Chimera dynamics in nonlocally coupled moving phase oscillators

Wen-Hao Wang, Qiong-Lin Dai, Hong-Yan Cheng, Hai-Hong Li, Jun-Zhong Yang

PDF(2899 KB)
PDF(2899 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43605. DOI: 10.1007/s11467-019-0906-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Chimera dynamics in nonlocally coupled moving phase oscillators

Author information +
History +

Abstract

Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled dynamical units, prevail in a variety of systems. However, the interaction structures among oscillators are static in most of studies on chimera state. In this work, we consider a population of agents. Each agent carries a phase oscillator. We assume that agents perform Brownian motions on a ring and interact with each other with a kernel function dependent on the distance between them. When agents are motionless, the model allows for several dynamical states including two different chimera states (the type-I and the type-II chimeras). The movement of agents changes the relative positions among them and produces perpetual noise to impact on the model dynamics. We find that the response of the coupled phase oscillators to the movement of agents depends on both the phase lag α, determining the stabilities of chimera states, and the agent mobility D. For low mobility, the synchronous state transits to the type-I chimera state for α close to π/2 and attracts other initial states otherwise. For intermediate mobility, the coupled oscillators randomly jump among different dynamical states and the jump dynamics depends on α. We investigate the statistical properties in these different dynamical regimes and present the scaling laws between the transient time and the mobility for low mobility and relations between the mean lifetimes of different dynamical states and the mobility for intermediate mobility.

Keywords

chimera states / Brownian motion / nonlocal coupling / phase oscillators

Cite this article

Download citation ▾
Wen-Hao Wang, Qiong-Lin Dai, Hong-Yan Cheng, Hai-Hong Li, Jun-Zhong Yang. Chimera dynamics in nonlocally coupled moving phase oscillators. Front. Phys., 2019, 14(4): 43605 https://doi.org/10.1007/s11467-019-0906-3

