. Sr Guo, Sr and Pb co-doping effect on the crystal structure, dielectric and magnetic properties of BiFeO3 multiferroic compounds, J. Alloys Compd. 708, 93 (2017)
CrossRef ADS Google scholar
[150]
K. K. Bharathi, J. A. Chelvane, and G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite, J. Magn. Magn. Mater. 321(22), 3677 (2009)
CrossRef ADS Google scholar
[151]
R. N. Bhowmik and A. K. Sinh, Improvement of room temperature electric polarization and ferrimagnetic properties of Co1.25Fe1.75O4 ferrite by heat treatment, J. Magn. Magn. Mater. 421, 120 (2017)
CrossRef ADS Google scholar
[152]
S. R. Wadgane, S. E. Shirsath, A. S. Gaikwad, S. Satpute, A. B. Kadam, and R. H. Kadam, Ferroand magneto-electric characteristics in YFeO3–Y3Fe5O12 nanocomposites, J. Magn. Magn. Mater. 457, 103 (2017)
CrossRef ADS Google scholar
[153]
J. Roa-Rojas, C. Salazar, D. Llamosa, A. A. León-Vanegas, D. A. L. Téllez, P. Pureur, F. T. Dias, and V. N. Vieira, Magnetoelectric response of new Sr2TiMnO6 manganite-like material, J. Magn. Magn. Mater. 320(14), e104 (2008)
CrossRef ADS Google scholar
[154]
S. S. Yadava, A. Khare, P. Gautam, A. Kumar, and K. D. Mandal, Dielectric, ferroelectric and magnetic study of iron doped hexagonal Ba4YMn3–xO11.5–δ(BYMO) and its dependence on temperature as well as frequency, New J. Chem. 41(11), 4611 (2017)
CrossRef ADS Google scholar
[155]
A. Rathi, H. Borkar, P. K. Rout, A. Gupta, H. K. Singh, A. Kumar, B. Gahtori, R. P. Pant, and G. A. Basheed, Antisite disorder-driven large electric polarization in multiferroic Nd2CoMnO6, J. Phys. D Appl. Phys. 50(46), 465001 (2017)
CrossRef ADS Google scholar
[156]
M. G. Masud, A. Ghosh, J. Sannigrahi, and B. K. Chaudhuri, Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La2NiMnO6, J. Phys.: Condens. Matter 24(29), 295902 (2012)
CrossRef ADS Google scholar
[157]
Z. Wang, R. Gao, X. Deng, G. Chen, W. Cai, and C. Fu, Dielectric and ferroelectric properties of LaFeO3 particles derived from metal organic frameworks precursor, Ceram. Int. 45(2), 1825 (2019)
CrossRef ADS Google scholar
[158]
A. Mitra, A. S. Mahapatra, A. Mallick, A. Shaw, N. Bhakta, and P. K. Chakrabarti, Improved magneto-electric properties of LaFeO3 in La0.8Gd0.2Fe0.97Nb0.03O3, Ceram. Int. 44(4), 4442 (2018)
CrossRef ADS Google scholar
[159]
M. S. Alam, R. Hossain, and M. A. Basith, Enhanced multiferroism in Gd-doped BiMn2O5 ceramics, Ceram. Int. 44(2), 1594 (2018)
CrossRef ADS Google scholar
[160]
K. Praveena, P. Bharathi, H. L. Liu, and K. B. R. Varma, Structural, multiferroic properties and enhanced magnetoelectric coupling in Sm1–xCaxFeO3, Ceram. Int. 42(12), 13572 (2016)
CrossRef ADS Google scholar
[161]
S. R. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S. D. Kaushik, S. Rath, and A. K. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics, Ceram. Int. 42(10), 12352 (2016)
CrossRef ADS Google scholar
[162]
A. Durán, J. M. Jiménez, M. Solórzano, and R. Falconi, Improvement of the ferroelectric properties of Ti-doped YCrO3ceramic, J. Phys. Chem. Solids 123, 228 (2018)
CrossRef ADS Google scholar
[163]
R. Tursun, Y. C. Su, Q. S. Yu, J. Tan, T. Hu, Z. B. Luo, and J. Zhang, Effect of doping on the structural, magnetic, and ferroelectric properties of Ni1–xAxTiO3 (A= Mn, Fe, Co, Cu, Zn; x= 0, 0.05, and 0.1), J. Alloys Compd. 773, 288 (2019)
CrossRef ADS Google scholar
[164]
K. L. Routray, D. Sanyal, and D. Behera, Gamma irradiation induced structural, electrical, magnetic and ferroelectric transformation in bismuth doped nanosized cobalt ferrite for various applications, Mater. Res. Bull. 110, 126 (2019)
CrossRef ADS Google scholar
[165]
A. S. Mahapatra and P. K. Chakrabarti, Enhanced magnetic and ferroelectric properties of La0.9Tb0.1FeO3, Mater. Sci. Eng. 240, 140 (2019)
CrossRef ADS Google scholar
[166]
P. P. Khirade, S. D. Birajdar, A. V. Raut, and K. M. Jadhav, Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol-gel auto combustion: Influence of iron on physical properties, Ceram. Int. 42(10), 12441 (2016)
CrossRef ADS Google scholar
[167]
M. Naveed-Ul-Haq, V. V. Shvartsman, G. Constantinescu, H. Trivedi, S. Salamon, J. Landers, H. Wende, and D. C. Lupascu, Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoelectric effect in BCZT–CFO multiferroic composites, J. Mater. Sci. 52(23), 13402 (2017)
CrossRef ADS Google scholar
[168]
R. Pattanayak, S. Kuila, S. Raut, S. P. Ghosh, S. Dhal, and S. Panigrahi, Observation of grain size effect on multiferroism and magnetoelectric coupling of Na0.5Bi0.5TiO3–BaFe12O19 novel composite system, J. Magn. Magn. Mater. 444, 401 (2017)
CrossRef ADS Google scholar
[169]
R. Rani, J. K. Juneja, S. Singh, K. K. Raina, and C. Prakash, Study of 0.1Ni0.8Zn0.2Fe2O4– 0.9Pb1–3x/2LaxZr0.65Ti0.35O3 magnetoelectric composites, J. Magn. Magn. Mater. 325, 47 (2013)
CrossRef ADS Google scholar
[170]
S. Dipti, S. Singh, J. K. Juneja, K. K. Raina, R. K. Kotnala, and C. Prakash, Study of xCo0.8Ni0.2Fe2O4+(1–x) Pb0.99625La0.0025Zr0.55Ti0.45O3 magnetoelectric composites, J. Magn. Magn. Mater. 407, 279 (2016)
CrossRef ADS Google scholar
[171]
J. H. Peng, M. Hojamberdiev, H. G. Li, D. L. Mao, Y. J. Zhao, P. Liu, J. P. Zhou, and G. Q. Zhu, Electrical, magnetic, and direct and converse magnetoelectric properties of (1–x)Pb(Zr0.52Ti0.48)O3–(x)CoFe2O4 (PZT–CFO) magnetoelectric composites, J. Magn. Magn. Mater. 378, 298 (2015)
CrossRef ADS Google scholar
[172]
S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, and S. Khasa, Improved structural, dielectric and magnetic properties of Ca2+ and Nb5+ co-substituted BiFeO3 multiferroics, J. Alloys Compd. 722, 606 (2017)
CrossRef ADS Google scholar
[173]
A. S. Kumar, C. S. Chitra Lekha, S. Vivek, V. Saravanan, K. Nandakumar, and S. S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite, J. Magn. Magn. Mater. 418, 294 (2016)
CrossRef ADS Google scholar
[174]
N. S. Negi, A. Sharma, J. Shah, and R. K. Kotnala, Investigation on impedance response, magnetic and ferroelectric properties of 0.20(Co1–xZnxFe2–yMnyO4)–0.80(Pb0.70Ca0.30TiO3) magnetoelectric composites, Mater. Chem. Phys. 148(3), 1221 (2014)
CrossRef ADS Google scholar
[175]
M. Kumar, S. Shankar, O. Parkash, and O. P. Thakur, Dielectric and multiferroic properties of 0.75BiFeO3– 0.25BaTiO3 solid solution,J. Mater. Sci. Mater. Electron. 25(2), 888 (2014)
CrossRef ADS Google scholar
[176]
T. Ramesh, V. Rajendar, and S. R. Murthy, CoFe2O4–BaTiO3 multiferroic composites: Role of ferrite and ferroelectric phases on the structural, magneto dielectric properties, J. Mater. Sci. Mater. Electron. 28(16), 11779 (2017)
CrossRef ADS Google scholar
[177]
Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, and J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites, J. Mater. Sci. Mater. Electron. 24(6), 1900 (2013)
CrossRef ADS Google scholar
[178]
Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, and J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites, J. Mater. Sci. Mater. Electron. 24(6), 1900 (2013)
CrossRef ADS Google scholar
[179]
L. K. Pradhan, R. Pandey, R. Kumar, and M. Kar, Lattice strain induced multiferroicity in PZT–CFO particulate composite, J. Appl. Phys. 123(7), 074101 (2018)
CrossRef ADS Google scholar
[180]
R. Sharma, P. Pahuja, and R. P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites, Ceram. Int. 40(7), 9027 (2014)
CrossRef ADS Google scholar
[181]
X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, and S. Buddhudu, A ferroelectric ferromagnetic composite material with significant permeability and permittivity, Adv. Funct. Mater. 14(9), 920 (2004)
CrossRef ADS Google scholar
[182]
A. S. Mahapatra, A. Mitra, A. Mallick, A. Shaw, and P. K. Chakrabarti, Structural, magnetic, dielectric and magneto-dielectric properties of (Ba-TiO3)0.70(Li0.3Zn0.4Fe2.3O4)0.30, Mater. Res. Bull. 102, 226 (2018)
CrossRef ADS Google scholar
[183]
S. K. Mandal, S. Chakraborty, P. Dey, B. Saha, and T. K. Nath, Zn doped NiFe2O4–Pb (Zr0.58Ti0.42)O3 multiferroic nanocomposites: Magnetoelectric coupling, dielectric and electrical transport, J. Alloys Compd. 747, 834 (2018)
CrossRef ADS Google scholar
[184]
R. G. Ganapathi, R. B. Lakshmi, K. C. Arun, K. K. N. Chidambara, K. Samatha, M. K. Sreeramachandra, and P. D. Madhava, Ferroelectric and dielectric properties of BaTi0.9Zr0.1O3 doped with Li0.5Fe2.5O4 ceramics, Physica B 539, 44 (2018)
CrossRef ADS Google scholar
[185]
J. S. Bangruwa, B. K. Vashisth, N. Singh, N. Singh, and V. Verma, A systematic study of structural, magnetic and electric properties of perovskite-spinel composites prepared by sol-gel technique, J. Alloys Compd. 739, 319 (2018)
CrossRef ADS Google scholar
[186]
R. Pandey, L. K. Pradhan, and M. Kar, Structural, magnetic, and electrical properties of (1–x)Bi0.85La0.15FeO3–(x)CoFe2O4 multiferroic composites, J. Phys. Chem. Solids 115, 42 (2018)
CrossRef ADS Google scholar
[187]
H. Mana-ay, J. Anthoniappen, C. S. Tu, R. Sarmiento-Jr, C.-S. Chen, P.-Y. Chen, and F. M. Ruiz, Improved microstructure and ferroelectric properties in B-site Ti4+- substituted (Bi0.86Sm0.14)FeO3 polycrystalline ceramics, Mater. Chem. Phys. 225, 272 (2019)
CrossRef ADS Google scholar
[188]
S. Shankar, M. Kumar, A. K. Ghosh, O. P. Thakur, and M. Jayasimhadri, Anomalous ferroelectricity and strong magnetoelectric coupling in CoFe2O4-ferroelectric composites, J. Alloys Compd. 779, 918 (2019)
CrossRef ADS Google scholar
[189]
A. Ghani, S. Yang, S. S. Rajput, S. Ahmed, A. Murtaza, C. Zhou, Y. Zhang, X. Song, and X. Ren, Enhanced multiferroic properties of lead-free (1–x)GaFeO3–xCo0.5Zn0.5Fe2O4 composities,J. Appl. Phys. 124(15), 154101 (2018)
CrossRef ADS Google scholar
[190]
R. Rani, J. K. Juneja, S. Singh, K. K. Raina, and C. Prakash, Dielectric, ferroelectric, magnetic and magnetoelectric properties of 0.1Ni0.8Zn0.2Fe2O4–0.9Pb1–3x/2SmxZr0.65Ti0.35O3 magnetoelectric composites, Ceram. Int. 39(7), 7845 (2013)
CrossRef ADS Google scholar
[191]
H. F. Zhang, S. W. Or, and H. L. W. Chan, Dielectric and magnetic properties of fine grained ferromagnetic– ferroelectric composites, Mater. Res. Innov. 12(3), 142 (2008)
CrossRef ADS Google scholar
[192]
H. Y. Dai, Z. P. Chen, T. Li, C. M. Wang, Y. Li, and Y. S. Guo, Influence of samarium substitution on structural and multiferroic properties of bismuth ferrite ceramics, Mater. Res. Innov. 17(2), 62 (2013)
CrossRef ADS Google scholar
[193]
R. Xu, S. Hang, F. Wang, Q. Zhang, Z. Li, Z. Wang, R. Gao, W. Cai, and C. Fu, The study of microstructure, dielectric and multiferroic properties of (1–x)Co0.8Cu0.2Fe2O4–(x)Ba0.6Sr0.4TiO3 composites, J. Electron. Mater. 48(1), 386 (2019)
CrossRef ADS Google scholar
[194]
V. N. Shut, V. M. Laletin, S. R. Syrtsov, V. L. Trublovsky, Yu. V. Medvedeva, K. I. Yanushkevich, M. V. Bushinskii, and T. V. Petlitskaya, Structure, ferroelectric, and magnetoelectric properties of bulk PZT– NiFe1.9Co0.02O4– composites, Phys. Solid State 60(9), 1744 (2018)
