The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting

Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang

PDF(6835 KB)
PDF(6835 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 53403. DOI: 10.1007/s11467-019-0905-4
REVIEW ARTICLE
REVIEW ARTICLE

The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting

Author information +
History +

Abstract

Photoelectrochemical (PEC) water oxidation for sustainable clean energy and fuel production is a potential solution to the demands of organic pollutant removal and growing energy consumption. Development of high performance photoanodes, which is a key component in the system, is one of the central topics in the area. The crystal defect is an old concept but fruiting new understanding with promotive impact to the development of high performance photoanodes. In this review, we elucidated the typical defects involved in the photoanode with the position where they play the roles in the structure and how the properties of photoanode are influenced. In addition, we summarized the feasible protocols to maximize the pros but reduce the cons brought by having defects to the photoanode performance based on recent most prominent research advancements in the field. Finally, we briefly sketched the future perspective with the challenges of this topic when in the scenario of possible developments into practical applications.

Keywords

photoanode / defect engineering / oxide semiconductor / water splitting / charge transfer

Cite this article

Download citation ▾
Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting. Front. Phys., 2019, 14(5): 53403 https://doi.org/10.1007/s11467-019-0905-4

References

[1]
Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. S. Chen, N. Shibata, Y. Ikuhara, and K. Domen, Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles, Nat. Catal. 1(10), 756 (2018)
CrossRef ADS Google scholar
[2]
J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, Earth-abundant cocatalysts for semiconductorbased photocatalytic water splitting, Chem. Soc. Rev. 43(22), 7787 (2014)
CrossRef ADS Google scholar
[3]
T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43(22), 7520 (2014)
CrossRef ADS Google scholar
[4]
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)
CrossRef ADS Google scholar
[5]
Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Nakabayashi, N. Shibata, T. Yamada, A. Kudo, and K. Domen, Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration, Nat. Energy 2(1), 16191 (2017)
CrossRef ADS Google scholar
[6]
N. S. Lewis, Research opportunities to advance solar energy utilization, Science 351(6271), aad1920 (2016)
CrossRef ADS Google scholar
[7]
S. Chen and L. W. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution, Chem. Mater. 24(18), 3659 (2012)
CrossRef ADS Google scholar
[8]
J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting, Sci. Rep. 3(1), 2681 (2013)
CrossRef ADS Google scholar
[9]
J. Seo, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, M. Katayama, and K. Domen, The effects of annealing barium niobium oxynitride in argon on photoelectrochemical water oxidation activity, J. Mater. Chem. A Mater. Energy Sustain. 7(2), 493 (2019)
CrossRef ADS Google scholar
[10]
T. W. Kim and K. S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343(6174), 990 (2014)
CrossRef ADS Google scholar
[11]
Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, A front-illuminated nanostructured transparent BiVO4 photoanode for>2% efficient water splitting, Adv. Energy Mater. 6(2), 1501645 (2016)
CrossRef ADS Google scholar
[12]
J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes, Nat. Mater. 16(3), 335 (2017)
CrossRef ADS Google scholar
[13]
X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting, Adv. Energy Mater. 8(18), 1800101 (2018)
CrossRef ADS Google scholar
[14]
K. Sivula and R. van de Krol, Semiconducting materials for photoelectrochemical energy conversion, Nat. Rev. Mater. 1(2), 15010 (2016)
CrossRef ADS Google scholar
[15]
J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K. Sopian, M. A. Mat Teridi, and W. Sigmund, Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion, Chem. Soc. Rev. 44(23), 8424 (2015)
CrossRef ADS Google scholar
[16]
S. Sato, R. Nakane, T. Hada, and M. Tanaka, Spin injection into silicon in three-terminal vertical and fourterminal lateral devices with Fe/Mg/MgO/Si tunnel junctions having an ultrathin Mg insertion layer, Phys. Rev. B 96(23), 235204 (2017)
CrossRef ADS Google scholar
[17]
N. S. J. Frougier, D. Deng, M. Jerry, A. Aziz, L. Liu, G. Lavallee, T. S. Mayer, S. Gupta, and S. Datta, Phase-transition-FET exhibiting steep switching slope of 8 mV/decade and 36% enhanced ON current, IEEE Symposium on VLSI Technology2158 (2016)
CrossRef ADS Google scholar
[18]
W. Zhang, D. Yan, X. Tong, and M. Liu, Ultrathin lutetium oxide film as an epitaxial hole-blocking layer for crystalline bismuth vanadate water splitting photoanodes, Adv. Funct. Mater. 28(10), 1705512 (2018)
CrossRef ADS Google scholar
[19]
F. L. Souza, K. P. Lopes, E. Longo, and E. R. Leite, The influence of the film thickness of nanostructured alpha-Fe2O3 on water photooxidation, Phys. Chem. Chem. Phys. 11(8), 1215 (2009)
CrossRef ADS Google scholar
[20]
O. Zandi, B. M. Klahr, and T. W. Hamann, Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: Resurrection of the dead layer, Energy Environ. Sci. 6(2), 634 (2013)
CrossRef ADS Google scholar
[21]
F. Le Formal, S. R. Pendlebury, M. Cornuz, S. D. Tilley, M. Grätzel, and J. R. Durrant, Back electron–hole recombination in hematite photoanodes for water splitting, J. Am. Chem. Soc. 136(6), 2564 (2014)
CrossRef ADS Google scholar
[22]
W. Zhang, D. Yan, K. Appavoo, J. Cen, Q. Wu, A. Orlov, M. Y. Sfeir, and M. Liu, Unravelling photocarrier dynamics beyond the space charge region for photoelectrochemical water splitting, Chem. Mater. 29(9), 4036 (2017)
CrossRef ADS Google scholar
[23]
M. Huang, C. Li, L. Zhang, Q. Chen, Z. Zhen, Z. Li, and H. Zhu, Twin structure in BiVO4 photoanodes boosting water oxidation performance through enhanced charge separation and transport, Adv. Energy Mater. 8(32), 1802198 (2018)
CrossRef ADS Google scholar
[24]
Y. Liang, T. Tsubota, L. P. A. Mooij, and R. van de Krol, Highly improved quantum efficiencies for thin film BiVO4 photoanodes, J. Phys. Chem. C 115(35), 17594 (2011)
CrossRef ADS Google scholar
[25]
S. Byun, B. Kim, S. Jeon, and B. Shin, Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation, J. Mater. Chem. A Mater. Energy Sustain. 5(15), 6905 (2017)
CrossRef ADS Google scholar
[26]
Y. Asakura, T. Higashi, H. Nishiyama, H. Kobayashi, M. Nakabayashi, N. Shibata, T. Minegishi, T. Hisatomi, M. Katayama, T. Yamada, and K. Domen, Activation of a particulate Ta3N5 water-oxidation photoanode with a GaN hole-blocking layer, Sustainable Energy Fuels 2(1), 73 (2018)
CrossRef ADS Google scholar
[27]
E. Alarcón-Lladó, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey, and J. W. Ager, BiVO4 thin film photoanodes grown by chemical vapor deposition, Phys. Chem. Chem. Phys. 2014(4), 1651 (2014)
CrossRef ADS Google scholar
[28]
A. Annamalai, P. S. Shinde, A. Subramanian, J. Y. Kim, J. H. Kim, S. H. Choi, J. S. Lee, and J. S. Jang, Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: Enhanced interface and Ti4+ doping, J. Mater. Chem. A Mater. Energy Sustain. 3(9), 5007 (2015)
CrossRef ADS Google scholar
[29]
T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Gratzel, and N. Mathews, Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer, Adv. Mater. 24(20), 2699 (2012)
CrossRef ADS Google scholar
[30]
Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, and T. Kitamori, Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting, Small 10(18), 3692 (2014)
CrossRef ADS Google scholar
[31]
X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim, and J. H. Park, Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures, Nat. Commun. 5(1), 4775 (2014)
CrossRef ADS Google scholar
[32]
A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOxhole blocking layer, Appl. Phys. Lett. 90(16), 163517 (2007)
CrossRef ADS Google scholar
[33]
W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, and Y. Yan, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells, Nat. Commun. 6(1), 6700 (2015)
CrossRef ADS Google scholar
[34]
P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, Design and fabrication of a precious metal-free tandem core-shell p+n Si/W-doped BiVO4 photoanode for unassisted water splitting, Adv. Energy Mater. 7(22), 1701515 (2017)
CrossRef ADS Google scholar
[35]
T. Hisatomi, J. Brillet, M. Cornuz, F. Le Formal, N. Tétreault, K. Sivula, and M. Grätzel, A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting, Faraday Discuss. 155, 223 (2012)
CrossRef ADS Google scholar
[36]
P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, and X. Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation, Nano Lett. 14(2), 1099 (2014)
CrossRef ADS Google scholar
[37]
B. Lamm, L. Zhou, P. Rao, and M. Stefik, Atomic layer deposition of space-efficient SnO2 underlayers for BiVO4 host-guest architectures for photoassisted water splitting, ChemSusChem 12, 1 (2018)
CrossRef ADS Google scholar
[38]
H. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
CrossRef ADS Google scholar
[39]
T. Ohno, T. Mitsui, and M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Chem. Lett. 32(4), 364 (2003)
CrossRef ADS Google scholar
[40]
N. Liu, V. Haublein, X. Zhou, U. Venkatesan, M. Hartmann, M. Mackovic, T. Nakajima, E. Spiecker, A. Osvet, L. Frey, and P. Schmuki, “Black” TiO2 nanotubes formed by high-energy proton implantation show noblemetal- co-catalyst free photocatalytic H2-evolution, Nano Lett. 15(10), 6815 (2015)
CrossRef ADS Google scholar
[41]
X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331(6018), 746 (2011)
CrossRef ADS Google scholar
[42]
J. Cai, M. Wu, Y. Wang, H. Zhang, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, and J. Gong, Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals, Chem 2(6), 877 (2017)
CrossRef ADS Google scholar
[43]
Y. Yang, L. C. Yin, Y. Gong, P. Niu, J. Q. Wang, L. Gu, X. Chen, G. Liu, L. Wang, and H. M. Cheng, An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies, Adv. Mater. 30(6), 1704479 (2018)
CrossRef ADS Google scholar
[44]
R. Asahi, T. Morikawa, and K. A. Ohwaki, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
CrossRef ADS Google scholar
[45]
S. Sakthivel, M. Janczarek, and H. Kisch, Visible light activity and photoelectrochemical properties of nitrogendoped TiO2, J. Phys. Chem. B 108(50), 19384 (2004)
CrossRef ADS Google scholar
[46]
X. Wang, R. Long, D. Liu, D. Yang, C. Wang, and Y. Xiong, Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays, Nano Energy 24, 87 (2016)
CrossRef ADS Google scholar
[47]
T. M. R. Asahi, T. Ohwaki, and K. Aoki, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
CrossRef ADS Google scholar
[48]
G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao, C. Chen, C. Wang, Y. Li, X. Huang, L. Miao, C. Jiang, Y. Huang, and X. Duan, Significantly enhanced visible light photoelectrochemical activity in TiO2 nanowire arrays by nitrogen implantation, Nano Lett. 15(7), 4692 (2015)
CrossRef ADS Google scholar
[49]
T. Lin, C. Yang, Z. Wang, H. Yin, X. Lü, F. Huang, J. Lin, X. Xie, and M. Jiang, Effective nonmetal incorporation in black titania with enhanced solar energy utilization, Energy Environ. Sci. 7(3), 967 (2014)
CrossRef ADS Google scholar
[50]
S. Hejazi, N. T. Nguyen, A. Mazare, and P. Schmuki, Aminated TiO2 nanotubes as a photoelectrochemical water splitting photoanode, Catal. Today 281, 189 (2017)
CrossRef ADS Google scholar
[51]
S. A. Ansari and M. H. Cho, Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications, Sci. Rep. 6(1), 25405 (2016)
CrossRef ADS Google scholar
[52]
S. Komatsuda, Y. Asakura, J. J. M. Vequizo, A. Yamakata, and S. Yin, Enhanced photocatalytic NO decomposition of visible-light responsive F-TiO2/(N; C)-TiO2 by charge transfer between F-TiO2 and (N; C)-TiO2 through their doping levels, Appl. Catal. B 238, 358 (2018)
CrossRef ADS Google scholar
[53]
X. Kang, X. Z. Song, Y. Han, J. Cao, and Z. Tan, Defect-engineered TiO2 hollow spiny nanocubes for phenol degradation under visible light irradiation, Sci. Rep. 8(1), 5904 (2018)
CrossRef ADS Google scholar
[54]
J. Premkumar, Development of super-hydrophilicity on nitrogen-doped TiO2thin film surface by photoelectrochemical method under visible light, Chem. Mater. 16(21), 3980 (2004)
CrossRef ADS Google scholar
[55]
S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H.Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem. 40(4), 3000 (2016)
CrossRef ADS Google scholar
[56]
X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications, Nanoscale 5(9), 3601 (2013)
CrossRef ADS Google scholar
[57]
H. Choi, D. Shin, B. C. Yeo, T. Song, S. S. Han, N. Park, and S. Kim, Simultaneously controllable doping sites and the activity of a W–N codoped TiO2 photocatalyst, ACS Catal. 6(5), 2745 (2016)
CrossRef ADS Google scholar
[58]
Q. Sun, D. Cortie, S. Zhang, T. J. Frankcombe, G. She, J. Gao, L. R. Sheppard, W. Hu, H. Chen, S. Zhuo, D. Chen, R. L. Withers, G. McIntyre, D. Yu, W. Shi, and Y. Liu, The formation of defect-pairs for highly efficient visiblelight catalysts, Adv. Mater. 29(11), 1605123 (2017)
CrossRef ADS Google scholar
[59]
H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, and F. Huang, Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting, J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8612 (2014)
CrossRef ADS Google scholar
[60]
J. Liang, N. Wang, Q. Zhang, B. Liu, X. Kong, C. Wei, D. Zhang, B. Yan, Y. Zhao, and X. Zhang, Exploring the mechanism of a pure and amorphous black-blue TiO2:H thin film as a photoanode in water splitting, Nano Energy 42, 151 (2017)
CrossRef ADS Google scholar
[61]
M. Krzywiecki, L. Grzadziel, A. Sarfraz, D. Iqbal, A. Szwajca, and A. Erbe, Zinc oxide as a defect-dominated material in thin films for photovoltaic applications – Experimental determination of defect levels, quantification of composition, and construction of band diagram, Phys. Chem. Chem. Phys. 17(15), 10004 (2015)
CrossRef ADS Google scholar
[62]
R. A. Wahyuono, F. Hermann-Westendorf, A. Dellith, C. Schmidt, J. Dellith, J. Plentz, M. Schulz, M. Presselt, M. Seyring, M. Rettenmeyer, and B. Dietzek, Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures, Chem. Phys.483–484, 112 (2017)
CrossRef ADS Google scholar
[63]
Y. Zhang, H. Zhao, X. Zhao, J. Lin, N. Li, Z. Huo, Z. Yan, M. Zhang, and S. Hu, Narrow-bandgap Nb2O5 nanowires with enclosed pores as high-performance photocatalyst, Sci. China Mater. 62(2), 203 (2019)
CrossRef ADS Google scholar
[64]
W. L. M. Lamers, M. Favaro, D. E. Starr, D. Friedrich, S. Lardhi, L. Cavallo, M. Harb, R. van de Krol, L. H. Wong, and F. F. Abdi, Enhanced carrier transport and bandgap reduction in sulfur modified BiVO4 photoanodes, Chem. Mater. 30, 8630 (2018)
CrossRef ADS Google scholar
[65]
V. Pasumarthi, T. Liu, M. Dupuis, and C. Li, Charge carrier transport dynamics in W/Mo-doped BiVO4: First principles-based mesoscale characterization, J. Mater. Chem. A Mater. Energy Sustain. 7(7), 3054 (2019)
CrossRef ADS Google scholar
[66]
T. Li, J. He, B. Pena, and C. P. Berlinguette, Curing BiVO4 photoanodes with ultraviolet light enhances photoelectrocatalysis, Angew. Chem. Int. Ed. 55(5), 1769 (2016)
CrossRef ADS Google scholar
[67]
R. Niishiro, Y. Takano, Q. Jia, M. Yamaguchi, A. Iwase, Y. Kuang, T. Minegishi, T. Yamada, K. Domen, and A. Kudo, A CoOx-modified SnNb2O6 photoelectrode for highly efficient oxygen evolution from water, Chem. Commun. (Camb.) 53(3), 629 (2017)
CrossRef ADS Google scholar
[68]
Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M= Nb and Ta) and their photocatalytic properties, Chem. Mater. 20(4), 1299 (2008)
CrossRef ADS Google scholar
[69]
Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium (VI), Bull. Chem. Soc. Jpn. 80(5), 885 (2007)
CrossRef ADS Google scholar
[70]
D. Noureldine and K. Takanabe, State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: Electronic structures and optoelectronic properties, Catal. Sci. Technol. 6(21), 7656 (2016)
CrossRef ADS Google scholar
[71]
H. Seo, Y. Ping, and G. Galli, Role of point defects in enhancing the conductivity of BiVO4, Chem. Mater. 30(21), 7793 (2018)
CrossRef ADS Google scholar
[72]
F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study, J. Phys. Chem. Lett. 4(16), 2752 (2013)
CrossRef ADS Google scholar
[73]
Z. Zhu, P. Sarker, C. Zhao, L. Zhou, R. L. Grimm, M. N. Huda, and P. M. Rao, Photoelectrochemical properties and behavior of alpha-SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films, ACS Appl. Mater. Interfaces 9(2), 1459 (2017)
CrossRef ADS Google scholar
[74]
A. Ziani, M. Harb, D. Noureldine, and K. Takanabe, UVVis optoelectronic properties of a-SnWO4: A comparative experimental and density functional theory based study, APL Mater. 3(9), 096101 (2015)
CrossRef ADS Google scholar
[75]
D. Bohra and W. A. Smith, Improved charge separation via Fe-doping of copper tungstate photoanodes, Phys. Chem. Chem. Phys. 17(15), 9857 (2015)
CrossRef ADS Google scholar
[76]
Y. Gao and T. W. Hamann, Quantitative hole collection for photoelectrochemical water oxidation with CuWO4, Chem. Commun. 53(7), 1285 (2017)
CrossRef ADS Google scholar
[77]
S. Byun, G. Jung, Y. Shi, M. Lanza, and B. Shin, Aging of a vanadium precursor solution: Influencing material properties and photoelectrochemical water oxidation performance of solution-processed BiVO4 photoanodes, Adv. Funct. Mater.1806662 (2019)
CrossRef ADS Google scholar
[78]
M. Ziwritsch, S. Müller, H. Hempel, T. Unold, F. F. Abdi, R. van de Krol, D. Friedrich, and R. Eichberger, Direct time-resolved observation of carrier trapping and polaron conductivity in BiVO4, ACS Energy Lett. 1(5), 888 (2016)
CrossRef ADS Google scholar
[79]
B. J. Trześniewski, I. A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D. A. Vermaas, A. Longo, S. Gimenez, and W. A. Smith, Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes, Energy Environ. Sci. 10(6), 1517 (2017)
CrossRef ADS Google scholar
[80]
J. K.Cooper, S. B. Scott, Y. Ling, J. Yang, S. Hao, Y. Li, F. M. Toma, M. Stutzmann, K. V. Lakshmi, and I. D. Sharp, Role of hydrogen in defining the n-type character of BiVO4 photoanodes, Chem. Mater. 28(16), 5761 (2016)
CrossRef ADS Google scholar
[81]
F. F. Abdi, N. Firet, and R. van de Krol, Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping, ChemCatChem 5(2), 490 (2013)
CrossRef ADS Google scholar
[82]
Y. Bu, J. Tian, Z. Chen, Q. Zhang, W. Li, F. Tian, and J. P. Ao, Optimization of the photo-electrochemical performance of Mo-Doped BiVO4 photoanode by controlling the metal-oxygen bond state on (020) facet, Adv. Mater. Interfaces 4(10), 1601235 (2017)
CrossRef ADS Google scholar
[83]
S. K. Cho, H. S. Park, H. C. Lee, K. M. Nam, and A. J. Bard, Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation, J. Phys. Chem. C 117(44), 23048 (2013)
CrossRef ADS Google scholar
[84]
J. H. Xin Zhao, X. Yao, S. Chen, and Z. Chen, Clarifying the roles of oxygen vacancy in W-doped BiVO4 for solar water splitting, ACS Appl. Energy Mater. 1(7), 3410 (2018)
CrossRef ADS Google scholar
[85]
V. Nair, C. L. Perkins, Q. Lin, and M. Law, Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution, Energy Environ. Sci. 9(4), 1412 (2016)
CrossRef ADS Google scholar
[86]
G. V. Govindaraju, J. M. Morbec, G. A. Galli, and K. S. Choi, Experimental and computational investigation of lanthanide ion doping on BiVO4 photoanodes for solar water splitting, J. Phys. Chem. C 122(34), 19416 (2018)
CrossRef ADS Google scholar
[87]
K. P. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang, and J. S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes, ChemSusChem 5(10), 1926 (2012)
CrossRef ADS Google scholar
[88]
K. Ding, B. Chen, Z. Fang, Y. Zhang, and Z. Chen, Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study, Phys. Chem. Chem. Phys. 16(26), 13465 (2014)
CrossRef ADS Google scholar
[89]
H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi, and H. Park, Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance, J. Phys. Chem. C 117(18), 9104 (2013)
CrossRef ADS Google scholar
[90]
J. A. Seabold, K. Zhu, and N. R. Neale, Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport, Phys. Chem. Chem. Phys. 16(3), 1121 (2014)
CrossRef ADS Google scholar
[91]
H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang, and A. J. Bard, Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation, J. Phys. Chem. C 115(36), 17870 (2011)
CrossRef ADS Google scholar
[92]
I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Grätzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting, J. Phys. Chem. C 113(2), 772 (2009)
CrossRef ADS Google scholar
[93]
F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam, and R. van de Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun. 4(1), 2195 (2013)
CrossRef ADS Google scholar
[94]
A. J. Rettie, H. C. Lee, L. G. Marshall, J. F. Lin, C. Capan, J. Lindemuth, J. S. McCloy, J. Zhou, A. J. Bard, and C. B. Mullins, Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide, J. Am. Chem. Soc. 135(30), 11389 (2013)
CrossRef ADS Google scholar
[95]
W. Zhang, F. Wu, J. Li, D. Yan, J. Tao, Y. Ping, and M. Liu, Unconventional relation between charge transport and photocurrent via boosting small polaron hopping for photoelectrochemical water splitting, ACS Energy Lett. 3(9), 2232 (2018)
CrossRef ADS Google scholar
[96]
L. Zhang, X. Ye, M. Boloor, A. Poletayev, N. A. Melosh, and W. C. Chueh, Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length, Energy Environ. Sci. 9(6), 2044 (2016)
CrossRef ADS Google scholar
[97]
J. W. Jang, D. Friedrich, S. Müller, M. Lamers, H. Hempel, S. Lardhi, Z. Cao, M. Harb, L. Cavallo, R. Heller, R. Eichberger, R. van de Krol, and F. F. Abdi, Enhancing charge carrier lifetime in metal oxide photoelectrodes through mild hydrogen treatment, Adv. Energy Mater. 7(22), 1701536 (2017)
CrossRef ADS Google scholar
[98]
D. K. Lee, D. Lee, M. A. Lumley, and K. S. Choi, Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting, Chem. Soc. Rev. 48(7), 2126 (2019)
CrossRef ADS Google scholar
[99]
G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, Hydrogentreated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Lett. 11(7), 3026 (2011)
CrossRef ADS Google scholar
[100]
N. Guijarro, P. Bornoz, M. Prévot, X. Yu, X. Zhu, M. Johnson, X. Jeanbourquin, F. Le Formal, and K. Sivula, Evaluating spinel ferrites MFe2O4 (M= Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations, Sustainable Energy Fuels 2(1), 103 (2018)
CrossRef ADS Google scholar
[101]
Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang, and P. Xiao, Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment, Appl. Surf. Sci. 361, 133 (2016)
CrossRef ADS Google scholar
[102]
Y. Ling, G. Wang, J. Reddy, C. Wang, J. Z. Zhang, and Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angew. Chem. Int. Ed. 51(17), 4074 (2012)
CrossRef ADS Google scholar
[103]
A. Milbrat, W. J. C. Vijselaar, Y. Guo, B. Mei, J. Huskens, and G. Mul, Integration of molybdenum-doped, hydrogen-annealed BiVO4 with silicon microwires for photoelectrochemical applications, ACS Sustain. Chem. & Eng. 7(5), 5034 (2019)
CrossRef ADS Google scholar
[104]
Y. Zhang, X. Zhang, D. Wang, F. Wan, and Y. Liu, Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer, Appl. Surf. Sci. 403, 389 (2017)
CrossRef ADS Google scholar
[105]
G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, and Y. Li, Hydrogen-treated WO3 nanoflakes show enhanced photostability, Energy Environ. Sci. 5(3), 6180 (2012)
CrossRef ADS Google scholar
[106]
W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, and G. Zheng, WO3 nanoflakes for enhanced photoelectrochemical conversion, ACS Nano 8(11), 11770 (2014)
CrossRef ADS Google scholar
[107]
D. Ma, J. Xie, J. Li, S. Liu, F. Wang, H. Zhang, W. Wang, A. Wang, and H. Sun, Synthesis and hydrogen reduction of nano-sized copper tungstate powders produced by a hydrothermal method, Int. J. Refract. Met. Hard Mater. 46, 152 (2014)
CrossRef ADS Google scholar
[108]
D. Hu, P. Diao, D. Xu, M. Xia, Y. Gu, Q. Wu, C. Li, and S. Yang, Copper(II) tungstate nanoflake array films: Sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting, Nanoscale 8(11), 5892 (2016)
CrossRef ADS Google scholar
[109]
J. H. Kim, Y. J. Jang, J. H. Kim, J. W. Jang, S. H. Choi, and J. S. Lee, Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting, Nanoscale 7(45), 19144 (2015)
CrossRef ADS Google scholar
[110]
S. Wang, P. Chen, J. H. Yun, Y. Hu, and L. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting, Angew. Chem. Int. Ed. 56(29), 8500 (2017)
CrossRef ADS Google scholar
[111]
S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, and A. M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci. 4(12), 5028 (2011)
CrossRef ADS Google scholar
[112]
Q. Shi, S. Murcia-López, P. Tang, C. Flox, J. R. Morante, Z. Bian, H. Wang, and T. Andreu, Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process, ACS Catal. 8(4), 3331 (2018)
CrossRef ADS Google scholar
[113]
W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, and Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy Environ. Sci. 4(10), 4046 (2011)
CrossRef ADS Google scholar
[114]
L. Gao, Y. Li, J. Ren, S. Wang, R. Wang, G. Fu, and Y. Hu, Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: Realizing efficient photocatalytic overall water splitting, Appl. Catal. B 202, 127 (2017)
CrossRef ADS Google scholar
[115]
C. Chen, Y. Wei, G. Yuan, Q. Liu, R. Lu, X. Huang, Y. Cao, and P. Zhu, Synergistic effect of Si doping and heat treatments enhances the photoelectrochemical water oxidation performance of TiO2 nanorod arrays, Adv. Funct. Mater. 27(31), 1701575 (2017)
CrossRef ADS Google scholar
[116]
A. G. Hufnagel, H. Hajiyani, S. Zhang, T. Li, O. Kasian, B. Gault, B. Breitbach, T. Bein, D. Fattakhova-Rohlfing, C. Scheu, and R. Pentcheva, Why tin-doping enhances the efficiency of hematite photoanodes for water splittingthe full picture, Adv. Funct. Mater. 28(52), 1804472 (2018)
CrossRef ADS Google scholar
[117]
Y. Guo, N. Zhang, X. Wang, Q. Qian, S. Zhang, Z. Li, and Z. Zou, A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting, J. Mater. Chem. A Mater. Energy Sustain. 5(16), 7571 (2017)
CrossRef ADS Google scholar
[118]
J. H. Kim, J. H. Kim, J. W. Jang, J. Y. Kim, S. H. Choi, G. Magesh, J. Lee, and J. S. Lee, Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing, Adv. Energy Mater. 5(6), 1401933 (2015)
CrossRef ADS Google scholar
[119]
C. D. Morton, I. J. Slipper, M. J. K. Thomas, and B. D. Alexander, Synthesis and characterisation of Fe–V–O thin film photoanodes, J. Photochem. Photobiol. Chem. 216(2–3), 209 (2010)
CrossRef ADS Google scholar
[120]
G. Peng, J. Albero, H. Garcia, and M. Shalom, A watersplitting carbon nitride photoelectrochemical cell with efficient charge separation and remarkably low onset potential, Angew. Chem. Int. Ed. 57(48), 15807 (2018)
CrossRef ADS Google scholar
[121]
X. Shi, K. Zhang, K. Shin, J. H. Moon, T. W. Lee, and J. H. Park, Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting, Phys. Chem. Chem. Phys. 15(28), 11717 (2013)
CrossRef ADS Google scholar
[122]
L. Pei, B. Lv, S. Wang, Z. Yu, S. Yan, R. Abe, and Z. Zou, Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation, ACS Appl. Energy Mater. 1(8), 4150 (2018)
CrossRef ADS Google scholar
[123]
J. Seo, H. Nishiyama, T. Yamada, and K. Domen, Visiblelight- responsive photoanodes for highly active, stable water oxidation, Angew. Chem. Int. Ed. 57(28), 8396 (2018)
CrossRef ADS Google scholar
[124]
M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, and K. Domen, Surface modification of CoOxloaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation, J. Am. Chem. Soc. 137(15), 5053 (2015)
CrossRef ADS Google scholar
[125]
Z. Zhu, H. Tian, M. Zhang, B. Liang, and W. Li, Preparation of a-SnWO4 hierarchical spheres by Bi3+-doping and their enhanced photocatalytic activity under visible light, Ceram. Int. 42(13), 14743 (2016)
CrossRef ADS Google scholar
[126]
S. Yao, M. Zhang, J. Di, Z. Wang, Y. Long, and W. Li, Preparation of a-SnWO4/SnO2 heterostructure with enhanced visible-light-driven photocatalytic activity, Appl. Surf. Sci. 357, 1528 (2015)
CrossRef ADS Google scholar
[127]
I. S. Cho, C. H. Kwak, D. W. Kim, S. Lee, and K. S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps, J. Phys. Chem. C 113(24), 10647 (2009)
CrossRef ADS Google scholar
[128]
Y. Wang, H. Sun, S. Tan, H. Feng, Z. Cheng, J. Zhao, A. Zhao, B. Wang, Y. Luo, J. Yang, and J. G. Hou, Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface, Nat. Commun. 4(1), 2214 (2013)
CrossRef ADS Google scholar
[129]
G. Liu, H. G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G. Q. M. Lu, and H. M. Cheng, Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets, J. Phys. Chem. C 113(52), 21784 (2009)
CrossRef ADS Google scholar
[130]
G. Liu, J. Pan, L. Yin, J. T. S. Irvine, F. Li, J. Tan, P. Wormald, and H. M. Cheng, Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv. Funct. Mater. 22(15), 3233 (2012)
CrossRef ADS Google scholar
[131]
J. Hu, X. Zhao, W. Chen, and Z. Chen, Enhanced charge transport and increased active sites on-Fe2O3 (110) nanorod surface containing oxygen vacancies for improved solar water oxidation performance, ACS Omega 3(11), 14973 (2018)
CrossRef ADS Google scholar
[132]
C. Fàbrega, D. Monllor-Satoca, S. Ampudia, A. Parra, T. Andreu, and J. R. Morante, Tuning the Fermi level and the kinetics of surface states of TiO2 nanorods by means of ammonia treatments, J. Phys. Chem. C 117(40), 20517 (2013)
CrossRef ADS Google scholar
[133]
A. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev. 95(3), 735 (1995)
CrossRef ADS Google scholar
[134]
A. Yamakata, T. Ishibashi, and H. Onishi, Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy, J. Mol. Catal. Chem. 199(1–2), 85 (2003)
CrossRef ADS Google scholar
[135]
T. Zhang, Y. Liu, J. Liang, and D. Wang, Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment, Appl. Surf. Sci. 394, 440 (2017)
CrossRef ADS Google scholar
[136]
T. Zhang, S. Cui, B. Yu, Z. Liu, and D. Wang, Surface engineering for an enhanced photoelectrochemical response of TiO2 nanotube arrays by simple surface air plasma treatment, Chem. Commun. 51(95), 16940 (2015)
CrossRef ADS Google scholar
[137]
T. L. Villarreal, R. Go’mez, M. Neumann-Spallart, N. Alonso-Vante, and P. Salvador, Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer (I): Photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination, J. Phys. Chem. B 108(39), 15172 (2004)
CrossRef ADS Google scholar
[138]
A. Kafizas, Y. Ma, E. Pastor, S. R. Pendlebury, C. Mesa, L. Francàs, F. Le Formal, N. Noor, M. Ling, C. Sotelo-Vazquez, C. J. Carmalt, I. P. Parkin, and J. R. Durrant, Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: A rate law analysis, ACS Catal. 7(7), 4896 (2017)
CrossRef ADS Google scholar
[139]
S. H. Szczepankiewicz, A. J. Colussi, and M. R. Hoffmann, Infrared spectra of photoinduced species on hydroxylated titania surfaces, J. Phys. Chem. B 104(42), 9842 (2000)
CrossRef ADS Google scholar
[140]
M. A. Grela, M. E. J. Coronel, and A. J. Colussi, Quantitative spin-trapping studies of weakly illuminated titanium dioxide sols: Implications for the mechanism of photocatalysis, J. Phys. Chem. 100(42), 16940 (1996)
CrossRef ADS Google scholar
[141]
X. Cheng, Q. Cheng, X. Deng, P. Wang, and H. Liu, A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac, Chemosphere 144, 888 (2016)
CrossRef ADS Google scholar
[142]
J. Cheng, J. VandeVondele, and M. Sprik, Identifying trapped electronic holes at the aqueous TiO2 interface, J. Phys. Chem. C 118(10), 5437 (2014)
CrossRef ADS Google scholar
[143]
Y. Ji, B. Wang, and Y. Luo, GGA+Ustudy on the mechanism of photodecomposition of water adsorbed on rutile TiO2 (110) surface: Free vs. trapped hole, J. Phys. Chem. C 118(2), 1027 (2014)
CrossRef ADS Google scholar
[144]
T. Hisatomi, F. Le Formal, M. Cornuz, J. Brillet, N. Tétreault, K. Sivula, and M. Grätzel, Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers, Energy Environ. Sci. 4(7), 2512 (2011)
CrossRef ADS Google scholar
[145]
Z. Hu, Z. Shen, and J. C. Yu, Covalent fixation of surface oxygen atoms on hematite photoanode for enhanced water oxidation, Chem. Mater. 28(2), 564 (2016)
CrossRef ADS Google scholar
[146]
C. Li, Z. Luo, T. Wang, and J. Gong, Surface, bulk, and interface: Rational design of hematite architecture toward efficient photo-electrochemical water splitting, Adv. Mater. 30(30), 1707502 (2018)
CrossRef ADS Google scholar
[147]
Y. He, J. E. Thorne, C. H. Wu, P. Ma, C. Du, Q. Dong, J. Guo, and D. Wang, What limits the performance of Ta3N5 for solar water splitting? Chem 1(4), 640 (2016)
CrossRef ADS Google scholar
[148]
Y. He, P. Ma, S. Zhu, M. Liu, Q. Dong, J. Espano, X. Yao, and D. Wang, Photo-induced performance enhancement of tantalum nitride for solar water oxidation, Joule 1(4), 831 (2017)
CrossRef ADS Google scholar
[149]
E. Nurlaela, Y. Sasaki, M. Nakabayashi, N. Shibata, T. Yamada, and K. Domen, Towards zero bias photoelectrochemical water splitting: onset potential improvement on a Mg:GaN modified-Ta3N5 photoanode, J. Mater. Chem. A Mater. Energy Sustain. 6(31), 15265 (2018)
CrossRef ADS Google scholar
[150]
Y. Kuang, T. Yamada, and K. Domen, Surface and interface engineering for photoelectrochemical water oxidation, Joule 1(2), 290 (2017)
CrossRef ADS Google scholar
[151]
P. Y. Tang, H. B. Xie, C. Ros, L. J. Han, M. Biset-Peiró, Y. M. He, W. Kramer, A. P. Rodríguez, E. Saucedo, J. R. Galán-Mascarós, T. Andreu, J. R. Morante, and J. Arbiol, Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering, Energy Environ. Sci. 10(10), 2124 (2017)
CrossRef ADS Google scholar
[152]
R. d. Krol and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer, New York, 2011, p 321
[153]
K. J. McDonald and K. S. Choi, Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation, Chem. Mater. 23(21), 4863 (2011)
CrossRef ADS Google scholar
[154]
B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes, Energy Environ. Sci. 5(6), 7626 (2012)
CrossRef ADS Google scholar
[155]
X. Yang, C. Du, R. Liu, J. Xie, and D. Wang, Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination, J. Catal. 304, 86 (2013)
CrossRef ADS Google scholar
[156]
G. Liu, S. Ye, P. Yan, F. Xiong, P. Fu, Z. Wang, Z. Chen, J. Shi, and C. Li, Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting, Energy Environ. Sci. 9(4), 1327 (2016)
CrossRef ADS Google scholar
[157]
F. F. Abdi and R. van de Krol, Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes, J. Phys. Chem. C 116(17), 9398 (2012)
CrossRef ADS Google scholar
[158]
B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes, J. Am. Chem. Soc. 134(40), 16693 (2012)
CrossRef ADS Google scholar
[159]
D. K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, and D. R. Gamelin, Photo-assisted electrodeposition of cobalt– phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation, Energy Environ. Sci. 4(5), 1759 (2011)
CrossRef ADS Google scholar
[160]
S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, Lightinduced water splitting with hematite: Improved nanostructure and iridium oxide catalysis, Angew. Chem. Int. Ed. 49(36), 6405 (2010)
CrossRef ADS Google scholar
[161]
W. Y. Sohn, J. E. Thorne, Y. Zhang, S. Kuwahara, Q. Shen, D. Wang, and K. Katayama, Charge carrier kinetics in hematite with NiFeOx coating in aqueous solutions: Dependence on bias voltage, J. Photochem. Photobiol. Chem. 353, 344 (2018)
CrossRef ADS Google scholar
[162]
X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng, and D. Wang, Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition, ACS Appl. Mater. Interfaces 6(15), 12005 (2014)
CrossRef ADS Google scholar
[163]
R. Liu, Z. Zheng, J. Spurgeon, and X. Yang, Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers, Energy Environ. Sci. 7(8), 2504 (2014)
CrossRef ADS Google scholar
[164]
M. Zhong, T. Hisatomi, Y. Sasaki, S. Suzuki, K. Teshima, M. Nakabayashi, N. Shibata, H. Nishiyama, M. Katayama, T. Yamada, and K. Domen, Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation, Angew. Chem. Int. Ed. 56(17), 4739 (2017)
CrossRef ADS Google scholar
[165]
S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation, Science 344(6187), 1005 (2014)
CrossRef ADS Google scholar
[166]
D. Eisenberg, H. S. Ahn, and A. J. Bard, Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide, J. Am. Chem. Soc. 136(40), 14011 (2014)
CrossRef ADS Google scholar
[167]
A. G. Scheuermann, J. P. Lawrence, K. W. Kemp, T. Ito, A. Walsh, C. E. Chidsey, P. K. Hurley, and P. C. McIntyre, Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes, Nat. Mater. 15(1), 99 (2016)
CrossRef ADS Google scholar
[168]
S. Hu, M. H. Richter, M. F. Lichterman, J. Beardslee, T. Mayer, B. S. Brunschwig, and N. S. Lewis, Electrical, photoelectrochemical, and photoelectron spectroscopic investigation of the interfacial transport and energetics of amorphous TiO2/Si heterojunctions, J. Phys. Chem. C 120(6), 3117 (2016)
CrossRef ADS Google scholar
[169]
T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, Manipulating the interfacial energetics of n-type silicon photoanode for efficient water oxidation, J. Am. Chem. Soc. 138(41), 13664 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6835 KB)

Accesses

Citations

Detail

Sections
Recommended

/