References

[1]
Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
[2]
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
CrossRef ADS Google scholar
[3]
C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569 (2009)
CrossRef ADS Google scholar
[4]
A. E. Motter, Spontaneous synchrony breaking, Nat. Phys. 6(3), 164 (2010)
CrossRef ADS Google scholar
[5]
Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, EPL 97(1), 10009 (2012)
CrossRef ADS Google scholar
[6]
Z. Wu, H. Cheng, Y. Feng, H. Li, Q. Dai, and J. Yang, Chimera states in bipartite networks of FitzHugh– Nagumo oscillators, Front. Phys. 13(2), 130503 (2018)
CrossRef ADS Google scholar
[7]
E. A. Martens, S. Thutupalli, A. Fourri’ere, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)
CrossRef ADS Google scholar
[8]
M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
CrossRef ADS Google scholar
[9]
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)
CrossRef ADS Google scholar
[10]
H. Cheng, Q. Dai, N. Wu, H. Li, and J. Yang, Chimera states in nonlocally coupled phase oscillators with biharmonic interaction, Commun. Nonlinear Sci. Numer. Simul. 56, 1 (2018)
CrossRef ADS Google scholar
[11]
X. Li, R. Bi, Y. Sun, S. Zhang, and Q. Song, chimera states in Gaussian coupled map lattices, Front. Phys. 13(2), 130502 (2018)
CrossRef ADS Google scholar
[12]
H. Xu, G. Wang, L. Huang, and Y. Lai, Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera, Phys. Rev. Lett. 120(12), 124101 (2018)
CrossRef ADS Google scholar
[13]
I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)
CrossRef ADS Google scholar
[14]
I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, Nonlinearity of local dynamics promotes multichimeras, Chaos 25(8), 083104 (2015)
CrossRef ADS Google scholar
[15]
I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
CrossRef ADS Google scholar
[16]
J. Hizanidis, V. Kanas, A. Bezerianos, and T. Bountis, Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models, Int. J. Bifurcat. Chaos 24(03), 1450030 (2014)
CrossRef ADS Google scholar
[17]
H. Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E 73(3), 031907 (2006)
CrossRef ADS Google scholar
[18]
S. Olmi, E. A. Martens, S. Thutupalli, and A. Torcini, Intermittent chaotic chimeras for coupled rotators, Phys. Rev. E 92, 030901(R) (2015)
CrossRef ADS Google scholar
[19]
A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 112(14), 144103 (2014)
CrossRef ADS Google scholar
[20]
G. C. Sethia and A. Sen, Chimera states: The existence criteria revisited, Phys. Rev. Lett. 112(14), 144101 (2014)
CrossRef ADS Google scholar
[21]
V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M. Lakshmanan, Mechanism for intensity-induced chimera states in globally coupled oscillators, Phys. Rev. E 90(6), 062913 (2014)
CrossRef ADS Google scholar
[22]
K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, Impact of symmetry breaking in networks of globally coupled oscillators, Phys. Rev. E 91(5), 052915 (2015)
CrossRef ADS Google scholar
[23]
C. R. Laing, Chimeras in networks with purely local coupling, Phys. Rev. E 92, 050904(R) (2015)
CrossRef ADS Google scholar
[24]
B. K. Bera, D. Ghosh, and M. Lakshmanan, Chimera states in bursting neurons, Phys. Rev. E 93(1), 012205 (2016)
CrossRef ADS Google scholar
[25]
E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
CrossRef ADS Google scholar
[26]
C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
CrossRef ADS Google scholar
[27]
M. J. Panaggio and D. M. Abrams, Chimera states on a flat torus, Phys. Rev. Lett. 110(9), 094102 (2013)
CrossRef ADS Google scholar
[28]
M. J. Panaggio and D. M. Abrams, Chimera states on the surface of a sphere, Phys. Rev. E 91(2), 022909 (2015)
CrossRef ADS Google scholar
[29]
Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
CrossRef ADS Google scholar
[30]
X. Jiang and D. M. Abrams, Symmetry-broken states on networks of coupled oscillators, Phys. Rev. E 93(5), 052202 (2016)
CrossRef ADS Google scholar
[31]
N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)
CrossRef ADS Google scholar
[32]
Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, and J. Yang, From collective oscillation to chimera state in a nonlocally coupled excitable system, Nonlinear Dyn. 91(3), 1723 (2018)
CrossRef ADS Google scholar
[33]
Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
CrossRef ADS Google scholar
[34]
Q. Dai, K. Yang, H. Cheng, H. Li, F. Xie, and J. Yang, Chimera states in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras, arXiv: 1808.03220v1 (2018)
[35]
M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Disturbances in a power transmission system, Phys. Rev. E 61(5), 4877 (2000)
CrossRef ADS Google scholar
[36]
R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95(1), 215 (2007)
CrossRef ADS Google scholar
[37]
J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, and A. L. Barabasi, Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci. USA 104(18), 7332 (2007)
CrossRef ADS Google scholar
[38]
S. Majhi and D. Ghosh, Amplitude death and resurgence of oscillation in networks of mobile oscillators, EPL 118(4), 40002 (2017)
CrossRef ADS Google scholar
[39]
C. Shen, H. Chen, and Z. Hou, Mobility-enhanced signal response in metapopulation networks of coupled oscillators, EPL 102(3), 38004 (2013)
CrossRef ADS Google scholar
[40]
M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Synchronization of moving chaotic agents, Phys. Rev. Lett. 100(4), 044102 (2018)
CrossRef ADS Google scholar
[41]
J. Gómez-Gardeñes, V. Nicosia, R. Sinatra, and V. Latora, Motion-induced synchronization in metapopulations of mobile agents, Phys. Rev. E 87(3), 032814 (2013)
CrossRef ADS Google scholar
[42]
Y. Eom, S. Boccaletti, and G. Caldarelli, Concurrent enhancement of percolation and synchronization in adaptive networks, Sci. Rep. 6(1), 27111 (2016)
CrossRef ADS Google scholar
[43]
N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Synchronization in networks of mobile oscillators, Phys. Rev. E 83, 025101(R) (2011)
CrossRef ADS Google scholar
[44]
L. Prignano, O. Sagarra, and A. Díaz-Guilera, Tuning Synchronization of Integrate-and-Fire Oscillators through Mobility, Phys. Rev. Lett. 110(11), 114101 (2013)
CrossRef ADS Google scholar
[45]
A. Beardo, L. Prignano, O. Sagarra, and A. Díaz-Guilera, Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization, Phys. Rev. E 96(6), 062306 (2017)
CrossRef ADS Google scholar
[46]
G. Petrungaro, K. Uriu, and L. G. Morelli, Mobilityinduced persistent chimera states, Phys. Rev. E 96(6), 062210 (2017)
CrossRef ADS Google scholar
[47]
M. Wolfrum and O. E. Omelchenko, Chimera states are chaotic transients. Phys. Rev. E 84, 015201(R) (2011)
CrossRef ADS Google scholar
[48]
P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, How basin stability complements the linear-stability paradigm, Nat. Phys. 9(2), 89 (2013)
CrossRef ADS Google scholar
[49]
K. Uriu, S. Ares, A. C. Oates, and L. G. Morelli, Dynamics of mobile coupled phase oscillators, Phys. Rev. E 87(3), 032911 (2013)
CrossRef ADS Google scholar
[50]
F. Peruani, E. M. Nicola, and L. G. Morelli, Mobility induces global synchronization of oscillators in periodic extended systems, New J. Phys. 12(9), 093029 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2899 KB)

Accesses

Citations

Detail

Sections
Recommended

/