CrossRef ADS Google scholar
[195]
A. S. Dzunuzovic, M. M. Vijatovic Petrovic, J. D. Bobic, N. I. Ilic, M. Ivanov, R. Grigalaitis, J. Banys, and B. D. Stojanovic, Magneto-electric properties of xNi0.7Zn0.3Fe2O4–(1–x)BaTiO3 multiferroic composites, Ceram. Int. 44(1), 683 (2018)
CrossRef ADS Google scholar
[196]
M. K. Sharif, M. A. Khan, M. F. Warsi, M. Ramzan, and A. Hussain, Structural and ferroelectric properties of hafnium substituted BiFeO3 multiferroics synthesized via auto combustion technique, Ceram. Int. 44(17), 20648 (2018)
CrossRef ADS Google scholar
[197]
X. Wang, Z. Wang, Q. Hu, C. Zhang, D. Wang, and L. Li, Room temperature multiferroic properties of Fedoped nonstoichiometric SrTiO3 ceramics at both A and B sites, Solid State Commun. 289, 22 (2019)
CrossRef ADS Google scholar
[198]
S. Atiq, M. Faizan, A. H. Khan, A. Mahmood, S. M. Ramay, and S. Naseem, Co-existence of magnetic and electric ferroic orders in La-substituted BiFeO3, Results Phys. 12, 1269 (2019)
CrossRef ADS Google scholar
[199]
D. Ginting, S. C. Yu, T. L. Phan, N. V. Dang, T. D. Thanh, and V. D. Lam, Electron-spin-resonance spectra and ferroelectricity of BaTi1–xFexO3, J. Korean Phys. Soc. 62(12), 2128 (2013)
CrossRef ADS Google scholar
[200]
A. Kumar, K. L. Yadav, S. Kumar, N. Kumar, A. Mishra, N. Kumar, U. Shankar, T. Mehrotra, G. Sharma, R. Kumar, and G. D. Adhikary, Magnetic, ferroelectric, and magnetodielectric properties of BiFeO3 ceramic codoped with Eu and Gd, J. Phys. Chem. Solids 124, 19 (2019)
CrossRef ADS Google scholar
[201]
L. G. Wang, W. J. Kong, X. X. Wang, J. X. Lei, and Y. Y. Liang, Room-temperature multiferroic properties of Ba2+ doped 0.7Bi0.5Na0.5TiO3–0.3NiFe2O4 ceramics, Ceram. Int. 45(1), 1135 (2019)
CrossRef ADS Google scholar
[202]
F. N. Sayed, B. P. Mandal, O. D. Jayakumar, A. Arya, R. M. Kadam, A. Dixit, R. Naik, and A. K. Tyagi, Rare examples of fluoride-based multiferroic materials in Mnsubstituted BaMgF4 systems: Experimental and theoretical studies, Inorg. Chem. 50(22), 11765 (2011)
CrossRef ADS Google scholar
[203]
A. Stroppa, P. Jain, P. Barone, M. Marsman, J. M. Perez-Mato, A. K. Cheetham, H. W. Kroto, and S. Picozzi, Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal–organic framework, Angew. Chem. Int. Ed. 50(26), 5847 (2011)
CrossRef ADS Google scholar
[204]
J. R. Sahu, A. Ghosh, A. Sundaresan, and C. N. R. Rao, Multiferroic properties of ErMnO3, Mater. Res. Bull. 44(11), 2123 (2009)
CrossRef ADS Google scholar
[205]
L. J. Wang, S. M. Feng, J. L. Zhu, R. C. Yu, C. Q. Jin, W. Yu, X. H. Wang, and L. T. Li, Ferroelectricity of multiferroic hexagonal TmMnO3 ceramics synthesized under high pressure, Appl. Phys. Lett. 91(17), 172502 (2007)
CrossRef ADS Google scholar
[206]
J. H. Choi, J. S. Kim, and C. I. Cheon, Effect of process condition on the ferroelectric properties in BiFeO3–(Bi,K)TiO3 ceramics, J. Korean Phys. Soc. 65(3), 382 (2014)
CrossRef ADS Google scholar
[207]
W. Yansen, K. J. Parwanta, D. Hadiyawarman, D. Kim, Y. Gwan, J. Kim, C. Liu, C. U. Jung, and B. W. Lee, Effects of bismuth donor doping on the phase structure and the magnetic and ferroelectric properties of Fedoped BaTiO3, J. Korean Phys. Soc. 63(3), 306 (2013)
CrossRef ADS Google scholar
[208]
P. Jarupoom and P. Jaita, Enhanced magnetic performance of lead-free (Bi0.5Na0.5)TiO3–CoFe2O4 magnetoelectric ceramics, Electron. Mater. Lett. 11(5), 788 (2015)
CrossRef ADS Google scholar
[209]
T. Amjad, I. Sadiq, A. B. Javaid, S. Riaz, S. Naseem, and M. Nadeem, Investigation of structural, electrical, electrical polarization and dielectric properties of CTAB assisted Ni2+ substituted R-type nano-hexaferrites, J. Alloys Compd. 770, 1112 (2019)
CrossRef ADS Google scholar
[210]
C. W. Baek, N. K. Oh, G. Han, W. H. Yoon, J. W. Kim, J. J. Choi, B. D. Han, D. S. Park, K. D. Sung, J. H. Jung, D. Y. Jeong, J. J. Kim, and J. Ryu, Effect of Ba(Cu1/3Nb2/3)O3 content on multiferroic properties in BiFeO3 ceramics, Mater. Sci. Eng. 177(6), 451 (2012)
CrossRef ADS Google scholar
[211]
Z. M. Tian, Y. S. Zhang, S. L. Yuan, M. S. Wu, C. H. Wang, Z. Z. Ma, S. X. Huo, and H. N. Duan, Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3–Bi0.5Na0.5TiO3 solid solutions, Mater. Sci. Eng. 177(1), 74 (2012)
CrossRef ADS Google scholar
[212]
C. S. Devi, M. B. Suresh, G. S. Kumar, and G. Prasad, Microstructural and high temperature dielectric, ferroelectric and complex impedance spectroscopic properties of BiFeO3 modified NBT-BT lead free ferroelectric ceramics, Mater. Sci. Eng. 228, 38 (2018)
CrossRef ADS Google scholar
[213]
J. Singh, A. Agarwal, S. Sanghi, T. Bhasin, M. Yadav, U. Bhakar, and O. Singh, Effect of Ba and Ho codoping on crystal structure, phase transformation, magnetic properties and dielectric properties of BiFeO3, Curr. Appl. Phys. 19(3), 321 (2019)
CrossRef ADS Google scholar
[214]
J. S. Hwang, Y. J. Yoo, Y. P. Lee, J. H. Kang, K. H. Lee, B. W. Lee, and S. Y. Park, Reinforced magnetic properties of Ni-doped BiFeO3 ceramic, J. Korean Phys. Soc. 69(3), 282 (2016)
CrossRef ADS Google scholar
[215]
D. L. Golić, A. Radojković, J. Ćirković, A. Dapčević, D. Pajić, N. Tasić, S. M. Savić, M. Počuča-Nešić, S. Marković, G. Branković, Z. M. Stanojević, and Z. Branković, Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods,J. Eur. Ceram. Soc. 36(7), 1623 (2016)
CrossRef ADS Google scholar
[216]
H. Paik, H.-C. Kim, K. No, Y.-I. Kim, D. P. Cann, and J. Hong, Structural and physical properties of room temperature stable multiferroic properties of single-phase (Bi0.9La0.1)FeO3–Pb(Fe0.5Nb0.5)O3 solid solution systems, . Appl. Phys. 105, 07D919 (2009)
CrossRef ADS Google scholar
[217]
A. Kumar, P. Sharma, and D. Varshney, Structural and ferroic properties of La, Nd, and Dy doped BiFeO3 ceramics, J. Ceram. 2015, 869071 (2015)
CrossRef ADS Google scholar
[218]
A. Kumar, P. Sharma, W. Yang, J. Shen, D. Varshney, and Q. Li, Effect of La and Ni substitution on structure, dielectric and ferroelectric properties of BiFeO3 ceramics, Ceram. Int. 42(13), 14805 (2016)
CrossRef ADS Google scholar
[219]
R. D. Liu, L. H. He, L. Q. Yan, Z. C. Wang, Y. Sun, Y. T. Liu, D. F. Chen, S. Zhang, Y. G. Zhao, and F. W. Wang, Al-doping-induced magnetocapacitance in the multiferroic AgCrS2, Chin. Phys. B 24(12), 127507 (2015)
CrossRef ADS Google scholar
[220]
A. Gautam and V. S. Rangra, Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite, Cryst. Res. Technol. 45(9), 953 (2010)
CrossRef ADS Google scholar
[221]
A. Beniwal, J. S. Bangruwa, B. Vasisth, S. P. Gairola, and V. Verma, Modification in structural, electrical and magnetic properties of Pr doped bismuth ferrites, Inter. J. Engn. Res. Technol. 5(03), 56 (2016)
CrossRef ADS Google scholar
[222]
Y. Ma and X. M. Chen, Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics, J. Appl. Phys. 105(5), 054107 (2009)
CrossRef ADS Google scholar
[223]
Z. Z. Ma, Z. M. Tian, J. Q. Li, C. H. Wang, S. X. Huo, H. N. Duan, and S. L. Yuan, Enhanced polarization and magnetization in multiferroic (1–x)BiFeO3–xSrTiO3 solid solution, Solid State Sci. 13(12), 2196 (2011)
CrossRef ADS Google scholar
[224]
A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3,J. Appl. Phys. 97(9), 093903 (2005)
CrossRef ADS Google scholar
[225]
J. Wu, S. Mao, Z. G. Ye, Z. Xie, and L. Zheng, Roomtemperature ferromagnetic/ferroelectric BiFeO3 synthesized by a self-catalyzed fast reaction process, J. Mater. Chem. 20(31), 6512 (2010)
CrossRef ADS Google scholar
[226]
M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic, Appl. Phys. Lett. 76(19), 2764 (2000)
CrossRef ADS Google scholar
[227]
Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phas, sintering, Appl. Phys. Lett. 84(10), 1731 (2004)
CrossRef ADS Google scholar
[228]
P. N. Francis, S. Dhanuskodi, M. S. Jayalakshmy, M. Muneeswaran, J. Philip, and N. V. Giridharan, Optical limiting and magnetoelectric coupling in multiferroic BiFeO3 nanoparticles, Mater. Chem. Phys. 216, 93 (2018)
CrossRef ADS Google scholar
[229]
J. Xu, D. Xie, C. Yin, T. Feng, X. Zhang, G. Li, H. Zhao, Y. Zhao, S. Ma, T. L. Ren, Y. Guan, X. Gao, and Y. Zhao, Enhanced dielectric and multiferroic properties of single-phase Y and Zr co-doped BiFeO3 ceramics, J. Appl. Phys. 114(15), 154103 (2013)
CrossRef ADS Google scholar
[230]
S. Zhang, W. Luo, L. Wang, D. Wang, and Y. Ma, Simultaneously improved magnetization and polarization in BiFeO3 based multiferroic composites, J. Appl. Phys. 107(5), 054110 (2010)
CrossRef ADS Google scholar
[231]
S. Chandel, P. Thakur, S. S. Thakur, A. Sharma, J. H. Hsu, M. Tomar, V. Gupta, and A. Thakur, Investigation of excess and deficiency of iron in BiFeO3, Mater. Chem. Phys. 204, 207 (2018)
CrossRef ADS Google scholar
[232]
Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, and Y. Wang, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.05–xDyxFeO3 ceramics, J. Mater. Sci. Mater. Electron. 22(4), 323 (2011)
CrossRef ADS Google scholar
[233]
J. Xu, G. Ye, M. Zeng, Y. Deng, X. Chang, J. Sun, and Q. Wang, Enhanced multiferroic properties of Nd and Co co-doped BiFeO3 ceramics, J. Mater. Sci. Mater. Electron. 26(9), 6907 (2015)
CrossRef ADS Google scholar
[234]
Q. Yao, X. Xu, S. Peng, Y. Zhu, Z. Wang, Y. Ma, X. Wang, W. Mao, and X. Li, Structural, optical and multiferroic properties of Eu, Ba co-doped BiFeO3, J. Mater. Sci. Mater. Electron. 28(1), 463 (2017)
CrossRef ADS Google scholar
[235]
A. S. Prima, I. B. Shameem Banu, and Z. Mohammed, Effect of novel (Gd, Cu) substitution on the electrical properties and magnetoelectric coupling of bismuth ferrite ceramics,J. Mater. Sci. Mater. Electron. 28(12), 8467 (2017)
CrossRef ADS Google scholar
[236]
M. Kumar, S. Shankar, O. P. Thakur, and A. K. Ghosh, Studies on magnetoelectric coupling and magnetic properties of (1–x)BiFeO3–xBaTiO3 solid solutions, J. Mater. Sci. Mater. Electron. 26(3), 1427 (2015)
CrossRef ADS Google scholar
[237]
M. Banerjee, A. Mukherjee, A. Banerjee, D. Das, and S. Basu, Enhancement of multiferroic properties and unusual magnetic phase transition in Eu doped bismuth ferrite nanoparticles, New J. Chem. 41(19), 10985 (2017)
CrossRef ADS Google scholar
[238]
S. K. Satpathy, S. Sen, and B. Behera, Dielectric, electrical and magnetic properties of La doped BiFeO3– PbZrO3 composites, J. Mater. Sci. Mater. Electron. 28(12), 9102 (2017)
CrossRef ADS Google scholar
[239]
R. R. Raut, P. H. Salame, J. T. Kolte, C. S. Ulhe, and P. Goplan, Giant dielectric response and magnetoelectric behavior of 95BiFeO3–5BaTiO3 (95BFO–5BT) ceramics, J. Mater. Sci. Mater. Electron. 27(1), 730 (2016)
CrossRef ADS Google scholar
[240]
K. Sen, K. Singh, A. Gautam, and M. Singh, Dispersion studies of La substitution on dielectric and ferroelectric properties of multiferroic BiFeO3 ceramic, Ceram. Int. 38(1), 243 (2012)
CrossRef ADS Google scholar
[241]
D. S. García-Zaleta, A. M. Torres-Huerta, M. A. Domínguez-Crespo, J. A. Matutes-Aquino, A. M. González, and M. E. Villafuerte-Castrejón, Solid solutions of La-doped BiFeO3 obtained by the Pechini method with improvement in their properties, Ceram. Int. 40(7), 9225 (2014)
CrossRef ADS Google scholar
[242]
H. Y. Dai, J. Chen, T. Li, D. W. Liu, R. Z. Xue, H. W. Xiang, and Z. P. Chen, Effect of BaTiO3 doping on the structural, electrical and magnetic properties of BiFeO3 ceramics, J. Mater. Sci. Mater. Electron. 26(6), 3717 (2015)
CrossRef ADS Google scholar
[243]
I. B. Shameem Banu and S. D. Lakshmi, Simultaneous enhancement of room temperature multiferroic properties of BiFeO3 by Nd doping at Bi site and Co doping at Fe site, J. Mater. Sci. Mater. Electron. 28(21), 16044 (2017)
CrossRef ADS Google scholar
[244]
W. Zheng, L. Zhang, Y. Lin, Z. Shi, F. Cao, G. Yuan, and J. Yu, Ferroic phase transitions and switching properties of modified BiFeO3–SrTiO3 multiferroic perovskites, J. Mater. Sci. Mater. Electron. 27(11), 12067 (2016)
CrossRef ADS Google scholar
[245]
T. Murtaza, J. Ali, M. S. Khan, and K. Asokan, Structural, electrical and magnetic properties of multiferroic BiFeO3–SrTiO3 composites, J. Mater. Sci. Mater. Electron. 29(3), 2110 (2018)
CrossRef ADS Google scholar
[246]
M. Sahni, N. Kumar, M. Kumar, and S. Singh, Effect of Sr substitution on structural, dielectric, magnetic and magnetoelectric properties of rapid liquid sintered BiFe0.8Ti0.2O3 ceramics, J. Mater. Sci. Mater. Electron. 25(11), 4743 (2014)
CrossRef ADS Google scholar
[247]
R. Gupta, S. Verma, V. Singh, and K. K. Bamzai, Preparation, structural, electrical, and ferroelectric properties of lead niobate–lead zirconate–lead titanate ternary system, J. Ceram. 2015, 835150 (2015)
CrossRef ADS Google scholar
[248]
H. Y. Dai, L. T. Gu, X. Y. Xie, T. Li, Z. P. Chen, and Z. J. Li, The structure, defects, electrical and magnetic properties of BiFe1–xZrxO3 multiferroic ceramics, J. Mater. Sci. Mater. Electron. 29(3), 2275 (2018)
CrossRef ADS Google scholar
[249]
B. Dhanalakshmi, K. Pratap, B. P. Rao, and P. S. V. Subba Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics, J. Alloys Compd. 676, 193 (2016)
CrossRef ADS Google scholar
[250]
R. Mazumder and A. Sen, Effect of Pb-doping on dielectric properties of BiFeO3 ceramics, J. Alloys Compd. 475(1–2), 577 (2009)
CrossRef ADS Google scholar
[251]
G. L. Song, Y. C. Song, J. Su, X. H. Song, N. Zhang, T. X. Wang, and F. G. Chang, Crystal structure refinement, ferroelectric and ferromagnetic properties of Ho3+ modified BiFeO3 multiferroic material, J. Alloys Compd. 696, 503 (2017)
CrossRef ADS Google scholar
[252]
P. Saxena, A. Kumar, P. Sharma, and D. Varshney, Improved dielectric and ferroelectric properties of dualsite substituted rhombohedral structured BiFeO3 multiferroics, J. Alloys Compd. 682, 418 (2016)
CrossRef ADS Google scholar
[253]
H. Deng, M. Zhang, Z. Hu, Q. Xie, Q. Zhong, J. Wei, and H. Yan, Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics, J. Alloys Compd. 582, 273 (2014)
CrossRef ADS Google scholar
[254]
K. S. Kumar, P. Aswini, and C. Venkateswaran, Effect of Tb–Mn substitution on the magnetic and electrical properties of BiFeO3 ceramics, J. Magn. Magn. Mater. 364, 60 (2014)
CrossRef ADS Google scholar
[255]
P. Sharma and V. Verma, Structural, magnetic and electrical properties of La and Mn co-substituted BFO samples prepared by the sol–gel technique, J. Magn. Magn. Mater. 374, 18 (2015)
CrossRef ADS Google scholar
[256]
W. S. Kim, Y. K. Jun, K. H. Kim, and S. H. Hong, Enhanced magnetization in Co and Ta-substituted BiFeO3 ceramics, J. Magn. Magn. Mater. 321(19), 3262 (2009)
CrossRef ADS Google scholar
[257]
A. Anju, A. Agarwal, P. Aghamkar, and B. Lal, Structural and multiferroic properties of barium substituted bismuth ferrite nanocrystallites prepared by sol–gel method, J. Magn. Magn. Mater. 426, 800 (2017)
CrossRef ADS Google scholar
[258]
Y. A. Chaudhari, A. Singh, C. M. Mahajan, P. P. Jagtap, E. M. Abuassaj, R. Chatterjee, and S. T. Bendre, Multiferroic properties in Zn and Ni co-doped BiFeO3 ceramics by solution combustion method (SCM), J. Magn. Magn. Mater. 347, 153 (2013)
CrossRef ADS Google scholar
[259]
M. Manikandan, K. S. Kumar, N. Aparnadevi, N. P. Shanker, and C. Venkateswaran, Multiferroicity in polar phase LiNbO3 at room temperature, J. Magn. Magn. Mater. 391, 156 (2015)
CrossRef ADS Google scholar
[260]
Y. Chaudhari, C. M. Mahajan, A. Singh, P. Jagtap, R. Chatterjee, and S. Bendre, Multiferroic properties of nanocrystalline BiFe1–xNixO3 (x= 0.0–0.15) perovskite ceramics, J. Magn. Magn. Mater. 395, 329 (2015)
CrossRef ADS Google scholar
[261]
M. M. El-Desoky, M. S. Ayoua, M. M. Mostafa, and M. A. Ahmed, Multiferroic properties of nanostructured barium doped bismuth ferrite, J. Magn. Magn. Mater. 404, 68 (2016)
CrossRef ADS Google scholar
[262]
A. S. Priya, I. B. S. Banu, and S. Anwar, Influence of Dy and Cu doping on the room temperature multiferroic properties of BiFeO3, J. Magn. Magn. Mater. 401, 333 (2016)
CrossRef ADS Google scholar
[263]
S. T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, and B. Sahoo, Investigation on structural, Mössbauer and ferroelectric properties of (1–x)PbFe0.5Nb0.5O3–(x)BiFeO3 solid solution, J. Magn. Magn. Mater. 418, 122 (2016)
CrossRef ADS Google scholar
[264]
A. G. Lone and R. N. Bhowmik, Study of room temperature ferromagnetic and ferroelectric properties in α- Fe1.6Ga0.4O3 alloy, J. Magn. Magn. Mater. 379, 244 (2015)
CrossRef ADS Google scholar
[265]
V. Verma, A. Beniwal, A. Ohlan, and R. Tripathi, Structural, magnetic and ferroelectric properties of Pr doped multi-ferroics bismuth ferrites, J. Magn. Magn. Mater. 394, 385 (2015)
CrossRef ADS Google scholar
[266]
J. Pal, S. Kumar, L. Singh, M. Singh, and A. Singh, Detailed investigation on structural, dielectric, magnetic and magnetodielectric properties of BiFeO3–BaSrTiO3 solid solutions, J. Magn. Magn. Mater. 441, 339 (2017)
CrossRef ADS Google scholar
[267]
M. Banerjee, A. Mukherjee, A. Banerjee, D. Das, and S. Basu, Enhancement of multiferroic properties and unusual magnetic phase transition in Eu doped bismuth ferrite nanoparticles, New J. Chem. 41(19), 10985 (2017)
CrossRef ADS Google scholar
[268]
S. S. Yadava, A. Khare, P. Gautam, A. Kumar, and K. D. Mandal, Dielectric, ferroelectric and magnetic study of iron doped hexagonal Ba4YMn3O11.5–δ(BYMO) and its dependence on temperature as well as frequency, New J. Chem. 41(11), 4611 (2017)
CrossRef ADS Google scholar
[269]
H. Dai, F. Ye, Z. Chen, T. Li, and D. Liu, The effect of ion doping at different sites on the structure, defects and multiferroic properties of BiFeO3 ceramics, J. Alloys Compd. 734, 60 (2018)
CrossRef ADS Google scholar
[270]
A. Anwar, M. A. Basith, and S. Choudhury, From bulk to nano: A comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics, Mater. Res. Bull. 111, 93 (2019)
CrossRef ADS Google scholar
[271]
S. R. Wadgane, S. T. Alone, A. Karim, G. Vats, S. E. Shirsath, and R. H. Kadam, Magnetic field induced polarization and magnetoelectric effect in Na0.5Bi0.5TiO3–Co0.75Zn0.25Cr0.2Fe1.8O4 multiferroic composite, J. Magn. Magn. Mater. 471, 388 (2019)
CrossRef ADS Google scholar
[272]
X. Peng, Y. Pu, Y. Guo, Z. J. Dong, Y. Shi, and L. Zhang, Effect of Y2O3 dopant on dielectric, magnetic, magnetodielectric properties of Bi0.95La0.05Fe0.95Ti0.05O3 ceramics, J. Alloys Compd. 773, 970 (2019)
CrossRef ADS Google scholar
[273]
M. Nadeem, W. Khan, S. Khan, S. Husain, and A. Ansari, Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping, J. Appl. Phys. 124(16), 164105 (2018)
CrossRef ADS Google scholar
[274]
H. Zhao, H. Wang, Z. Cheng, Q. Fu, H. Tao, Z. Ma, T. Jia, H. Kimura, and H. Li, Electric and magnetic properties of Aurivillius-phase compounds: Bi5Ti3XO15 (X= Cu, Mn, Ni, V), Ceram. Int. 44(11), 13226 (2018)
CrossRef ADS Google scholar
[275]
A. Amouri, N. Abdelmoula, and H. Khemakhem, Improved multiferroic properties in (1–x)BiFeO3–(x)BaTi0.95(Yb0.5Nb0.5)0.05O3 system (0≤x≤0.3), J. Magn. Magn. Mater. 417, 302 (2016)
CrossRef ADS Google scholar
[276]
A. K. Yadav, P. Rajput, O. Alshammari, M. Khan, Anita, G. Kumar, S. Kumar, P. M. Shirage, S. Biring, and S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1–xFex)O3, J. Alloys Compd. 701, 619 (2017)
CrossRef ADS Google scholar
[277]
S. Sahoo, P. K. Mahapatra, R. N. P. Choudhary, and P. Alagarsamy, Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba1–xGd)(Ti1–xFex)O3 (0.2≤x≤0.5), Mater. Res. Express 5(1), 016101 (2018)
CrossRef ADS Google scholar
[278]
G. H. Jaffari, M. Aftab, A. Samad, F. Mumtaz, M. S. Awan, and S. I. Shah, Effects of dopant induced defects on structural, multiferroic and optical properties of Bi1–xPbxFeO3 (0≤x≤0.3) ceramics, Mater. Res. Express 5(1), 016103 (2018)
CrossRef ADS Google scholar
[279]
A. Anwar, M. A. Basith, and S. Choudhury, From bulk to nano: A comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics, Mater. Res. Bull. 111, 93 (2019)
CrossRef ADS Google scholar
[280]
P. Uniyal and K. L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1–xGdxFeO3, Mater. Lett. 62(17–18), 2858 (2008)
CrossRef ADS Google scholar
[281]
S. Sharma, A. Mishra, P. Saravanan, O. P. Pandey, and P. Sharma, Effect of Gd-substitution on the ferroelectric and magnetic properties of BiFeO3 processed by high-energy ball milling, J. Magn. Magn. Mater. 418, 188 (2016)
CrossRef ADS Google scholar
[282]
C. Zhang, M. Shang, M. Liu, L. Ge, H. Yuan, and S. Feng, Multiferroicity in SmFeO3 synthesized by hydrothermal method, J. Alloys Compd. 665, 152 (2016)
CrossRef ADS Google scholar
[283]
R. Muduli, R. Pattanayak, S. Raut, P. Sahu, V. Senthil, S. Rath, P. Kumar, S. Panigrahi, and R. K. Panda, Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic, J. Alloys Compd. 664, 715 (2016)
CrossRef ADS Google scholar
[284]
M. Manikandan, A. Muthukumaran, and C. Venkateswaran, Intrinsic magneto-dielectric effect in the diluted magnetic ferroelectric fluoride BaMg1–xMnxF4 (0≤x≤0.07), J. Magn. Magn. Mater. 393, 40 (2015)
CrossRef ADS Google scholar
[285]
C. X. Chen, Y. K. Liu, and R. K. Zheng, Magnetic and ferroelectric properties of SmBi4Fe0.5Co0.5Ti3O15 compounds prepared with different synthesis methods, J. Mater. Sci. Mater. Electron. 28(11), 7562 (2017)
CrossRef ADS Google scholar
[286]
J. D. Bobić, R. M. Katiliute, M. Ivanom, M. M. V. Petrović, N. I. Ilić, A. S. Džunuzović, J. Banys, and B. D. Stojanović, Dielectric, ferroelectric and magnetic properties of La doped Bi5Ti3FeO15 ceramics, J. Mater. Sci. Mater. Electron. 27(3), 2448 (2016)
CrossRef ADS Google scholar
[287]
S. Liu, S. Yan, H. Luo, L. Yao, Z. Hu, S. Huang, and L. Deng, Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics, J. Mater. Sci. 53(2), 1014 (2018)
CrossRef ADS Google scholar
[288]
S. Das, R. C. Sahoo, K. P. Bera, and T. K. Nath, Doping effect on ferromagnetism, ferroelectricity and dielectric constant in sol-gel derived Bi1–xNdxFe1–yCoyO3 nanoceramics, J. Magn. Magn. Mater. 451, 226 (2018)
CrossRef ADS Google scholar
[289]
H. Paik, H. Hwang, K. No, S. Kwon, and D. P. Cann, Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3-Ba(Fe0.5Nb0.5)O3 solid solution ceramics, Appl. Phys. Lett. 90(4), 042908 (2007)
CrossRef ADS Google scholar
[290]
X. Jia, J. Zhang, and J. Wang, Dielectric, ferroelectric and ferromagnetic properties of multiferroic (1–x)Ba0.99Ca0.01Zr0.02Ti0.98O3–xBiFeO3 ceramics, Ferroelctrics Lett. 44(4–6), 113 (2017)
CrossRef ADS Google scholar
[291]
M. A. Jalaja and S. Dutta, Switchable photovoltaic properties of multiferroic KBiFe2O5, Mater. Res. Bull. 88, 9 (2017)
CrossRef ADS Google scholar
[292]
S. Mohanty, A. Kumar, and R. N. P. Choudhary, Studies of structural, dielectric, electrical and ferroelectric characteristics of BiFeO3 and (Bi0.5K0.5)(Fe0.5Ta0.5)O3, J. Mater. Sci. Mater. Electron. 26(12), 9640 (2015)
CrossRef ADS Google scholar
[293]
M. M. Sutar, S. R. Jigajeni, A. N. Tarale, S. B. Kulkarni, and P. B. Joshi, Magnetoelectric and magnetodielectric effect in BST–LSMO ferromagnetic/ferroelectric composites, J. Mater. Sci. Mater. Electron. 25(9), 3771 (2014)
CrossRef ADS Google scholar
[294]
W. Cai, C. Fu, G. Chen, R. Gao, and X. Deng, Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3–(1–x)BiFeO3 solid solution ceramics, J. Mater. Sci. Mater. Electron. 26(1), 322 (2015)
CrossRef ADS Google scholar
[295]
K. Praveena and K. B. R. Varma, Ferroelectric and optical properties of Ba5Li2Ti2Nb8O30 ceramics potential for memory applications, J. Mater. Sci. Mater. Electron. 25(7), 3103 (2014)
CrossRef ADS Google scholar
[296]
R. Castañeda, G. Rojas-George, J. Silva, M. E. Fuentes-Montero, J. A. Matutes-Aquino, A. Reyes-Rojas, and L. Fuentes, Effects of Ni doping on ferroelectric and ferromagnetic properties of Bi0.75Ba0.25FeO3, Ceram. Int. 39(7), 8527 (2013)
CrossRef ADS Google scholar
[297]
K. L. Manjusha and K. L. Yadav, Enhanced dielectric, ferroelectric and magnetodielectric properties in three phase 0.45Bi0.9La0.1FeO3–0.55Co0.5Ni0.5Fe2O4–BaTiO3 composite, J. Mater. Sci. Mater. Electron. 27(6), 6347 (2016)
CrossRef ADS Google scholar
[298]
Y. Guo, P. Xiao, L. Luo, N. Jiang, F. Lei, Q. Zheng, and D. Lin, Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics, J. Mater. Sci. Mater. Electron. 25(9), 3753 (2014)
CrossRef ADS Google scholar
[299]
S. Dash, R. Padhee, P. R. Das, and R. N. P. Choudhary, Enhancement of dielectric and electrical properties of NaNbO3-modified BiFeO3, J. Mater. Sci. Mater. Electron. 24(9), 3315 (2013)
CrossRef ADS Google scholar
[300]
S. Godara and B. Kumar, Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 Nanoparticles, Ceram. Int. 41(5), 6912 (2015)
CrossRef ADS Google scholar
[301]
T. Ramesh, V. Rajendar, and S. R. Murthy, CoFe2O4– BaTiO3 multiferroic composites: Role of ferrite and ferroelectric phases on the structural, magneto dielectric properties, J. Mater. Sci. Mater. Electron. 28(16), 11779 (2017)
CrossRef ADS Google scholar
[302]
S. Ahmed and S. K. Barik, Preparation of novel (Sb1/2Na1/2)(Fe2/3W1/3)O3 compound by solid state reaction technique and their multiferroic property, J. Mater. Sci. Mater. Electron. 27(10), 10294 (2016)
CrossRef ADS Google scholar
[303]
V. Anbarasu, M. Dhilip, K. Saravana Kumar, and K. Sivakumar, Effect of trivalent transition metal ion substitution in multifunctional properties of Dy2O3 system, J. Mater. Sci. Mater. Electron. 28(12), 8976 (2017)
CrossRef ADS Google scholar
[304]
S. Nath, S. K. Barik, and R. N. P. Choudhary, Dielectric relaxation and magnetic characteristics of (La1/2Li1/2)(Fe1/2V1/2)O3 multiferroics, J. Mater. Sci. Mater. Electron. 26(10), 8199 (2015)
CrossRef ADS Google scholar
[305]
S. Nath, S. K. Barik, and R. N. P. Choudhary, Electrical and ferroelectric characteristics of (LaLi)1/2(Fe2/3Mo1/3)O3, J. Mater. Sci. Mater. Electron. 27(8), 8717 (2016)
CrossRef ADS Google scholar
[306]
B. Want, M. D. Rather, and R. Samad, Dielectric, ferroelectric and magnetic behavior of BaTiO3–BaFe12O19 composite, J. Mater. Sci. Mater. Electron. 27(6), 5860 (2016)
CrossRef ADS Google scholar
[307]
M. Wang, and G. Tan, Multiferroic properties of Pb2Fe2O5 ceramics, Mater. Res. Bull. 46(3), 438 (2011)
CrossRef ADS Google scholar
[308]
V. G. Kostishyn, L. V. Panina, L. V. Kozitov, A. V. Timofeev, A. K. Zyuzin, and A. N. Kovalev, Synthesis of Hexagonal BaFe12O19 and SrFe12O19 Ferrite Ceramics with Multiferroic Properties, Inorg. Mater.: Appl. Res. 6(5), 461 (2015)
CrossRef ADS Google scholar
[309]
V. G. Kostishyn, L. V. Panina, A. V. Timofeev, L. V. Kozhitov, A. N. Kovalev, and A. K. Zyuzin, Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19, J. Magn. Magn. Mater. 400, 327 (2016)
CrossRef ADS Google scholar
[310]
Z. Guo, L. Pan, C. Bi, H. Qiu, X. Zhao, L. Yang, and M. Y. Rafique, Structural and multiferroic properties of Fe-doped Ba0.5Sr0.5TiO3 solids, J. Magn. Magn. Mater. 325, 24 (2013)
CrossRef ADS Google scholar
[311]
O. Subohi, C. R. Bowen, M. M. Malik, and R. Kurchania, Dielectric spectroscopy and ferroelectric properties of magnesium modified bismuth titanate ceramics, J. Alloys Compd. 688, 27 (2016)
CrossRef ADS Google scholar
[312]
P. Gupta, R. Padhee, P. K. Mahapatra, R. N. P. Choudhary, and S. Das, Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics, J. Alloys Compd. 731, 1171 (2018)
CrossRef ADS Google scholar
[313]
A. Lavado and M. G. Stachiotti, Fe3+/Nb5+ co-doping effects on the properties of Aurivillius Bi4Ti3O12 ceramics, J. Alloys Compd. 731, 914 (2018)
CrossRef ADS Google scholar
[314]
W. Cai, C. Fu, W. Hu, G. Chen, and X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics, J. Alloys Compd. 554, 64 (2013)
CrossRef ADS Google scholar
[315]
T. Ahmad and I. H. Lone, Citrate precursor synthesis and multifunctional properties of YCrO3 nanoparticles, New J. Chem. 40(4), 3216 (2016)
CrossRef ADS Google scholar
[316]
K. Praveena and K. B. R. Varma, Enhanced electric field tunable magnetic properties of lead-free Na0.5Bi0.5TiO3–MnFe2O4 multiferroic composites, J. Mater. Sci. Mater. Electron. 25(12), 5403 (2014)
CrossRef ADS Google scholar
[317]
V. Anbarasu, A. Manigandan, T. Karthik, and K. Sivakumar, Inducing multiferroic behaviour in the diamagnetic Y2O3 system, J. Mater. Sci. Mater. Electron. 23(6), 1201 (2012)
CrossRef ADS Google scholar
[318]
S. K. Pradhan, S. N. Das, S. Bhuyan, C. Behera, and R. N. P. Choudhary, Structural and electrical properties of lead reduced lanthanum modified BiFeO3–PbTiO3 solid solution, J. Mater. Sci. Mater. Electron. 28(2), 1186 (2017)
CrossRef ADS Google scholar
[319]
K. Mukhopadhyay, A. S. Mahapatra, and P. K. Chakrabarti, Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La1–xZnxFeO3, x= 0.10 and 0.30), J. Magn. Magn. Mater. 329, 133 (2013)
CrossRef ADS Google scholar
[320]
R. Das and K. Mandal, Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3, J. Magn. Magn. Mater. 324(11), 1913 (2012)
CrossRef ADS Google scholar
[321]
A. Jain, A. K. Panwar, and A. K. Jha, Significant enhancement in structural, dielectric, piezoelectric and ferromagnetic properties of Ba0.9Sr0.1Zr0.1Ti0.9O3– CoFe2O4 multiferroic composites, Mater. Res. Bull. 100, 367 (2018)
CrossRef ADS Google scholar
[322]
S. Jindal, S. Devi, K. M. Batoo, G. Kumar, and A. Vasishth, Impact of copper substitution on the structural, ferroelectric and magnetic properties of tungsten bronze ceramics, Physica B 537, 87 (2018)
CrossRef ADS Google scholar
[323]
P. Tirupathi and A. Chandra, Observation of bi-relaxor characteristic in multiferroic 0.70Bi0.90Ca0.10FeO3–0.30PbTiO3 ceramics, J. Phys. D Appl. Phys. 46(37), 375304 (2013)
CrossRef ADS Google scholar
[324]
L. H. Yin, W. H. Song, X. L. Jiao, W. B. Wu, X. B. Zhu, Z. R. Yang, J. M. Dai, R. L. Zhang, and Y. P. Sun, Multiferroic and magnetoelectric properties of Bi1–xBaxFe1–xMnxO3 system, J. Phys. D Appl. Phys. 42(20), 205402 (2009)
CrossRef ADS Google scholar
[325]
G. H. Jaffari, M. Aftab, A. Samad, F. Mumtaz, M. S. Awan, and S. I. Shah, Effects of dopant induced defects on structural, multiferroic and optical properties of Bi1–xPbxFeO3 (0≤x≤0.3) ceramics, Matter. Res. Expr. 5(1), 016103 (2018)
CrossRef ADS Google scholar
[326]
X. Q. Chen, F. J. Yang, W. Q. Cao, D. Y. Wang, and K. Chen, Room-temperature magnetoelectric coupling in Bi4(Ti1Fe2)O12– system, J. Phys. D Appl. Phys. 43(6), 065001 (2010)
CrossRef ADS Google scholar
[327]
X. Chen, C. Wei, J. Xiao, Y. Xue, X. Zeng, F. Yang, P. Li, and Y. He, Room temperature multiferroic properties and magnetocapacitance effect of modified ferroelectric Bi4Ti3O12 ceramic, J. Phys. D Appl. Phys. 46(42), 425001 (2013)
CrossRef ADS Google scholar
[328]
S. K. Patri and R. N. P. Choudhary, Phase transition in Bi8Fe6Ti3O27 multiferroic ceramics, Cent. Eur. J. Phys. 6, 450 (2008)
CrossRef ADS Google scholar
[329]
S. Sahoo, P. K. Mahapatra, R. N. P. Choudhary, and P. Alagarsamy, Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba1–xGd)(Ti1–xFex)O3 (0.2≤x≤0.5), Matter. Res. Expr. 5(1), 016101 (2018)
CrossRef ADS Google scholar
[330]
N. Kumar, A. Shukla, and R. N. P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3–BiFeO3 solid solution, J. Alloys Compd. 747, 895 (2018)
CrossRef ADS Google scholar
[331]
R. Samantaray, R. J. Clark, E. S. Choi, H. Zhou, and N. S. Dalal, M3–x(NH4)xCrO8 (M= Na, K, Rb, Cs): A new family of Cr5+ based magnetic ferroelectrics,J. Am. Chem. Soc. 133(11), 3792 (2011)
CrossRef ADS Google scholar
[332]
R. Samantaray, R. J. Clark, E. S. Choi, and N. S. Dalal, Elucidating the mechanism of multiferroicity in (NH4)3Cr(O2)4 and its tailoring by alkali metal substitution, J. Am. Chem. Soc. 134(38), 15953 (2012)
CrossRef ADS Google scholar
[333]
S. J. Kim, S. H. Han, H. G. Kim, A. Y. Kim, J. J. Kim, and C. J. Cohen, Multiferroic properties of Tidoped BiFeO3 ceramics, J. Korean Phys. Soc. 56(1(2)), 439 (2010)
CrossRef ADS Google scholar
[334]
N. H. Kim, E. J. Yoon, C. I. Cheon, and J. S. Kim, Multiferroic properties of a bismuth layer structured Bi3.25La0.75Ti3O12–(La0.7Sr0.3)MnO3 solid solution at low temperatures, J. Korean Phys. Soc. 56(1(2)), 393 (2010)
CrossRef ADS Google scholar
[335]
S. Liu, S. Yan, H. Luo, L. Yao, Z. Hu, S. Huang, and L. Deng, Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics, J. Mater. Sci. 53(2), 1014 (2018)
CrossRef ADS Google scholar
[336]
Y. J. Wu, S. P. Gu, Y. Q. Lin, Z. J. Hong, X. Q. Liu, and X. M. Chen, Multiferroic ceramics in BaO–Y2O3– Fe2O3–Nb2O5 system, Ceram. Int. 36(8), 2415 (2010)
CrossRef ADS Google scholar
[337]
Y. Ma, X. M. Chen, Y. J. Wu, and Y. Q. Lin, Dielectric relaxation and enhanced multiferroic properties in YMn0.8Fe0.2O3 ceramics prepared by in situ spark plasma sintering, Ceram. Int. 36(2), 727 (2010)
CrossRef ADS Google scholar
[338]
T. Karthik, A. Srinivas, V. Kamaraj, and V. Chandrasekeran, Influence of in-situ magnetic field pressing on the structural and multiferroic behaviour of BiFeO3 ceramics, Ceram. Int. 38(2), 1093 (2012)
CrossRef ADS Google scholar
[339]
K. Sen, K. Singh, A. Gautam, and M. Singh, Dispersion studies of La substitution on dielectric and ferroelectric properties of multiferroic BiFeO3 ceramic, Ceram. Int. 38(1), 243 (2012)
CrossRef ADS Google scholar
[340]
A. Prasatkhetragarn, P. Muangkonkad, P. Aommongkol, P. Jantaratana, N. Vittayakorn, and R. Yimnirun, Investigation on ferromagnetic and ferroelectric properties of (La, K)-doped BiFeO3–BaTiO3 solid solution, Ceram. Int. 39, S249 (2013)
CrossRef ADS Google scholar
[341]
H. Dai, Z. Chen, R. Xue, T. Li, J. Chen, and H. Xiang, Structural and electric properties of polycrystalline Bi1–xErxFeO3 ceramics, Ceram. Int. 39(5), 5373 (2013)
CrossRef ADS Google scholar
[342]
V. Kumar, A. Gaur, N. Sharma, J. Shah, and R. K. Kotnala, High temperature dielectric and magnetic response of Ti and Pr doped BiFeO3 ceramics, Ceram. Int. 39(7), 8113 (2013)
CrossRef ADS Google scholar
[343]
H. Dai, R. Xue, Z. Chen, T. Li, J. Chen, and H. Xiang, Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics, Ceram. Int. 40(10), 15617 (2014)
CrossRef ADS Google scholar
[344]
H. Bouzidi, H. Chaker, M. Es-souni, C. Chaker, and H. Khemakhem, Structural, Raman, ferroelectric and magnetic studies of the (1–x)BF–xBCT multiferroic system, J. Alloys Compd. 772, 877 (2019)
CrossRef ADS Google scholar
[345]
X. Chen, J. Xiao, J. Yao, Z. Kang, F. Yang, and X. Zeng, Room temperature magnetoelectric coupling study in multiferroic Bi4NdTi3Fe0.7Ni0.3O15 prepared by a multicalcination procedure, Ceram. Int. 40(5), 6815 (2014)
CrossRef ADS Google scholar
[346]
J. Wei, M. Zhang, H. Deng, S. Chu, M. Du, and H. Yan, Effect of Cr doping on ferroelectric and magnetic properties of Bi0.8Ba0.2FeO3, Ceram. Int. 41(7), 8665 (2015)
CrossRef ADS Google scholar
[347]
G. Zerihun, S. Huang, G. Gong, and S. Yuan, Influence of Eu doping on the magnetoelectric and dielectric properties of BiFeO3–Bi0.5Na0.5TiO3 ceramics, Ceram. Int. 41(5), 6589 (2015)
CrossRef ADS Google scholar
[348]
J. Wei, Y. Liu, X. Bai, C. Li, Y. Liu, Z. Xu, P. Gemeiner, R. Haumont, I. C. Infante, and B. Dkhil, Crystal structure, leakage conduction mechanism evolution and enhanced multiferroic properties in Y-doped BiFeO3 ceramics, Ceram. Int. 42(12), 13395 (2016)
CrossRef ADS Google scholar
[349]
M. Wu, W. Wang, X. Jiao, G. Wei, L. He, S. Han, Y. Liu, and D. Chen, Structural and multiferroic properties of Pr and Ti co-doped BiFeO3 ceramics, Ceram. Int. 42(13), 14675 (2016)
CrossRef ADS Google scholar
[350]
A. Beniwal, J. S. Bangruwa, R. Walia, and V. Verma, A systematic study on multiferroics Bi1–xCexFe1–yMnyO3. Structural, magnetic and electrical properties, Ceram. Int. 42(8), 10373 (2016)
CrossRef ADS Google scholar
[351]
W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X. Li, and W. Huang, Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3, Ceram. Int. 42(11), 12838 (2016)
CrossRef ADS Google scholar
[352]
S. Ahmed and S. Kumar Barik, Enhanced electric and magnetic properties of (BiLi)1/2(Fe2/3W1/3)O3 multiferroic as compared to BiFeO3, Ceram. Int. 42(5), 5659 (2016)
CrossRef ADS Google scholar
[353]
A. S. Mahapatra, K. Mukhopadhyay, M. Ghosh, P. K. Mallick, T. Matsumoto, A. Taguchi, Y. Tanioku, K. Yoshimura, and P. K. Chakrabarti, Enhanced magnetoelectric property and Raman spectroscopy of nanocrystalline AlxGa1–xFeO3 (x= 0.05, 0.10 and 0.20), Ceram. Int. 42(14), 15904 (2016)
CrossRef ADS Google scholar
[354]
Y. Gu, J. Zhao, W. Zhang, H. Zheng, L. Liu, and W. Chen, Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies, Ceram. Int. 43(17), 14666 (2017)
CrossRef ADS Google scholar
[355]
P. Xiong, J. Yang, Y. F. Qin, W. J. Huang, X. W. Tang, L. H. Yin, W. H. Song, J. M. Dai, X. B. Zhu, and Y. P. Sun, Room temperature multiferroicity in Aurivillius compounds Bi6Fe2–xNixTi3O18 (0≤x≤1), Ceram. Int. 43(5), 4405 (2017)
CrossRef ADS Google scholar
[356]
T. Wang, H. Deng, X. Meng, H. Cao, W. Zhou, P. Shen, Y. Zhang, P. Yang, and J. Chu, Tunable polarization and magnetization at room-temperature in narrow bandgap Aurivillius Bi6Fe2–xCox/2Nix/2Ti3O18, Ceram. Int. 43(12), 8792 (2017)
CrossRef ADS Google scholar
[357]
X. Zuo, M. Zhang, E. He, P. Zhang, J. Yang, X. Zhu, and J. Dai, Magnetic, dielectric, and magneto-dielectric properties of Aurivillius Bi7Fe2CrTi3O21 ceramic, Ceram. Int. 44(5), 5319 (2018)
CrossRef ADS Google scholar
[358]
J. D. Bobić, M. Ivanov, N. I. Ilić, A. S. Dzunuzović, M. M. V. Petrović, J. Banys, A. Ribic, Z. Despotovic, and B. D. Stojanovic, PZT-nickel ferrite and PZT-cobalt ferrite comparative study: Structural, dielectric, ferroelectric and magnetic properties of composite ceramics, Ceram. Int. 44(6), 6551 (2018)
CrossRef ADS Google scholar
[359]
S. Chandel, P. Thakur, S. S. Thakur, V. Kanwar, M. Tomar, V. Gupta, and A. Thakur, Effect of non-magnetic Al3+ doping on structural, optical, electrical, dielectric and magnetic properties of BiFeO3 ceramics, Ceram. Int. 44(5), 4711 (2018)
CrossRef ADS Google scholar
[360]
N. Kumar, A. Shukla, N. Kumar, R. N. P. Choudhary, and A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 solid solution, RSC Advances 8(64), 36939 (2018)
CrossRef ADS Google scholar
[361]
W. Hu, Y. Chen, H. Yuan, G. Li, Y. Qiao, Y. Qin, and S. Feng, Structure, magnetic, and ferroelectric properties of Bi1–xGdxFeO3 nanoparticles, J. Phys. Chem. C 115(18), 8869 (2011)
CrossRef ADS Google scholar
[362]
A. Chaudhuri and K. Mandal, Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped bismuth ferrite, J. Magn. Magn. Mater. 353, 57 (2014)
CrossRef ADS Google scholar
[363]
S. V. Vijayasundaram, G. Suresh, R. A. Mondal, and R. Kanagadurai, Substitution-driven enhanced magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd. 658, 726 (2016)
CrossRef ADS Google scholar
[364]
W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, and X. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping, J. Alloys Compd. 784, 117 (2019)
CrossRef ADS Google scholar
[365]
H. Bai, J. Li, Y. Wu, Y. Hong, K. Shi, Q. Meng, Z. Zhou, D. Jia, R. Guo, and A. S. Bhalla, Structural, dielectric, ferroelectric, and ferromagnetic properties of multiferroic ceramics (1–x)Ba(Zr0.2Ti0.8)O3–xBa0.7Ca0.3FeTaO5, Ferroelectrics 534(1), 164 (2018)
CrossRef ADS Google scholar
[366]
S. Dash, R. N. P. Choudhary, and M. N. Goswami, Modification of ferroelectric and resistive properties of (Bi0.5Na0.5)(Nb0.5Fe0.5)O3–PVDF composite, J. Polym. Res. 22(4), 54 (2015)
CrossRef ADS Google scholar
[367]
U. Naresh, R. J. Kumar, and K. C. B. Naidu, Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8–xLaxFe2O4 (x= 0.2–0.6) nanoparticles, Ceram. Int. 45(6), 7515 (2019)
CrossRef ADS Google scholar
[368]
M. Muneeswaran, S. H. Lee, D. H. Kim, B. S. Jung, S. H. Chang, J. W. Jang, B. C. Choi, J. H. Jeong, N. V. Giridharan, and C. Venkateswaran, Structural, vibrational, and enhanced magneto-electric coupling in Hosubstituted BiFeO3, J. Alloys Compd. 750, 276 (2018)
CrossRef ADS Google scholar
[369]
F. Xue, Y. Tian, L. Tang, P. Guo, Z. Luo, and W. Li, Rietveld refinement and multiferroic properties of Gd andTi co-doped BiFeO3, Ferroelectr. Lett. Sect. 45(1–3), 30 (2018)
CrossRef ADS Google scholar
[370]
X. Yuan, L. Shi, J. Zhao, S. Zhou, J. Guo, S. Pan, X. Miao, L. Wu, Tuning ferroelectric, dielectric, and magnetic properties of BiFeO3 Ceramics by Ca and Pb Codoping, phys. stat. sol. (b) 256(3), 1800499 (2019)
CrossRef ADS Google scholar
[371]
M. Hemeda, A. Tawfik, D. E. El Refaey, A. H. El-Sayed, and S. Mohamed, Electric and magnetic properties of [(NCZF)1–x(Na(ac.ac))x] nanocomposite, J. Miner. Mater. Charact. Eng. 7, 559 (2017)
CrossRef ADS Google scholar
[372]
T. Kanai, S. Ohkoshi, A. Nakajima, T. Watanabe, and K. Hashimoto, A ferroelectric ferromagnet composed of (PLZT)x(BiFeO3)1–x solid solution, Adv. Mater. 13(7), 487 (2001)
CrossRef ADS Google scholar
[373]
J. Li, X. K. Lan, X. Q. Song, W. Z. Lu, X. H. Wang, F. Shi, and W. Lei, Crystal structures, dielectric properties and ferroelectricity in stuffed tridymite-type BaAl2–2x(Zn0.5Si0.5)2xO4 solid solutions, Dalton Trans. 48(11), 3625 (2019)
CrossRef ADS Google scholar
[374]
V. Singh, S. Sharma, R. K. Dwivedi, M. Kumar, R. K. Kotnala, N. C. Mehra, and R. P. Tandon, Structural, dielectric, ferroelectric and magnetic properties of Bi0.80A0.20FeO3 (A= Pr, Y) multiferroics, J. Supercond. Nov. Magn. 26(3), 657 (2013)
CrossRef ADS Google scholar
[375]
M. Kumar, K. L. Yadav, and G. D. Varma, Large magnetization and weak polarization in sol–gel derived BiFeO3 ceramics, Mater. Lett. 62(8–9), 1159 (2008)
CrossRef ADS Google scholar
[376]
M. Kumar and K. L. Yadav, Study of room temperature magnetoelectric coupling in Ti substitutedbismuth ferrite system, J. Appl. Phys. 100(7), 074111 (2006)
CrossRef ADS Google scholar
[377]
T. Acharyaa and R. N. P. Choudhary, Inducing ferroelectricity and magneto-electric effect in the iron titanate ilmenite by modifying with bismuth and lead titanate, J. Alloys Compd. 788, 495 (2019)
CrossRef ADS Google scholar
[378]
Z. Li, W. Qi, J. Cao, Y. Li, G. Viola, C. Jia, and H. Yan, Multiferroic properties of single phase Bi3NbTiO9 based textured ceramics, J. Alloys Comp. 788, 701 (2019)
CrossRef ADS Google scholar
[379]
L. Zia, G. H. Jaffari, N. A. Awan, J. U. Rahman, and S. Lee, Electrical response of mixed phase (1– x)BiFeO3–xPbTiO3 solid solution: Role of tetragonal phase and tetragonality, J. Alloys Compd. 786, 98 (2019)
CrossRef ADS Google scholar
[380]
W. Maoa, Q. Yaob, Y. Fanb, Y. Wangb, X. Wanga, Y. Pua, and X. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping, J. Alloys Compd. 784, 117 (2019)
CrossRef ADS Google scholar
[381]
T. Okubo, R. Kawajiri, T. Mitani, T. Shimoda, A mixed-valence coordination polymer featuring twodimensional ferroelectric order: {[CuI4CuII(Et2dtc)2Cl3] [CuII(Et2dtc)2]2(FeCl4)}n(Et2dtc= diethyldithiocarbamate), J. Am. Chem. Soc. 127(50), 17598 (2005)
CrossRef ADS Google scholar
[382]
S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, and K. Hashimoto, Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate, Angew. Chem. Int. Ed. 46(18), 3238 (2007)
CrossRef ADS Google scholar
[383]
P. Bhatt, S. S. Meena, M. D. Mukadam, B. P. Mandal, A. K. Chauhan, and S. M. Yusuf, Synthesis of CoFe Prussian blue analogue/polyvinylidene fluoride nanocomposite material with improved thermal stability and ferroelectric properties, New J. Chem. 42(6), 4567 (2018)
CrossRef ADS Google scholar
[384]
K. I. Shivakumar, K. Swathi, T. C. Das Goudappagouda, A. Kumar, R. D. Makde, K. Vanka, K. S. Narayan, S. S. Babu, and G. J. Sanjayan, Mixed-stack charge transfer crystals of pillar[5]quinone and tetrathiafulvalene exhibiting ferroelectric features, Chemistry 23(51), 12630 (2017)
CrossRef ADS Google scholar
[385]
R. H. Hu, Y. Sui, J. W. Wen, Z. G. Luo, and L. J. Zhong, A new type of organic ferroelectric N-dehydroabietyl-4-bromobenzamide, Asian J. Chem. 27(7), 2627 (2015)
CrossRef ADS Google scholar
[386]
C. Y. Pan, S. Hu, D. G. Li, P. Ouyang, F. H. Zhao, and Y. Y. Zheng, The first ferroelectric templated borate: [Ni(en)2pip][B5O6(OH)4]2, Dalton Trans. 39(25), 5772 (2010)
CrossRef ADS Google scholar
[387]
X. Z. Li, Z. R. Qu, and R. G. Xiong, A new chiral schiff base with ferroelectric property, Chin. J. Chem. 26(11), 1959 (2008)
CrossRef ADS Google scholar
[388]
F. Du, H. Zhang, C. Tian, and S. Du, Synthesis and structure of two acentric heterometallic inorganic–organic hybrid frameworks with both nonlinear optical and ferroelectric properties, Cryst. Growth Des. 13(4), 1736 (2013)
CrossRef ADS Google scholar
[389]
W. Zhang, H. Y. Ye, H. L. Cai, J. Z. Ge, R. G. Xiong, and S. D. Huang, Discovery of new ferroelectrics: [H2dbco]2·[Cl3]·[CuCl3(H2O)2]·H2O (dbco= 1; 4-diazabicyclo[ 2.2.2]octane), J. Am. Chem. Soc. 132(21), 7300 (2010)
CrossRef ADS Google scholar
[390]
J. Wang, J. Q. Tao, X. J. Xu, and C. Y. Tan, Synthesis, crystal structure, and properties of a cadmium(II) complex with the flexible ligand (1_H-[2; 2 ]biimidazoly-1-yl)-acetic acid, Z. Anorg. Allg. Chem. 638(9), 1261 (2012)
CrossRef ADS Google scholar
[391]
Y. M. Xie, J. H. Liu, X. Y. Wu, Z. G. Zhao, Q. S. Zhang, F. Wang, S. C. Chen, and C. Z. Lu, New ferroelectric and nonlinear optical porous coordination polymer constructed from a rare (CuBr) castellated chain, Cryst. Growth Des. 8(11), 3914 (2008)
CrossRef ADS Google scholar
[392]
D. S. Liu, Y. Sui, W. T. Chen, and P. Feng, Two new nonlinear optical and ferroelectric Zn(II) compounds based on nicotinic acid and tetrazole derivative ligands, Cryst. Growth Des. 15(8), 4020 (2015)
CrossRef ADS Google scholar
[393]
L. Song, S. W. Du, J. D. Lin, H. Zhou, and T. Li, A 3D metal–organic framework with rare 3-fold interpenetrating dia-g nets based on silver(I) and novel tetradentate imidazolate ligand: Synthesis, structure, and possible ferroelectric property, Cryst. Growth Des. 7(11), 2268 (2007)
CrossRef ADS Google scholar
[394]
O. Sengupta, and P. S. Mukherjee, Mixed azide and 5-(Pyrimidyl)tetrazole bridged Co(II)/Mn(II) polymers: Synthesis, crystal structures, ferroelectric and magnetic behavior, Inorg. Chem. 49(18), 8583 (2010)
CrossRef ADS Google scholar
[395]
W. W. Zhou, J. T. Chen, G. Xu, M. S. Wang, J. P. Zou, X. F. Long, G. J. Wang, G. C. Guo, and J. S. Huang, Nonlinear optical and ferroelectric properties of a 3-D Cd(II) triazolate complex with a novel (63)2(610·85) topology, Chem. Commun. (Camb.) (24), 2762 (2008)
CrossRef ADS Google scholar
[396]
H. X. Zhao, G. L. Zhuang, S. T. Wu, L. S. Long, H. Y. Guo, Z. G. Ye, R. B. Huang, and L. S. Zheng, Experimental and theoretical demonstration of ferroelectric anisotropy in a one-dimensional copper(II)-based coordination polymer, Chem. Commun. (Camb.) (13), 1644 (2009)
CrossRef ADS Google scholar
[397]
Q. Ye, Y. Z. Tang, X. S. Wang, and R. G. Xiong, Strong enhancement of second-harmonic generation (SHG) response through multi-chiral centers and metal-coordination, Dalton Trans. (9), 1570 (2005)
CrossRef ADS Google scholar
[398]
G. X. Wang, G. F. Han, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral rare-earth metal complex, Dalton Trans. 19, 2527 (2008)
CrossRef ADS Google scholar
[399]
S. T. Zheng and G. Y. Yang, The first polyoxometalatetemplated four-fold interpenetrated coordination polymer with new topology and ferroelectricity, Dalton Trans. 39(3), 700 (2010)
CrossRef ADS Google scholar
[400]
H. B. Duan, H. R. Zhao, X. M. Ren, H. Zhou, Z. F. Tian, and W. Q. Jin, Inorganic–organic hybrid compounds based on face-sharing octahedral [PbI3] chains: Self-assemblies, crystal structures, and ferroelectric, photoluminescence properties, Dalton Trans. 40(8), 1672 (2011)
CrossRef ADS Google scholar
[401]
S. P. Zhao and X. M. Ren, Toward design of multipleproperty inorganic–organic hybrid compounds based on face-sharing octahedral iodoplumbate chains, Dalton Trans. 40(33), 8261 (2011)
CrossRef ADS Google scholar
[402]
H. R. Zhao, D. P. Li, X. M. Ren, Y. Song, and W. Q. Jin, Larger spontaneous polarization ferroelectric inorganic–organic hybrids: [PbI3] chains directed organic cations aggregation to Kagomé-shaped tubular architecture, J. Am. Chem. Soc. 132(1), 18 (2010)
CrossRef ADS Google scholar
[403]
T. Hang, D. W. Fu, Q. Ye, H. Y. Ye, R. G. Xiong, and S. D. Huang, Tanklike metal–organic framework filled with perchloric acid and its dielectric–ferroelectric properties, Cryst. Growth Des. 9(5), 2054 (2009)
CrossRef ADS Google scholar
[404]
Q. Ye, T. Hang, D. W. Fu, G. H. Xu, and R. G. Xiong, Typical ferroelectric olefin-copper(I) organometallic oligmer with flexible organic ligand, Cryst. Growth Des. 8(10), 3501 (2008)
CrossRef ADS Google scholar
[405]
T. Hang, D. W. Fu, Q. Ye, and R. G. Xiong, Two novel noncentrosymmetric zinc coordination compounds with second harmonic generation response, and potential piezoelectric and ferroelectric properties, Cryst. Growth Des. 9(5), 2026 (2009)
CrossRef ADS Google scholar
[406]
M. Mon, J. Ferrando-Soria, M. Verdaguer, C. Train, C. Paillard, B. Dkhil, C. Versace, R. Bruno, D. Armentano, and E. Pardo, Postsynthetic approach for the rational design of chiral ferroelectric metal–organic frameworks, J. Am. Chem. Soc. 139(24), 8098 (2017)
CrossRef ADS Google scholar
[407]
P. C. Guo, Z. Chu, X. M. Ren, W. H. Ning, and W. Jin, Comparative study of structures, thermal stabilities and dielectric properties for a ferroelectric MOF [Sr(m- BDC)(DMF)] with its solvent-free framework, Dalton Trans. 42(18), 6603 (2013)
CrossRef ADS Google scholar
[408]
W. K. Han, L. F. Qin, C. Y. Pang, C. K. Cheng, W. Zhu, Z. H. Li, Z. Li, X. Ren, and Z. G. Gu, Polymorphism of a chiral iron(II) complex: spin-crossover and ferroelectric properties, Dalton Trans. 46(25), 8004 (2017)
CrossRef ADS Google scholar
[409]
D. P. Li, T. W. Wang, C. H. Li, D. S. Liu, Y. Z. Li, and X. Z. You, Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln= Sm, Eu, Gd, Tb and Dy), Chem. Commun. (Camb.) 46(17), 2929 (2010)
CrossRef ADS Google scholar
[410]
W. Zhang, R. G. Xiong, and S. D. Huang, 3D framework containing Cu4Br4 cubane as connecting node with strong ferroelectricity, J. Am. Chem. Soc. 130(32), 10468 (2008)
CrossRef ADS Google scholar
[411]
Y. Q. Zheng, W. Xu, H. L. Zhu, J. L. Lin, L. Zhao, and Y. R. Dong, New pyridine-2; 4; 6-tricarboxylato coordination polymers: Synthesis, crystal structures and properties, CrystEngComm 13(7), 2699 (2011)
CrossRef ADS Google scholar
[412]
J. D. Lin, X. F. Long, P. Lin, and S. W. Du, A series of cation-templated, polycarboxylate-based Cd(II) or Cd(II)/Li(I) frameworks with second-order nonlinear optical and ferroelectric properties,Cryst. Growth Des. 10(1), 146 (2010)
CrossRef ADS Google scholar
[413]
Q. Ye, Y. M. Song, G. X. Wang, K. Chen, D. W. Fu, P. W. H. Chan, J. S. Zhu, S. D. Huang, and R. G. Xiong, Ferroelectric metal–organic framework with a high dielectric constant, J. Am. Chem. Soc. 128(20), 6554 (2006)
CrossRef ADS Google scholar
[414]
X. Q. Liang, J. T. Jia, T. Wu, D. P. Li, L. Liu, G. S. Tsolmon, and G. S. Zhu, A spontaneously resoluted zinc–organic framework with nonlinear optical and ferroelectric properties generated from tetrazolate-ethyl ester ligand, CrystEngCom 12(11), 3499 (2010)
CrossRef ADS Google scholar
[415]
Z. Su, J. Fan, T. Okamura, W. Y. Sun, and N. Ueyama, Ligand-directed and ph-controlled assembly of chiral 3d–3d heterometallic metal–organic frameworks, Cryst. Growth Des. 10(8), 3515 (2010)
CrossRef ADS Google scholar
[416]
L. Yu, X. N. Hua, X. J. Jiang, L. Qin, X. Z. Yan, L. H. Luo, and L. Han, Histidine-controlled homochiral and ferroelectric metal–organic frameworks, Cryst. Growth Des. 15(2), 687 (2015)
CrossRef ADS Google scholar
[417]
Q. Ye, Y. M. Song, D. W. Fu, G. X. Wang, R. G. Xiong, P. W. H. Chan, and S. D. Huang, Deuteration effect of ferroelectricity and permittivity on homochiral zinc coordination compound, Cryst. Growth Des. 7(9), 1568 (2007)
CrossRef ADS Google scholar
[418]
D. W. Fu, W. Zhang, and R. G. Xiong, Isotope effect on SHG response and ferroelectric properties of a homochiral zinc coordination compound containing tetrazole ligand, Cryst. Growth Des. 8(9), 3461 (2008)
CrossRef ADS Google scholar
[419]
H. R. Wen, Y. Z. Tang, C. M. Liu, J. L. Chen, and C. L. Yu, One-dimensional homochiral cyano-bridged heterometallic chain coordination polymers with metamagnetic or ferroelectric properties, Inorg. Chem. 48(21), 10177 (2009)
CrossRef ADS Google scholar
[420]
L. Li, J. Ma, C. Song, T. Chen, Z. Sun, S. Wang, J. Luo, and M. Hong, A 3D polar nanotubular coordination polymer with dynamic structural transformation and ferroelectric and nonlinear-optical properties,Inorg. Chem. 51(4), 2438 (2012)
CrossRef ADS Google scholar
[421]
X. L. Li, C. L. Chen, L. F. Han, C. M. Liu, Y. Song, X. G. Yang, and S. M. Fang, First one-dimensional homochiral stairway-like Cu(II) chains: Crystal structures, circular dichroism (CD) spectra, ferroelectricity and antiferromagnetic properties, Dalton Trans. 42(14), 5036 (2013)
CrossRef ADS Google scholar
[422]
X. L. Li, Z. Zhang, X. L. Zhang, J. L. Kang, A. L. Wang, L. Zhou, and S. Fang, A pair of dinuclear Re(I) enantiomers: synthesis, crystal structures, chiroptical and ferroelectric properties, Dalton Trans. 44(9), 4180 (2015)
CrossRef ADS Google scholar
[423]
G. X. Wang, G. F. Han, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral rare-earth metal complex, Dalton Trans. (19), 2527 (2008)
CrossRef ADS Google scholar
[424]
L. L. Liang, S. B. Ren, J. Zhang, Y. Z. Li, H. B. Du, and X. Z. You, Two unprecedented NLO-active coordination polymers constructed by a semi-rigid tetrahedral linker, Dalton Trans. 39(33), 7723 (2010)
CrossRef ADS Google scholar
[425]
C. F. Wang, Z. G. Gu, X. M. Lu, J. L. Zuo, and X. Z. You, Ferroelectric heterobimetallic clusters with ferromagnetic interactions, Inorg. Chem. 47(18), 7957 (2008)
CrossRef ADS Google scholar
[426]
Q. Ye, D. W. Fu, H. Tian, R. G. Xiong, P. W. H. Chan, and S. D. Huang, Multiferroic homochiral metal–organic framework, Inorg. Chem. 47(3), 772 (2008)
CrossRef ADS Google scholar
[427]
L. Li, J. Ma, C. Song, T. Chen, Z. Sun, S. Wang, J. Luo, and M. Hong, A 3D polar nanotubular coordination polymer with dynamic structural transformation and ferroelectric and nonlinear-optical properties, Inorg. Chem. 51(4), 2438 (2012)
CrossRef ADS Google scholar
[428]
D. Asthana, A. Kumar, A. Pathak, P. K. Sukul, S. Malik, R. Chatterjee, S. Patnaik, K. Rissanen, and P. Mukhopadhyay, An all-organic steroid–D–p-A modular design drives ferroelectricity in supramolecular solids and nano-architectures at RT, Chem. Commun. (Camb.) 47(31), 8928 (2011)
CrossRef ADS Google scholar
[429]
Y. T. Wang, G. M. Tang, C. He, S. C. Yan, Q. C. Hao, L. Chen, X. F. Long, T. D. Li, and S. W. Ng, Nonlinear optical and ferroelectric materials based on 1-benzyl- 2-phenyl-1H-benzimidazole salts, CrystEngComm 13(21), 6365 (2011)
CrossRef ADS Google scholar
[430]
H. R. Chen, and W. W. Zhang, A novel twodimensional CdII coordination polymer: poly[aqua[m4- 2-(carboxylatobenzoyl)benzonato]-cadmium(II)], Acta Crystallogr. C 70(11), 1079 (2014)
CrossRef ADS Google scholar
[431]
M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)
CrossRef ADS Google scholar
[432]
Z. Guo, R. Cao, X. Wang, H. Li, W. Yuan, G. Wang, H. Wu, and J. Li, A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework, J. Am. Chem. Soc. 131(20), 6894 (2009)
CrossRef ADS Google scholar
[433]
X. Duan, Q. Meng, Y. Su, Y. Li, C. Duan, X. Ren, and C. Lu, Multifunctional polythreading coordination polymers: Spontaneous resolution, nonlinear-optic, and ferroelectric properties, Chemistry 17(36), 9936 (2011)
CrossRef ADS Google scholar
[434]
H. Zhao, Q. Ye, Z. R. Qu, D. W. Fu, R. G. Xiong, S. D. Huang, and P. W. H. Chan, Huge deuterated effect on permittivity in a metal–organic framework, Chemistry 14(4), 1164 (2008)
CrossRef ADS Google scholar
[435]
Z. R. Qu, H. Zhao, Y. P. Wang, X. S. Wang, Q. Ye, Y. H. Li, R. G. Xiong, B. F. Abrahams, Z. G. Liu, Z. L. Xue, and X. Z. You, Synthesis of novel chiral and acentric coordination polymers by the reaction of zinc or cadmium salts with racemic 3-pyridyl-3-aminopropionic acid, Chemistry 10(1), 53 (2004)
CrossRef ADS Google scholar
[436]
H. Zhao, Y. H. Li, X. S. Wang, Z. R. Qu, L. Z. Wang, R. G. Xiong, B. F. Abrahams, and Z. Xue, Noncentrosymmetric organic solids with very strong harmonic generation response, Chemistry 10(10), 2386 (2004)
CrossRef ADS Google scholar
[437]
Z. R. Qu, Q. Ye, H. Zhao, D. W. Fu, H. Y. Ye, R. G. Xiong, T. Akutagawa, and T. Nakamura, Homochiral laminar europium metal–organic framework with unprecedented giant dielectric anisotropy, Chemistry 14(11), 3452 (2008)
CrossRef ADS Google scholar
[438]
S. Bhattacharya, S. Pal, and S. Natarajan, Switchable room-temperature ferroelectric behavior, selective sorption and solvent-exchange studies of [H3O][Co2(dat)(sdba)2]·H2sdba·5H2O, ChemPlusChem 81(8), 733 (2016)
CrossRef ADS Google scholar
[439]
Y. H. Tan, Y. M. Yu, J. B. Xiong, J. X. Gao, Q. Xu, C. W. Fu, Y. Z. Tang, and H. R. Wen, Synthesis, structure and ferroelectric–dielectric properties of an acentric 2D framework with imidazole-containing tripodal ligands, Polyhedron 70, 47 (2014)
CrossRef ADS Google scholar
[440]
H. R. Wen, T. T. Qi, S. J. Liu, C. M. Liu, Y. Z. Tang, and J. L. Chen, Syntheses and structures of chiral tri- and tetranuclear Cd(II) clusters with luminescent and ferroelectric properties, Polyhedron 85, 894 (2015)
CrossRef ADS Google scholar
[441]
X. P. Zhang, X. W. Qi, D. S. Zhang, L. H. Zhu, X. H. Wang, Z. F. Shi, and Q. Lin, Distinct optoelectronic properties of four-coordinate and five-coordinate Zn(II) complexes with chiral polypyridine ligands, Polyhedron 126, 111 (2017)
CrossRef ADS Google scholar
[442]
Y. Z. Tang, Y. M. Yu, Y. H. Tan, J. S. Wu, J. B. Xiong, and H. R. Wen, Two acentric (6; 3) topological 2- D frameworks with imidazole-containing tripodal ligand and their ferroelectric properties, Dalton Trans. 42(28), 10106 (2013)
CrossRef ADS Google scholar
[443]
L. Z. Chen and J. Sun, Reversible ferroelectric phase transition of 1; 4-diazabicyclo [2; 2; 2]octane N,N′-dioxide di(perchlorate), Inorg. Chem. Commun. 76, 67 (2017)
CrossRef ADS Google scholar
[444]
Y. T. Yang, Y. X. Che, and J. M. Zheng, A novel chiral helical coordination complex with ferroelectric and weak ferromagnetic properties, Inorg. Chem. Commun. 17, 49 (2012)
CrossRef ADS Google scholar
[445]
Y. H. Zhou, J. Li, T. Wu, X. P. Zhao, Q. L. Xu, X. L. Li, M. B. Yu, L. L. Wang, P. Sun, and Y. X. Zheng, Photoluminescent and ferroelectric properties of a chiral rhenium( I) complex based on the chiral (–)–4; 5-pinene-2, 2 ′- bipyridine ligand, Inorg. Chem. Commun. 29, 18 (2013)
CrossRef ADS Google scholar
[446]
X. Tan, Y. X. Che, and J. M. Zheng, Two chiral complexes constructed from mixed L-histidine and Lalanine/ thiocyanate ligands: Synthesis, structure, ferromagnetic and ferroelectric properties, Inorg. Chem. Commun. 22, 10 (2012)
CrossRef ADS Google scholar
[447]
Y. Wang, F. H. Zhao, A. H. Shi, Y. X. Che, and J. M. Zheng, Magnetic and ferroelectric properties of two Co(II) complexes based on flexible bis(imidazole) ligands, Inorg. Chem. Commun. 20, 23 (2012)
CrossRef ADS Google scholar
[448]
Y. Wang, Y. X. Che, and J. M. Zheng, A 3D ferroelectric Co(II) polymer showing (3,5)-connected hms topology with 2-fold interpenetration, Inorg. Chem. Commun. 21, 69 (2012)
CrossRef ADS Google scholar
[449]
F. H. Zhao, S. H. Liang, S. Jing, Y. Wang, Y. X. Che, and J. M. Zheng, Magnetic and ferroelectric properties of a chiral cyano-bridged Pr(III)-Cr(III) complex, Inorg. Chem. Commun. 21, 109 (2012)
CrossRef ADS Google scholar
[450]
Y. Zhao, L. Luo, C. Liu, M. Chen, and W. Y. Sun, Helical silver(I) coordination polymer with oxazolinecontaining ligand: Structure, non-linear and ferroelectric property, Inorg. Chem. Commun. 14(7), 1145 (2011)
CrossRef ADS Google scholar
[451]
Y. T. Wang, G. M. Tang, Y. Q. Wei, T. X. Qin, T. D. Li, J. B. Ling, and X. F. Long, One new nonlinear optical and ferroelectric one-dimensional chain constructed by an unsymmetric bridging ligand,Inorg. Chem. Commun. 12(11), 1164 (2009)
CrossRef ADS Google scholar
[452]
F. Du, M. Zhao, X. Long, and S. Du, A new acentric heterometallic inorganic–organic hybrid framework with an unusual {Cd3Na4}n array: NLO and ferroelectric properties, Inorg. Chem. Commun. 38, 39 (2013)
CrossRef ADS Google scholar
[453]
Z. Su, G. C. Lv, J. Fan, G. X. Liu, and W. Y. Sun, Homochiral ferroelectric three-dimensional cadmium(II) frameworks from racemic camphoric acid and 3, 5- di(imidazol-1-yl)benzoic acid, Inorg. Chem. Commun. 38, 39 (2013)
[454]
H. W. Kuai, J. J. Xia, and H. Y. Sang, Syntheses, characterization and properties of manganese, cobalt and copper complexes from chelate N-donor ligands, Inorg. Chem. Commun. 72, 73 (2016)
CrossRef ADS Google scholar
[455]
X. L. Li, M. Hu, Y. J. Zhang, X. L. Zhang, F. C. Li, A. L. Wang, J. P. Du, and H. P. Xiao, Synthesis, crystal structure, chiroptical and ferroelectric properties of a multifunctional chiral silver(I) complex based on the chiral bis-bidentate bridging ligand, Inorg. Chim. Acta 444, 221 (2016)
CrossRef ADS Google scholar
[456]
G. X. Liu, W. Guo, S. Nishihara, and X. M. Ren, A chiral copper(II) inverse-9-metallacrown-3 complex: Synthesis, crystal structure, ferroelectric and magnetic properties, Inorg. Chim. Acta 368(1), 165 (2011)
CrossRef ADS Google scholar
[457]
W. W. Zhou, W. Zhao, B. Wei, F. W. Wang, Y. H. Chen, W. Y. Fang, and X. Zhao, A new 1D Cd(II) pyridinate polymer: Structure, second-harmonic generation response, dielectric and potential ferroelectric properties, Inorg. Chim. Acta 386, 17 (2012)
CrossRef ADS Google scholar
[458]
L. Z. Chen, D. D. Huang, J. Z. Ge, and F. M. Wang, A novel Ag(I) coordination polymers based on 2-(pyridin-4-yl)-1H-imidazole-4; 5-dicarboxylic acid: Syntheses, structures, ferroelectric, dielectric and optical properties, Inorg. Chim. Acta 406, 95 (2013)
CrossRef ADS Google scholar
[459]
X. F. Wang, G. X. Liu, and H. Zhou, Syntheses, structures and physical properties of two zinc(II) coordination polymers with 1, 3, 5-tris(imidazol-1-ylmethyl)-2, 4, 6- trimethylbenzene and 1, 3, 5-benzenetricarboxylate, Inorg. Chim. Acta 406, 223 (2013)
CrossRef ADS Google scholar
[460]
W. Xu, W. Liu, F. Y. Yao, and Y. Q. Zheng, Synthesis, crystal structure and properties of the novel chiral 3D coordination polymer with S-carboxymethyl-l-cysteine, Inorg. Chim. Acta 365(1), 297 (2011)
CrossRef ADS Google scholar
[461]
W. J. Ji, Q. G. Zhai, S. N. Li, Y. C. Jiang, and M. C. Hu, The first ionothermal synthesis of a 3D ferroelectric metal–organic framework with colossal dielectric constant, Chem. Commun. (Camb.) 47(13), 3834 (2011)
CrossRef ADS Google scholar
[462]
H. Zhao, Z. R. Qu, Q. Ye, B. F. Abrahams, Y. P. Wang, Z. G. Liu, Z. Xue, R. G. Xiong, and X. Z. You, Ferroelectric copper quinine complexes, Chem. Mater. 15(22), 4166 (2003)
CrossRef ADS Google scholar
[463]
F. H. Zhao, Y. X. Che, J. M. Zheng, F. Grandjean, and G. J. Long, Two acentric mononuclear molecular complexes with unusual magnetic and ferroelectric properties, Inorg. Chem. 51(8), 4862 (2012)
CrossRef ADS Google scholar
[464]
T. Hang, D. W. Fu, Q. Ye, H. Y. Ye, R. G. Xiong, and S. D. Huang, Tanklike metal–organic framework filled with perchloric acid and its dielectric–ferroelectric properties, Cryst. Growth Des. 9(5), 2054 (2009)
CrossRef ADS Google scholar
[465]
H. R. Wen, Y. Z. Tang, C. M. Liu, J. L. Chen, and C. L. Yu, One-dimensional homochiral cyano-bridged heterometallic chain coordination polymers with metamagnetic or ferroelectric properties, Inorg. Chem. 48(21), 10177 (2009)
CrossRef ADS Google scholar
[466]
Y. T. Wang, G. M. Tang, Y. Q. Wei, T. X. Qin, T. D. Li, C. He, J. B. Ling, X. F. Long, and S. W. Ng, Two new nonlinear optical and ferroelectric threedimensional metal–organic frameworks with an sqp-net, Cryst. Growth Des. 10(1), 25 (2010)
CrossRef ADS Google scholar
[467]
Y. H. Li, Z. R. Qu, H. Zhao, Q. Ye, L. X. Xing, X. S. Wang, R. G. Xiong, and X. Z. You, A novel TGS-like inorganic–organic hybrid and a preliminary investigation of its possible ferroelectric behavior, Inorg. Chem. 43(13), 3768 (2004)
CrossRef ADS Google scholar
[468]
Y. Z. Tang, M. Zhou, J. Huang, Y. H. Tan, J. S. Wu, and H. R. Wen, In situ synthesis and ferroelectric, shg response, and luminescent properties of a novel 3D acentric zinc coordination polymer, Inorg. Chem. 52(4), 1679 (2013)
CrossRef ADS Google scholar
[469]
Z. G. Gu, X. H. Zhou, Y. B. Jin, R. G. Xiong, J. L. Zuo, and X. Z. You, Crystal structures and magnetic and ferroelectric properties of chiral layered metal–organic frameworks with dicyanamide as the bridging ligand, Inorg. Chem. 46(14), 5462 (2007)
CrossRef ADS Google scholar
[470]
T. K. Pal, R. Katoch, A. Garg, and P. K. Bharadwaj, Metal–organic frameworks built from a linear rigid dicarboxylate and different colinkers: Trap of the Keto form of ethylacetoacetate, luminescence and ferroelectric studies, Cryst. Growth Des. 15(9), 4526 (2015)
CrossRef ADS Google scholar
[471]
A. K. Gupta, D. De, R. Katoch, A. Garg, and P. K. Bharadwaj, Synthesis of a NbO type homochiral Cu(II) metal–organic framework: Ferroelectric behavior and heterogeneous catalysis of three-component coupling and pechmann reactions, Inorg. Chem. 56(8), 4697 (2017)
CrossRef ADS Google scholar
[472]
M. Manivannan, S. A. M. Britto Dhas, and M. Jose, Ferroelectric behavior of organic terahertz radiating DAST crystal, J. Inorg. Organomet. Polym. 27(6), 1870 (2017)
CrossRef ADS Google scholar
[473]
J. L. Qi, S. L. Ni, W. Xu, J. Y. Qian, and Y. Q. Zheng, The first two examples of (R)-2-chloromandelato coordination polymers: Synthesis, structure, magnetic and ferroelectric properties, J. Inorg. Organomet. Polym. 24(3), 600 (2014)
CrossRef ADS Google scholar
[474]
C. Hou, Q. Liu, Y. Lu, T. Okamura, P. Wang, M. Chen, and W. Y. Sun, Metal-organic frameworks with N-(4- pyridylmethyl)iminodiacetate ligand: Synthesis, structure and sorption properties, Microporous Mesoporous Mater. 152, 96 (2012)
CrossRef ADS Google scholar
[475]
D. P. Li, C. H. Li, J. Wang, L. C. Kang, T. Wu, Y. Z. Li, and X. Z. You, Synthesis and physical properties of two chiral terpyridyl europium(III) complexes with distinct crystal polarity, Eur. J. Inorg. Chem. 2009(32), 4844 (2009)
CrossRef ADS Google scholar
[476]
Y. R. Xie, H. Zhao, X. S. Wang, Z. R. Qu, R. G. Xiong, X. Xue, Z. Xue, and X. Z. You, 2D chiral uranyl(VI) coordination polymers with second-harmonic generation response and ferroelectric properties, Eur. J. Inorg. Chem. 2003(20), 3712 (2003)
CrossRef ADS Google scholar
[477]
M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)
CrossRef ADS Google scholar
[478]
A. A. Bahgat, S. M. Sayyah, and H. M. Abd-Elsalam, Study of ferroelectricity in polyaniline, Int. J. Polym. Mater. 52(6), 499 (2003)
CrossRef ADS Google scholar
[479]
H. Zhao, Z. R. Qu, H. Y. Ye, and R. G. Xiong, In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties, Chem. Soc. Rev. 37(1), 84 (2008)
CrossRef ADS Google scholar
[480]
J. D. Lin, C. Rong, R. X. Lv, Z. J. Wang, X. F. Long, G. C. Guo, and C. Y. Pan, A 3D metal-organic framework with a pcu net constructed from lead(II) and thiophene-2; 5-dicarboxylic acid: Synthesis, structure and ferroelectric property, J. Solid State Chem. 257, 34 (2018)
CrossRef ADS Google scholar
[481]
L. H. Cao, Y. L. Wei, C. Ji, M. L. Ma, S. Q. Zang, and T. C. W. Mak, A multifunctional 3D chiral porous ferroelectric metal–organic framework for sensing small organic molecules and dye uptake, Chem. Asian J. 9(11), 3094 (2014)
CrossRef ADS Google scholar
[482]
S. R. Sushrutha, S. Mohana, S. Pal, and S. Natarajan, Solvent-dependent delamination, restacking, and ferroelectric behavior in a new charge-separated layered compound: [NH4][Ag3(C9H5NO4S)2(C13H14N2)2]·8H2O, Chem. Asian J. 12(1), 101 (2017)
CrossRef ADS Google scholar
[483]
G. X. Liu, X. F. Wang, and H. Zhou, Versatile frameworks constructed from divalent metals with 4; 4 ′- methylenedibenzoic acid and imidazole derivative ligands: Syntheses, crystal structures and physical properties, J. Solid State Chem. 199, 305 (2013)
CrossRef ADS Google scholar
[484]
D. S. Liu, W. T. Chen, G. M. Ye, J. Zhang, and Y. Sui, Synthesis and characterization of a multifunctional inorganic–organic hybrid mixed-valence copper(I/II) coordination polymer: {[CuCN][Cu(isonic)2]}n, J. Solid State Chem. 256, 14 (2017)
CrossRef ADS Google scholar
[485]
Y. N. Ren, W. Xu, L. X. Zhou, and Y. Q. Zheng, Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer, J. Solid State Chem. 251, 105 (2017)
CrossRef ADS Google scholar
[486]
X. X. Li, L. Cheng, and G. Y. Yang, Open frameworks based on mono-lanthanide-substituted polyoxometaloaluminate building units: Syntheses, structures and properties, J. Solid State Chem. 203, 193 (2013)
CrossRef ADS Google scholar
[487]
H. W. Kuai, X. C. Cheng, D. H. Li, T. Hu, and X. H. Zhu, Syntheses, characterization and properties of silver, copper and palladium complexes from bis(oxazoline)- containing ligands, J. Solid State Chem. 228, 65 (2015)
CrossRef ADS Google scholar
[488]
J. Zhang, M. Zhao, W. Xie, J. Jin, F. Xie, X. Song, S. Zhang, J. Wu, and Y. Tian, A series of novel cadmium(II) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands, New J. Chem. 41(17), 9152 (2017)
CrossRef ADS Google scholar
[489]
S. R. Sushrutha, S. Mohana, S. Pal, and S. Natarajan, Solvent-dependent delamination, restacking, and ferroelectric behavior in a new charge-separated layered compound: [NH4][Ag3(C9H5NO4S2(C13H14N2)2]·8H2O, Chem. Asian J. 12(1), 101 (2017)
CrossRef ADS Google scholar
[490]
A. K. Srivastava, B. Praveenkumar, I. K. Mahawar, P. Divya, S. Shalini, and R. Boomishankar, Anion driven [CuIIL2]n frameworks: Crystal structures, guestencapsulation, dielectric, and possible ferroelectric properties, Chem. Mater. 26(12), 3811 (2014)
CrossRef ADS Google scholar
[491]
G. X. Liu, W. Guo, S. Nishihara, and X. M. Ren, A chiral copper(II) inverse-9-metallacrown-3 complex: Synthesis, crystal structure, ferroelectric and magnetic properties, Inorg. Chim. Acta 368(1), 165 (2011)
CrossRef ADS Google scholar
[492]
L. Z. Chen, D. D. Huang, J. Z. Ge, and F. M. Wang, A novel Ag(I) coordination polymers based on 2-(pyridin-4- yl)-1H-imidazole-4; 5-dicarboxylic acid: Syntheses, structures, ferroelectric, dielectric and optical properties,Inorg. Chim. Acta 406, 95 (2013)
CrossRef ADS Google scholar
[493]
X. F. Wang, G. X. Liu, and H. Zhou, Syntheses, structures and physical properties of two zinc(II) coordination polymers with 1; 3; 5-tris(imidazol-1-ylmethyl)-2; 4; 6- trimethylbenzene and 1; 3; 5-benzenetricarboxylate, Inorg. Chim. Acta 406, 223 (2013)
CrossRef ADS Google scholar
[494]
W. Xu, W. Liu, F. Y. Yao, and Y. Q. Zheng, Synthesis, crystal structure and properties of the novel chiral 3D coordination polymer with S-carboxymethyl-l-cysteine, Inorg. Chim. Acta 365(1), 297 (2011)
CrossRef ADS Google scholar
[495]
X. K. Yu and Y. Q. Zheng, Syntheses, structures, dielectric and ferroelectric properties of a chiral coordination compound with m-nitro-benzoic acid, J. Coord. Chem. 66(12), 2208 (2013)
CrossRef ADS Google scholar
[496]
W. G. Zhu, Y. Q. Zheng, L. X. Zhou, and H. L. Zhu, Structural diversity for three Zn(II) coordination polymers from 4-nitrobenzene-1; 2-dicarboxylate and bispyridyl ligand, J. Coord. Chem. 69(2), 270 (2016)
CrossRef ADS Google scholar
[497]
J. L. Qi, S. L. Ni, W. Xu, and Y. Q. Zhang, Three Cu(II) (R)-2-chloromandelato complexes generated from dipyridyl-type ligands with different spacer lengths: syntheses, crystal structures, and ferroelectric properties, J. Coord. Chem. 67(13), 2287 (2014)
CrossRef ADS Google scholar
[498]
C. J. Lin, J. L. Qi, Y. Q. Zheng, and J. L. Lin, Two new Cu(II) m-hydroxybenzoato complexes with chloro- and carboxylato-bridged dinuclear [Cu(μ2– Cl)(μ2–COO)Cu] cores, J. Coord. Chem. 66(21), 3877 (2013)
CrossRef ADS Google scholar
[499]
W. Xu, H. S. Chang, W. Liu, and Y. Q. Zheng, Synthesis, crystal structure, and properties of a new lanthanide tartrate coordination polymer, Russ. J. Coord. Chem. 40(4), 251 (2014)
CrossRef ADS Google scholar
[500]
L. Chen, G. Han, H. Ye, and R. Xiong, A new chiral quinoxaline derivative with ferroelectric property, Chin. J. Chem. 28(10), 1799 (2010)
CrossRef ADS Google scholar
[501]
Z. Su, M. S. Chen, J. Fan, M. Chen, S. S. Chen, L. Luo, and W. Y. Sun, Spontaneous resolution of two homochiral ferroelectric cadmium (II) frameworks and an achiral framework from a one-pot reaction involving achiral rigid ligands, CrystEngComm 12(7), 2040 (2010)
CrossRef ADS Google scholar
[502]
J. L. Qi, S. L. Ni, Y. Q. Zheng, and W. Xu, Syntheses, structural characterizations and ferroelectric properties of new Ce(III) coordination polymers via isomeric tartaric acid ligands, Solid State Sci. 28, 61 (2014)
CrossRef ADS Google scholar
[503]
J. Zhang, M. Zhao, W. Xie, J. Jin, F. Xie, X. Song, S. Zhang, J. Wu, and Y. Tian, A series of novel cadmium(II) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands, New J. Chem. 41(17), 9152 (2017)
CrossRef ADS Google scholar
[504]
Y. Q. Zheng, H. L. Zhu, X. X. Guo, and J. Y. Liu, Synthesis, crystal structures and properties of three glutarato and adipato bridged manganese(II) coordination polymers under ambient conditions, Solid State Sci. 18, 42 (2013)
CrossRef ADS Google scholar
[505]
Z. R. Qu, Z. F. Chen, J. Zhang, R. G. Xiong, B. F. Abrahams, and Z. L. Xue, The first highly stable homochiral Olefin–Copper(I) 2D coordination polymer grid based on quinine as a building block, Organometallics 22(14), 2814 (2003)
CrossRef ADS Google scholar
[506]
D. P. Li, C. H. Li, J. Wang, L. C. Kang, T. Wu, Y. Z. Li, and X. Z. You, Synthesis and physical properties of two chiral terpyridyl europium(III) complexes with distinct crystal polarity, Eur. J. Inorg. Chem. 2009(32), 4844 (2009)
CrossRef ADS Google scholar
[507]
Y. R. Xie, H. Zhao, X. S. Wang, Z. R. Qu, R. G. Xiong, X. Xue, Z. Xue, and X. Z. You, 2D chiral uranyl(VI) coordination polymers with second-harmonic generation response and ferroelectric properties, Eur. J. Inorg. Chem. 2003(20), 3712 (2003)
CrossRef ADS Google scholar
[508]
M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)
CrossRef ADS Google scholar
[509]
W. Xu, H. S. Chang, W. Liu, and Y. Q. Zheng, Synthesis, crystal structure, and properties of a new lanthanide tartrate coordination polymer, Russ. J. Coord. Chem. 40(4), 251 (2014)
CrossRef ADS Google scholar
[510]
H. Yu, M. Liu, X. Gao, and Z. Liu, Construction and crystal structure of a pair of tetranuclear Zn(II) chiral clusters that exhibit ferroelectric behavior under a higher frequency electric field at room temperature, Polyhedron 137, 217 (2017)
CrossRef ADS Google scholar
[511]
C. F. Wang, J. X. Gao, C. Li, C. S. Yang, J. B. Xiong, and Y. Z. Tang, A novel co-crystallization molecular ferroelectric induced by the ordering of sulphate anions and hydrogen atoms, Inorg. Chem. Front. 5(10), 2413 (2018)
CrossRef ADS Google scholar
[512]
Y. T. Wang, G. M. Tang, W. Z. Wan, Y. Wu, T. C. Tian, J. H. Wang, C. He, X. F. Long, J. J. Wang, and S. W. Ng, New homochiral ferroelectric supramolecular networks of complexes constructed by chiral S-naproxen ligand, CrystEngComm 14(10), 3802 (2012)
CrossRef ADS Google scholar
[513]
M. Ahmad, R. Katoch, A. Garg, and P. K. Bharadwaj, A novel 3D 10-fold interpenetrated homochiralcoordination polymer: Large spontaneouspolarization, dielectric loss and emission studies, CrystEngComm 16(22), 4766 (2014)
CrossRef ADS Google scholar
[514]
M. Liu, H. Yu, and Z. Liu, A pair of homochiral trinuclear Zn(II) clusters exhibiting unusual ferroelectric behaviour at high-temperature, CrystEngComm 21(14), 2355 (2019)
CrossRef ADS Google scholar
[515]
S. Moharana, M. K. Mishra, B. Behera, and R. N. Mahaling, Enhanced dielectric properties of polyethylene glycol (PEG) modified BaTiO3 (BT)-poly(vinylidene fluoride) (PVDF) composites, Polym. Sci. A 59(3), 405 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1615 KB)

Accesses

Citations

Detail

Sections
Recommended

/