Chimera dynamics in nonlocally coupled moving phase oscillators
Wen-Hao Wang, Qiong-Lin Dai, Hong-Yan Cheng, Hai-Hong Li, Jun-Zhong Yang
Chimera dynamics in nonlocally coupled moving phase oscillators
Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled dynamical units, prevail in a variety of systems. However, the interaction structures among oscillators are static in most of studies on chimera state. In this work, we consider a population of agents. Each agent carries a phase oscillator. We assume that agents perform Brownian motions on a ring and interact with each other with a kernel function dependent on the distance between them. When agents are motionless, the model allows for several dynamical states including two different chimera states (the type-I and the type-II chimeras). The movement of agents changes the relative positions among them and produces perpetual noise to impact on the model dynamics. We find that the response of the coupled phase oscillators to the movement of agents depends on both the phase lag α, determining the stabilities of chimera states, and the agent mobility D. For low mobility, the synchronous state transits to the type-I chimera state for α close to π/2 and attracts other initial states otherwise. For intermediate mobility, the coupled oscillators randomly jump among different dynamical states and the jump dynamics depends on α. We investigate the statistical properties in these different dynamical regimes and present the scaling laws between the transient time and the mobility for low mobility and relations between the mean lifetimes of different dynamical states and the mobility for intermediate mobility.
chimera states / Brownian motion / nonlocal coupling / phase oscillators
[1] |
Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
|
[2] |
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
CrossRef
ADS
Google scholar
|
[3] |
C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569 (2009)
CrossRef
ADS
Google scholar
|
[4] |
A. E. Motter, Spontaneous synchrony breaking, Nat. Phys. 6(3), 164 (2010)
CrossRef
ADS
Google scholar
|
[5] |
Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, EPL 97(1), 10009 (2012)
CrossRef
ADS
Google scholar
|
[6] |
Z. Wu, H. Cheng, Y. Feng, H. Li, Q. Dai, and J. Yang, Chimera states in bipartite networks of FitzHugh– Nagumo oscillators, Front. Phys. 13(2), 130503 (2018)
CrossRef
ADS
Google scholar
|
[7] |
E. A. Martens, S. Thutupalli, A. Fourri’ere, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)
CrossRef
ADS
Google scholar
|
[8] |
M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
CrossRef
ADS
Google scholar
|
[9] |
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)
CrossRef
ADS
Google scholar
|
[10] |
H. Cheng, Q. Dai, N. Wu, H. Li, and J. Yang, Chimera states in nonlocally coupled phase oscillators with biharmonic interaction, Commun. Nonlinear Sci. Numer. Simul. 56, 1 (2018)
CrossRef
ADS
Google scholar
|
[11] |
X. Li, R. Bi, Y. Sun, S. Zhang, and Q. Song, chimera states in Gaussian coupled map lattices, Front. Phys. 13(2), 130502 (2018)
CrossRef
ADS
Google scholar
|
[12] |
H. Xu, G. Wang, L. Huang, and Y. Lai, Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera, Phys. Rev. Lett. 120(12), 124101 (2018)
CrossRef
ADS
Google scholar
|
[13] |
I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)
CrossRef
ADS
Google scholar
|
[14] |
I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, Nonlinearity of local dynamics promotes multichimeras, Chaos 25(8), 083104 (2015)
CrossRef
ADS
Google scholar
|
[15] |
I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
CrossRef
ADS
Google scholar
|
[16] |
J. Hizanidis, V. Kanas, A. Bezerianos, and T. Bountis, Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models, Int. J. Bifurcat. Chaos 24(03), 1450030 (2014)
CrossRef
ADS
Google scholar
|
[17] |
H. Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E 73(3), 031907 (2006)
CrossRef
ADS
Google scholar
|
[18] |
S. Olmi, E. A. Martens, S. Thutupalli, and A. Torcini, Intermittent chaotic chimeras for coupled rotators, Phys. Rev. E 92, 030901(R) (2015)
CrossRef
ADS
Google scholar
|
[19] |
A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 112(14), 144103 (2014)
CrossRef
ADS
Google scholar
|
[20] |
G. C. Sethia and A. Sen, Chimera states: The existence criteria revisited, Phys. Rev. Lett. 112(14), 144101 (2014)
CrossRef
ADS
Google scholar
|
[21] |
V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M. Lakshmanan, Mechanism for intensity-induced chimera states in globally coupled oscillators, Phys. Rev. E 90(6), 062913 (2014)
CrossRef
ADS
Google scholar
|
[22] |
K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, Impact of symmetry breaking in networks of globally coupled oscillators, Phys. Rev. E 91(5), 052915 (2015)
CrossRef
ADS
Google scholar
|
[23] |
C. R. Laing, Chimeras in networks with purely local coupling, Phys. Rev. E 92, 050904(R) (2015)
CrossRef
ADS
Google scholar
|
[24] |
B. K. Bera, D. Ghosh, and M. Lakshmanan, Chimera states in bursting neurons, Phys. Rev. E 93(1), 012205 (2016)
CrossRef
ADS
Google scholar
|
[25] |
E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
CrossRef
ADS
Google scholar
|
[26] |
C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
CrossRef
ADS
Google scholar
|
[27] |
M. J. Panaggio and D. M. Abrams, Chimera states on a flat torus, Phys. Rev. Lett. 110(9), 094102 (2013)
CrossRef
ADS
Google scholar
|
[28] |
M. J. Panaggio and D. M. Abrams, Chimera states on the surface of a sphere, Phys. Rev. E 91(2), 022909 (2015)
CrossRef
ADS
Google scholar
|
[29] |
Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
CrossRef
ADS
Google scholar
|
[30] |
X. Jiang and D. M. Abrams, Symmetry-broken states on networks of coupled oscillators, Phys. Rev. E 93(5), 052202 (2016)
CrossRef
ADS
Google scholar
|
[31] |
N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)
CrossRef
ADS
Google scholar
|
[32] |
Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, and J. Yang, From collective oscillation to chimera state in a nonlocally coupled excitable system, Nonlinear Dyn. 91(3), 1723 (2018)
CrossRef
ADS
Google scholar
|
[33] |
Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
CrossRef
ADS
Google scholar
|
[34] |
Q. Dai, K. Yang, H. Cheng, H. Li, F. Xie, and J. Yang, Chimera states in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras, arXiv: 1808.03220v1 (2018)
|
[35] |
M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Disturbances in a power transmission system, Phys. Rev. E 61(5), 4877 (2000)
CrossRef
ADS
Google scholar
|
[36] |
R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95(1), 215 (2007)
CrossRef
ADS
Google scholar
|
[37] |
J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, and A. L. Barabasi, Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci. USA 104(18), 7332 (2007)
CrossRef
ADS
Google scholar
|
[38] |
S. Majhi and D. Ghosh, Amplitude death and resurgence of oscillation in networks of mobile oscillators, EPL 118(4), 40002 (2017)
CrossRef
ADS
Google scholar
|
[39] |
C. Shen, H. Chen, and Z. Hou, Mobility-enhanced signal response in metapopulation networks of coupled oscillators, EPL 102(3), 38004 (2013)
CrossRef
ADS
Google scholar
|
[40] |
M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Synchronization of moving chaotic agents, Phys. Rev. Lett. 100(4), 044102 (2018)
CrossRef
ADS
Google scholar
|
[41] |
J. Gómez-Gardeñes, V. Nicosia, R. Sinatra, and V. Latora, Motion-induced synchronization in metapopulations of mobile agents, Phys. Rev. E 87(3), 032814 (2013)
CrossRef
ADS
Google scholar
|
[42] |
Y. Eom, S. Boccaletti, and G. Caldarelli, Concurrent enhancement of percolation and synchronization in adaptive networks, Sci. Rep. 6(1), 27111 (2016)
CrossRef
ADS
Google scholar
|
[43] |
N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Synchronization in networks of mobile oscillators, Phys. Rev. E 83, 025101(R) (2011)
CrossRef
ADS
Google scholar
|
[44] |
L. Prignano, O. Sagarra, and A. Díaz-Guilera, Tuning Synchronization of Integrate-and-Fire Oscillators through Mobility, Phys. Rev. Lett. 110(11), 114101 (2013)
CrossRef
ADS
Google scholar
|
[45] |
A. Beardo, L. Prignano, O. Sagarra, and A. Díaz-Guilera, Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization, Phys. Rev. E 96(6), 062306 (2017)
CrossRef
ADS
Google scholar
|
[46] |
G. Petrungaro, K. Uriu, and L. G. Morelli, Mobilityinduced persistent chimera states, Phys. Rev. E 96(6), 062210 (2017)
CrossRef
ADS
Google scholar
|
[47] |
M. Wolfrum and O. E. Omelchenko, Chimera states are chaotic transients. Phys. Rev. E 84, 015201(R) (2011)
CrossRef
ADS
Google scholar
|
[48] |
P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, How basin stability complements the linear-stability paradigm, Nat. Phys. 9(2), 89 (2013)
CrossRef
ADS
Google scholar
|
[49] |
K. Uriu, S. Ares, A. C. Oates, and L. G. Morelli, Dynamics of mobile coupled phase oscillators, Phys. Rev. E 87(3), 032911 (2013)
CrossRef
ADS
Google scholar
|
[50] |
F. Peruani, E. M. Nicola, and L. G. Morelli, Mobility induces global synchronization of oscillators in periodic extended systems, New J. Phys. 12(9), 093029 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |