The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting
Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang
The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting
Photoelectrochemical (PEC) water oxidation for sustainable clean energy and fuel production is a potential solution to the demands of organic pollutant removal and growing energy consumption. Development of high performance photoanodes, which is a key component in the system, is one of the central topics in the area. The crystal defect is an old concept but fruiting new understanding with promotive impact to the development of high performance photoanodes. In this review, we elucidated the typical defects involved in the photoanode with the position where they play the roles in the structure and how the properties of photoanode are influenced. In addition, we summarized the feasible protocols to maximize the pros but reduce the cons brought by having defects to the photoanode performance based on recent most prominent research advancements in the field. Finally, we briefly sketched the future perspective with the challenges of this topic when in the scenario of possible developments into practical applications.
photoanode / defect engineering / oxide semiconductor / water splitting / charge transfer
[1] |
Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. S. Chen, N. Shibata, Y. Ikuhara, and K. Domen, Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles, Nat. Catal. 1(10), 756 (2018)
CrossRef
ADS
Google scholar
|
[2] |
J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, Earth-abundant cocatalysts for semiconductorbased photocatalytic water splitting, Chem. Soc. Rev. 43(22), 7787 (2014)
CrossRef
ADS
Google scholar
|
[3] |
T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43(22), 7520 (2014)
CrossRef
ADS
Google scholar
|
[4] |
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)
CrossRef
ADS
Google scholar
|
[5] |
Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Nakabayashi, N. Shibata, T. Yamada, A. Kudo, and K. Domen, Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration, Nat. Energy 2(1), 16191 (2017)
CrossRef
ADS
Google scholar
|
[6] |
N. S. Lewis, Research opportunities to advance solar energy utilization, Science 351(6271), aad1920 (2016)
CrossRef
ADS
Google scholar
|
[7] |
S. Chen and L. W. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution, Chem. Mater. 24(18), 3659 (2012)
CrossRef
ADS
Google scholar
|
[8] |
J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting, Sci. Rep. 3(1), 2681 (2013)
CrossRef
ADS
Google scholar
|
[9] |
J. Seo, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, M. Katayama, and K. Domen, The effects of annealing barium niobium oxynitride in argon on photoelectrochemical water oxidation activity, J. Mater. Chem. A Mater. Energy Sustain. 7(2), 493 (2019)
CrossRef
ADS
Google scholar
|
[10] |
T. W. Kim and K. S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343(6174), 990 (2014)
CrossRef
ADS
Google scholar
|
[11] |
Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, A front-illuminated nanostructured transparent BiVO4 photoanode for>2% efficient water splitting, Adv. Energy Mater. 6(2), 1501645 (2016)
CrossRef
ADS
Google scholar
|
[12] |
J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes, Nat. Mater. 16(3), 335 (2017)
CrossRef
ADS
Google scholar
|
[13] |
X. Li, S. Liu, K. Fan, Z. Liu, B. Song, and J. Yu, MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting, Adv. Energy Mater. 8(18), 1800101 (2018)
CrossRef
ADS
Google scholar
|
[14] |
K. Sivula and R. van de Krol, Semiconducting materials for photoelectrochemical energy conversion, Nat. Rev. Mater. 1(2), 15010 (2016)
CrossRef
ADS
Google scholar
|
[15] |
J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K. Sopian, M. A. Mat Teridi, and W. Sigmund, Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion, Chem. Soc. Rev. 44(23), 8424 (2015)
CrossRef
ADS
Google scholar
|
[16] |
S. Sato, R. Nakane, T. Hada, and M. Tanaka, Spin injection into silicon in three-terminal vertical and fourterminal lateral devices with Fe/Mg/MgO/Si tunnel junctions having an ultrathin Mg insertion layer, Phys. Rev. B 96(23), 235204 (2017)
CrossRef
ADS
Google scholar
|
[17] |
N. S. J. Frougier, D. Deng, M. Jerry, A. Aziz, L. Liu, G. Lavallee, T. S. Mayer, S. Gupta, and S. Datta, Phase-transition-FET exhibiting steep switching slope of 8 mV/decade and 36% enhanced ON current, IEEE Symposium on VLSI Technology2158 (2016)
CrossRef
ADS
Google scholar
|
[18] |
W. Zhang, D. Yan, X. Tong, and M. Liu, Ultrathin lutetium oxide film as an epitaxial hole-blocking layer for crystalline bismuth vanadate water splitting photoanodes, Adv. Funct. Mater. 28(10), 1705512 (2018)
CrossRef
ADS
Google scholar
|
[19] |
F. L. Souza, K. P. Lopes, E. Longo, and E. R. Leite, The influence of the film thickness of nanostructured alpha-Fe2O3 on water photooxidation, Phys. Chem. Chem. Phys. 11(8), 1215 (2009)
CrossRef
ADS
Google scholar
|
[20] |
O. Zandi, B. M. Klahr, and T. W. Hamann, Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: Resurrection of the dead layer, Energy Environ. Sci. 6(2), 634 (2013)
CrossRef
ADS
Google scholar
|
[21] |
F. Le Formal, S. R. Pendlebury, M. Cornuz, S. D. Tilley, M. Grätzel, and J. R. Durrant, Back electron–hole recombination in hematite photoanodes for water splitting, J. Am. Chem. Soc. 136(6), 2564 (2014)
CrossRef
ADS
Google scholar
|
[22] |
W. Zhang, D. Yan, K. Appavoo, J. Cen, Q. Wu, A. Orlov, M. Y. Sfeir, and M. Liu, Unravelling photocarrier dynamics beyond the space charge region for photoelectrochemical water splitting, Chem. Mater. 29(9), 4036 (2017)
CrossRef
ADS
Google scholar
|
[23] |
M. Huang, C. Li, L. Zhang, Q. Chen, Z. Zhen, Z. Li, and H. Zhu, Twin structure in BiVO4 photoanodes boosting water oxidation performance through enhanced charge separation and transport, Adv. Energy Mater. 8(32), 1802198 (2018)
CrossRef
ADS
Google scholar
|
[24] |
Y. Liang, T. Tsubota, L. P. A. Mooij, and R. van de Krol, Highly improved quantum efficiencies for thin film BiVO4 photoanodes, J. Phys. Chem. C 115(35), 17594 (2011)
CrossRef
ADS
Google scholar
|
[25] |
S. Byun, B. Kim, S. Jeon, and B. Shin, Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation, J. Mater. Chem. A Mater. Energy Sustain. 5(15), 6905 (2017)
CrossRef
ADS
Google scholar
|
[26] |
Y. Asakura, T. Higashi, H. Nishiyama, H. Kobayashi, M. Nakabayashi, N. Shibata, T. Minegishi, T. Hisatomi, M. Katayama, T. Yamada, and K. Domen, Activation of a particulate Ta3N5 water-oxidation photoanode with a GaN hole-blocking layer, Sustainable Energy Fuels 2(1), 73 (2018)
CrossRef
ADS
Google scholar
|
[27] |
E. Alarcón-Lladó, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey, and J. W. Ager, BiVO4 thin film photoanodes grown by chemical vapor deposition, Phys. Chem. Chem. Phys. 2014(4), 1651 (2014)
CrossRef
ADS
Google scholar
|
[28] |
A. Annamalai, P. S. Shinde, A. Subramanian, J. Y. Kim, J. H. Kim, S. H. Choi, J. S. Lee, and J. S. Jang, Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: Enhanced interface and Ti4+ doping, J. Mater. Chem. A Mater. Energy Sustain. 3(9), 5007 (2015)
CrossRef
ADS
Google scholar
|
[29] |
T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Gratzel, and N. Mathews, Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer, Adv. Mater. 24(20), 2699 (2012)
CrossRef
ADS
Google scholar
|
[30] |
Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, and T. Kitamori, Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting, Small 10(18), 3692 (2014)
CrossRef
ADS
Google scholar
|
[31] |
X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim, and J. H. Park, Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures, Nat. Commun. 5(1), 4775 (2014)
CrossRef
ADS
Google scholar
|
[32] |
A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOxhole blocking layer, Appl. Phys. Lett. 90(16), 163517 (2007)
CrossRef
ADS
Google scholar
|
[33] |
W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, and Y. Yan, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells, Nat. Commun. 6(1), 6700 (2015)
CrossRef
ADS
Google scholar
|
[34] |
P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, Design and fabrication of a precious metal-free tandem core-shell p+n Si/W-doped BiVO4 photoanode for unassisted water splitting, Adv. Energy Mater. 7(22), 1701515 (2017)
CrossRef
ADS
Google scholar
|
[35] |
T. Hisatomi, J. Brillet, M. Cornuz, F. Le Formal, N. Tétreault, K. Sivula, and M. Grätzel, A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting, Faraday Discuss. 155, 223 (2012)
CrossRef
ADS
Google scholar
|
[36] |
P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, and X. Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation, Nano Lett. 14(2), 1099 (2014)
CrossRef
ADS
Google scholar
|
[37] |
B. Lamm, L. Zhou, P. Rao, and M. Stefik, Atomic layer deposition of space-efficient SnO2 underlayers for BiVO4 host-guest architectures for photoassisted water splitting, ChemSusChem 12, 1 (2018)
CrossRef
ADS
Google scholar
|
[38] |
H. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
CrossRef
ADS
Google scholar
|
[39] |
T. Ohno, T. Mitsui, and M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Chem. Lett. 32(4), 364 (2003)
CrossRef
ADS
Google scholar
|
[40] |
N. Liu, V. Haublein, X. Zhou, U. Venkatesan, M. Hartmann, M. Mackovic, T. Nakajima, E. Spiecker, A. Osvet, L. Frey, and P. Schmuki, “Black” TiO2 nanotubes formed by high-energy proton implantation show noblemetal- co-catalyst free photocatalytic H2-evolution, Nano Lett. 15(10), 6815 (2015)
CrossRef
ADS
Google scholar
|
[41] |
X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331(6018), 746 (2011)
CrossRef
ADS
Google scholar
|
[42] |
J. Cai, M. Wu, Y. Wang, H. Zhang, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, and J. Gong, Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals, Chem 2(6), 877 (2017)
CrossRef
ADS
Google scholar
|
[43] |
Y. Yang, L. C. Yin, Y. Gong, P. Niu, J. Q. Wang, L. Gu, X. Chen, G. Liu, L. Wang, and H. M. Cheng, An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies, Adv. Mater. 30(6), 1704479 (2018)
CrossRef
ADS
Google scholar
|
[44] |
R. Asahi, T. Morikawa, and K. A. Ohwaki, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
CrossRef
ADS
Google scholar
|
[45] |
S. Sakthivel, M. Janczarek, and H. Kisch, Visible light activity and photoelectrochemical properties of nitrogendoped TiO2, J. Phys. Chem. B 108(50), 19384 (2004)
CrossRef
ADS
Google scholar
|
[46] |
X. Wang, R. Long, D. Liu, D. Yang, C. Wang, and Y. Xiong, Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays, Nano Energy 24, 87 (2016)
CrossRef
ADS
Google scholar
|
[47] |
T. M. R. Asahi, T. Ohwaki, and K. Aoki, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
CrossRef
ADS
Google scholar
|
[48] |
G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao, C. Chen, C. Wang, Y. Li, X. Huang, L. Miao, C. Jiang, Y. Huang, and X. Duan, Significantly enhanced visible light photoelectrochemical activity in TiO2 nanowire arrays by nitrogen implantation, Nano Lett. 15(7), 4692 (2015)
CrossRef
ADS
Google scholar
|
[49] |
T. Lin, C. Yang, Z. Wang, H. Yin, X. Lü, F. Huang, J. Lin, X. Xie, and M. Jiang, Effective nonmetal incorporation in black titania with enhanced solar energy utilization, Energy Environ. Sci. 7(3), 967 (2014)
CrossRef
ADS
Google scholar
|
[50] |
S. Hejazi, N. T. Nguyen, A. Mazare, and P. Schmuki, Aminated TiO2 nanotubes as a photoelectrochemical water splitting photoanode, Catal. Today 281, 189 (2017)
CrossRef
ADS
Google scholar
|
[51] |
S. A. Ansari and M. H. Cho, Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications, Sci. Rep. 6(1), 25405 (2016)
CrossRef
ADS
Google scholar
|
[52] |
S. Komatsuda, Y. Asakura, J. J. M. Vequizo, A. Yamakata, and S. Yin, Enhanced photocatalytic NO decomposition of visible-light responsive F-TiO2/(N; C)-TiO2 by charge transfer between F-TiO2 and (N; C)-TiO2 through their doping levels, Appl. Catal. B 238, 358 (2018)
CrossRef
ADS
Google scholar
|
[53] |
X. Kang, X. Z. Song, Y. Han, J. Cao, and Z. Tan, Defect-engineered TiO2 hollow spiny nanocubes for phenol degradation under visible light irradiation, Sci. Rep. 8(1), 5904 (2018)
CrossRef
ADS
Google scholar
|
[54] |
J. Premkumar, Development of super-hydrophilicity on nitrogen-doped TiO2thin film surface by photoelectrochemical method under visible light, Chem. Mater. 16(21), 3980 (2004)
CrossRef
ADS
Google scholar
|
[55] |
S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H.Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem. 40(4), 3000 (2016)
CrossRef
ADS
Google scholar
|
[56] |
X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications, Nanoscale 5(9), 3601 (2013)
CrossRef
ADS
Google scholar
|
[57] |
H. Choi, D. Shin, B. C. Yeo, T. Song, S. S. Han, N. Park, and S. Kim, Simultaneously controllable doping sites and the activity of a W–N codoped TiO2 photocatalyst, ACS Catal. 6(5), 2745 (2016)
CrossRef
ADS
Google scholar
|
[58] |
Q. Sun, D. Cortie, S. Zhang, T. J. Frankcombe, G. She, J. Gao, L. R. Sheppard, W. Hu, H. Chen, S. Zhuo, D. Chen, R. L. Withers, G. McIntyre, D. Yu, W. Shi, and Y. Liu, The formation of defect-pairs for highly efficient visiblelight catalysts, Adv. Mater. 29(11), 1605123 (2017)
CrossRef
ADS
Google scholar
|
[59] |
H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, and F. Huang, Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting, J. Mater. Chem. A Mater. Energy Sustain. 2(23), 8612 (2014)
CrossRef
ADS
Google scholar
|
[60] |
J. Liang, N. Wang, Q. Zhang, B. Liu, X. Kong, C. Wei, D. Zhang, B. Yan, Y. Zhao, and X. Zhang, Exploring the mechanism of a pure and amorphous black-blue TiO2:H thin film as a photoanode in water splitting, Nano Energy 42, 151 (2017)
CrossRef
ADS
Google scholar
|
[61] |
M. Krzywiecki, L. Grzadziel, A. Sarfraz, D. Iqbal, A. Szwajca, and A. Erbe, Zinc oxide as a defect-dominated material in thin films for photovoltaic applications – Experimental determination of defect levels, quantification of composition, and construction of band diagram, Phys. Chem. Chem. Phys. 17(15), 10004 (2015)
CrossRef
ADS
Google scholar
|
[62] |
R. A. Wahyuono, F. Hermann-Westendorf, A. Dellith, C. Schmidt, J. Dellith, J. Plentz, M. Schulz, M. Presselt, M. Seyring, M. Rettenmeyer, and B. Dietzek, Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures, Chem. Phys.483–484, 112 (2017)
CrossRef
ADS
Google scholar
|
[63] |
Y. Zhang, H. Zhao, X. Zhao, J. Lin, N. Li, Z. Huo, Z. Yan, M. Zhang, and S. Hu, Narrow-bandgap Nb2O5 nanowires with enclosed pores as high-performance photocatalyst, Sci. China Mater. 62(2), 203 (2019)
CrossRef
ADS
Google scholar
|
[64] |
W. L. M. Lamers, M. Favaro, D. E. Starr, D. Friedrich, S. Lardhi, L. Cavallo, M. Harb, R. van de Krol, L. H. Wong, and F. F. Abdi, Enhanced carrier transport and bandgap reduction in sulfur modified BiVO4 photoanodes, Chem. Mater. 30, 8630 (2018)
CrossRef
ADS
Google scholar
|
[65] |
V. Pasumarthi, T. Liu, M. Dupuis, and C. Li, Charge carrier transport dynamics in W/Mo-doped BiVO4: First principles-based mesoscale characterization, J. Mater. Chem. A Mater. Energy Sustain. 7(7), 3054 (2019)
CrossRef
ADS
Google scholar
|
[66] |
T. Li, J. He, B. Pena, and C. P. Berlinguette, Curing BiVO4 photoanodes with ultraviolet light enhances photoelectrocatalysis, Angew. Chem. Int. Ed. 55(5), 1769 (2016)
CrossRef
ADS
Google scholar
|
[67] |
R. Niishiro, Y. Takano, Q. Jia, M. Yamaguchi, A. Iwase, Y. Kuang, T. Minegishi, T. Yamada, K. Domen, and A. Kudo, A CoOx-modified SnNb2O6 photoelectrode for highly efficient oxygen evolution from water, Chem. Commun. (Camb.) 53(3), 629 (2017)
CrossRef
ADS
Google scholar
|
[68] |
Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M= Nb and Ta) and their photocatalytic properties, Chem. Mater. 20(4), 1299 (2008)
CrossRef
ADS
Google scholar
|
[69] |
Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium (VI), Bull. Chem. Soc. Jpn. 80(5), 885 (2007)
CrossRef
ADS
Google scholar
|
[70] |
D. Noureldine and K. Takanabe, State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: Electronic structures and optoelectronic properties, Catal. Sci. Technol. 6(21), 7656 (2016)
CrossRef
ADS
Google scholar
|
[71] |
H. Seo, Y. Ping, and G. Galli, Role of point defects in enhancing the conductivity of BiVO4, Chem. Mater. 30(21), 7793 (2018)
CrossRef
ADS
Google scholar
|
[72] |
F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study, J. Phys. Chem. Lett. 4(16), 2752 (2013)
CrossRef
ADS
Google scholar
|
[73] |
Z. Zhu, P. Sarker, C. Zhao, L. Zhou, R. L. Grimm, M. N. Huda, and P. M. Rao, Photoelectrochemical properties and behavior of alpha-SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films, ACS Appl. Mater. Interfaces 9(2), 1459 (2017)
CrossRef
ADS
Google scholar
|
[74] |
A. Ziani, M. Harb, D. Noureldine, and K. Takanabe, UVVis optoelectronic properties of a-SnWO4: A comparative experimental and density functional theory based study, APL Mater. 3(9), 096101 (2015)
CrossRef
ADS
Google scholar
|
[75] |
D. Bohra and W. A. Smith, Improved charge separation via Fe-doping of copper tungstate photoanodes, Phys. Chem. Chem. Phys. 17(15), 9857 (2015)
CrossRef
ADS
Google scholar
|
[76] |
Y. Gao and T. W. Hamann, Quantitative hole collection for photoelectrochemical water oxidation with CuWO4, Chem. Commun. 53(7), 1285 (2017)
CrossRef
ADS
Google scholar
|
[77] |
S. Byun, G. Jung, Y. Shi, M. Lanza, and B. Shin, Aging of a vanadium precursor solution: Influencing material properties and photoelectrochemical water oxidation performance of solution-processed BiVO4 photoanodes, Adv. Funct. Mater.1806662 (2019)
CrossRef
ADS
Google scholar
|
[78] |
M. Ziwritsch, S. Müller, H. Hempel, T. Unold, F. F. Abdi, R. van de Krol, D. Friedrich, and R. Eichberger, Direct time-resolved observation of carrier trapping and polaron conductivity in BiVO4, ACS Energy Lett. 1(5), 888 (2016)
CrossRef
ADS
Google scholar
|
[79] |
B. J. Trześniewski, I. A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D. A. Vermaas, A. Longo, S. Gimenez, and W. A. Smith, Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes, Energy Environ. Sci. 10(6), 1517 (2017)
CrossRef
ADS
Google scholar
|
[80] |
J. K.Cooper, S. B. Scott, Y. Ling, J. Yang, S. Hao, Y. Li, F. M. Toma, M. Stutzmann, K. V. Lakshmi, and I. D. Sharp, Role of hydrogen in defining the n-type character of BiVO4 photoanodes, Chem. Mater. 28(16), 5761 (2016)
CrossRef
ADS
Google scholar
|
[81] |
F. F. Abdi, N. Firet, and R. van de Krol, Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping, ChemCatChem 5(2), 490 (2013)
CrossRef
ADS
Google scholar
|
[82] |
Y. Bu, J. Tian, Z. Chen, Q. Zhang, W. Li, F. Tian, and J. P. Ao, Optimization of the photo-electrochemical performance of Mo-Doped BiVO4 photoanode by controlling the metal-oxygen bond state on (020) facet, Adv. Mater. Interfaces 4(10), 1601235 (2017)
CrossRef
ADS
Google scholar
|
[83] |
S. K. Cho, H. S. Park, H. C. Lee, K. M. Nam, and A. J. Bard, Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation, J. Phys. Chem. C 117(44), 23048 (2013)
CrossRef
ADS
Google scholar
|
[84] |
J. H. Xin Zhao, X. Yao, S. Chen, and Z. Chen, Clarifying the roles of oxygen vacancy in W-doped BiVO4 for solar water splitting, ACS Appl. Energy Mater. 1(7), 3410 (2018)
CrossRef
ADS
Google scholar
|
[85] |
V. Nair, C. L. Perkins, Q. Lin, and M. Law, Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution, Energy Environ. Sci. 9(4), 1412 (2016)
CrossRef
ADS
Google scholar
|
[86] |
G. V. Govindaraju, J. M. Morbec, G. A. Galli, and K. S. Choi, Experimental and computational investigation of lanthanide ion doping on BiVO4 photoanodes for solar water splitting, J. Phys. Chem. C 122(34), 19416 (2018)
CrossRef
ADS
Google scholar
|
[87] |
K. P. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang, and J. S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes, ChemSusChem 5(10), 1926 (2012)
CrossRef
ADS
Google scholar
|
[88] |
K. Ding, B. Chen, Z. Fang, Y. Zhang, and Z. Chen, Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study, Phys. Chem. Chem. Phys. 16(26), 13465 (2014)
CrossRef
ADS
Google scholar
|
[89] |
H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi, and H. Park, Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance, J. Phys. Chem. C 117(18), 9104 (2013)
CrossRef
ADS
Google scholar
|
[90] |
J. A. Seabold, K. Zhu, and N. R. Neale, Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport, Phys. Chem. Chem. Phys. 16(3), 1121 (2014)
CrossRef
ADS
Google scholar
|
[91] |
H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang, and A. J. Bard, Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation, J. Phys. Chem. C 115(36), 17870 (2011)
CrossRef
ADS
Google scholar
|
[92] |
I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Grätzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting, J. Phys. Chem. C 113(2), 772 (2009)
CrossRef
ADS
Google scholar
|
[93] |
F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam, and R. van de Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun. 4(1), 2195 (2013)
CrossRef
ADS
Google scholar
|
[94] |
A. J. Rettie, H. C. Lee, L. G. Marshall, J. F. Lin, C. Capan, J. Lindemuth, J. S. McCloy, J. Zhou, A. J. Bard, and C. B. Mullins, Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide, J. Am. Chem. Soc. 135(30), 11389 (2013)
CrossRef
ADS
Google scholar
|
[95] |
W. Zhang, F. Wu, J. Li, D. Yan, J. Tao, Y. Ping, and M. Liu, Unconventional relation between charge transport and photocurrent via boosting small polaron hopping for photoelectrochemical water splitting, ACS Energy Lett. 3(9), 2232 (2018)
CrossRef
ADS
Google scholar
|
[96] |
L. Zhang, X. Ye, M. Boloor, A. Poletayev, N. A. Melosh, and W. C. Chueh, Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length, Energy Environ. Sci. 9(6), 2044 (2016)
CrossRef
ADS
Google scholar
|
[97] |
J. W. Jang, D. Friedrich, S. Müller, M. Lamers, H. Hempel, S. Lardhi, Z. Cao, M. Harb, L. Cavallo, R. Heller, R. Eichberger, R. van de Krol, and F. F. Abdi, Enhancing charge carrier lifetime in metal oxide photoelectrodes through mild hydrogen treatment, Adv. Energy Mater. 7(22), 1701536 (2017)
CrossRef
ADS
Google scholar
|
[98] |
D. K. Lee, D. Lee, M. A. Lumley, and K. S. Choi, Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting, Chem. Soc. Rev. 48(7), 2126 (2019)
CrossRef
ADS
Google scholar
|
[99] |
G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, Hydrogentreated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Lett. 11(7), 3026 (2011)
CrossRef
ADS
Google scholar
|
[100] |
N. Guijarro, P. Bornoz, M. Prévot, X. Yu, X. Zhu, M. Johnson, X. Jeanbourquin, F. Le Formal, and K. Sivula, Evaluating spinel ferrites MFe2O4 (M= Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations, Sustainable Energy Fuels 2(1), 103 (2018)
CrossRef
ADS
Google scholar
|
[101] |
Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang, and P. Xiao, Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment, Appl. Surf. Sci. 361, 133 (2016)
CrossRef
ADS
Google scholar
|
[102] |
Y. Ling, G. Wang, J. Reddy, C. Wang, J. Z. Zhang, and Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angew. Chem. Int. Ed. 51(17), 4074 (2012)
CrossRef
ADS
Google scholar
|
[103] |
A. Milbrat, W. J. C. Vijselaar, Y. Guo, B. Mei, J. Huskens, and G. Mul, Integration of molybdenum-doped, hydrogen-annealed BiVO4 with silicon microwires for photoelectrochemical applications, ACS Sustain. Chem. & Eng. 7(5), 5034 (2019)
CrossRef
ADS
Google scholar
|
[104] |
Y. Zhang, X. Zhang, D. Wang, F. Wan, and Y. Liu, Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer, Appl. Surf. Sci. 403, 389 (2017)
CrossRef
ADS
Google scholar
|
[105] |
G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, and Y. Li, Hydrogen-treated WO3 nanoflakes show enhanced photostability, Energy Environ. Sci. 5(3), 6180 (2012)
CrossRef
ADS
Google scholar
|
[106] |
W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, and G. Zheng, WO3 nanoflakes for enhanced photoelectrochemical conversion, ACS Nano 8(11), 11770 (2014)
CrossRef
ADS
Google scholar
|
[107] |
D. Ma, J. Xie, J. Li, S. Liu, F. Wang, H. Zhang, W. Wang, A. Wang, and H. Sun, Synthesis and hydrogen reduction of nano-sized copper tungstate powders produced by a hydrothermal method, Int. J. Refract. Met. Hard Mater. 46, 152 (2014)
CrossRef
ADS
Google scholar
|
[108] |
D. Hu, P. Diao, D. Xu, M. Xia, Y. Gu, Q. Wu, C. Li, and S. Yang, Copper(II) tungstate nanoflake array films: Sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting, Nanoscale 8(11), 5892 (2016)
CrossRef
ADS
Google scholar
|
[109] |
J. H. Kim, Y. J. Jang, J. H. Kim, J. W. Jang, S. H. Choi, and J. S. Lee, Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting, Nanoscale 7(45), 19144 (2015)
CrossRef
ADS
Google scholar
|
[110] |
S. Wang, P. Chen, J. H. Yun, Y. Hu, and L. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting, Angew. Chem. Int. Ed. 56(29), 8500 (2017)
CrossRef
ADS
Google scholar
|
[111] |
S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, and A. M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci. 4(12), 5028 (2011)
CrossRef
ADS
Google scholar
|
[112] |
Q. Shi, S. Murcia-López, P. Tang, C. Flox, J. R. Morante, Z. Bian, H. Wang, and T. Andreu, Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process, ACS Catal. 8(4), 3331 (2018)
CrossRef
ADS
Google scholar
|
[113] |
W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, and Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy Environ. Sci. 4(10), 4046 (2011)
CrossRef
ADS
Google scholar
|
[114] |
L. Gao, Y. Li, J. Ren, S. Wang, R. Wang, G. Fu, and Y. Hu, Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: Realizing efficient photocatalytic overall water splitting, Appl. Catal. B 202, 127 (2017)
CrossRef
ADS
Google scholar
|
[115] |
C. Chen, Y. Wei, G. Yuan, Q. Liu, R. Lu, X. Huang, Y. Cao, and P. Zhu, Synergistic effect of Si doping and heat treatments enhances the photoelectrochemical water oxidation performance of TiO2 nanorod arrays, Adv. Funct. Mater. 27(31), 1701575 (2017)
CrossRef
ADS
Google scholar
|
[116] |
A. G. Hufnagel, H. Hajiyani, S. Zhang, T. Li, O. Kasian, B. Gault, B. Breitbach, T. Bein, D. Fattakhova-Rohlfing, C. Scheu, and R. Pentcheva, Why tin-doping enhances the efficiency of hematite photoanodes for water splittingthe full picture, Adv. Funct. Mater. 28(52), 1804472 (2018)
CrossRef
ADS
Google scholar
|
[117] |
Y. Guo, N. Zhang, X. Wang, Q. Qian, S. Zhang, Z. Li, and Z. Zou, A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting, J. Mater. Chem. A Mater. Energy Sustain. 5(16), 7571 (2017)
CrossRef
ADS
Google scholar
|
[118] |
J. H. Kim, J. H. Kim, J. W. Jang, J. Y. Kim, S. H. Choi, G. Magesh, J. Lee, and J. S. Lee, Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing, Adv. Energy Mater. 5(6), 1401933 (2015)
CrossRef
ADS
Google scholar
|
[119] |
C. D. Morton, I. J. Slipper, M. J. K. Thomas, and B. D. Alexander, Synthesis and characterisation of Fe–V–O thin film photoanodes, J. Photochem. Photobiol. Chem. 216(2–3), 209 (2010)
CrossRef
ADS
Google scholar
|
[120] |
G. Peng, J. Albero, H. Garcia, and M. Shalom, A watersplitting carbon nitride photoelectrochemical cell with efficient charge separation and remarkably low onset potential, Angew. Chem. Int. Ed. 57(48), 15807 (2018)
CrossRef
ADS
Google scholar
|
[121] |
X. Shi, K. Zhang, K. Shin, J. H. Moon, T. W. Lee, and J. H. Park, Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting, Phys. Chem. Chem. Phys. 15(28), 11717 (2013)
CrossRef
ADS
Google scholar
|
[122] |
L. Pei, B. Lv, S. Wang, Z. Yu, S. Yan, R. Abe, and Z. Zou, Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation, ACS Appl. Energy Mater. 1(8), 4150 (2018)
CrossRef
ADS
Google scholar
|
[123] |
J. Seo, H. Nishiyama, T. Yamada, and K. Domen, Visiblelight- responsive photoanodes for highly active, stable water oxidation, Angew. Chem. Int. Ed. 57(28), 8396 (2018)
CrossRef
ADS
Google scholar
|
[124] |
M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, and K. Domen, Surface modification of CoOxloaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation, J. Am. Chem. Soc. 137(15), 5053 (2015)
CrossRef
ADS
Google scholar
|
[125] |
Z. Zhu, H. Tian, M. Zhang, B. Liang, and W. Li, Preparation of a-SnWO4 hierarchical spheres by Bi3+-doping and their enhanced photocatalytic activity under visible light, Ceram. Int. 42(13), 14743 (2016)
CrossRef
ADS
Google scholar
|
[126] |
S. Yao, M. Zhang, J. Di, Z. Wang, Y. Long, and W. Li, Preparation of a-SnWO4/SnO2 heterostructure with enhanced visible-light-driven photocatalytic activity, Appl. Surf. Sci. 357, 1528 (2015)
CrossRef
ADS
Google scholar
|
[127] |
I. S. Cho, C. H. Kwak, D. W. Kim, S. Lee, and K. S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps, J. Phys. Chem. C 113(24), 10647 (2009)
CrossRef
ADS
Google scholar
|
[128] |
Y. Wang, H. Sun, S. Tan, H. Feng, Z. Cheng, J. Zhao, A. Zhao, B. Wang, Y. Luo, J. Yang, and J. G. Hou, Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface, Nat. Commun. 4(1), 2214 (2013)
CrossRef
ADS
Google scholar
|
[129] |
G. Liu, H. G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G. Q. M. Lu, and H. M. Cheng, Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets, J. Phys. Chem. C 113(52), 21784 (2009)
CrossRef
ADS
Google scholar
|
[130] |
G. Liu, J. Pan, L. Yin, J. T. S. Irvine, F. Li, J. Tan, P. Wormald, and H. M. Cheng, Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv. Funct. Mater. 22(15), 3233 (2012)
CrossRef
ADS
Google scholar
|
[131] |
J. Hu, X. Zhao, W. Chen, and Z. Chen, Enhanced charge transport and increased active sites on-Fe2O3 (110) nanorod surface containing oxygen vacancies for improved solar water oxidation performance, ACS Omega 3(11), 14973 (2018)
CrossRef
ADS
Google scholar
|
[132] |
C. Fàbrega, D. Monllor-Satoca, S. Ampudia, A. Parra, T. Andreu, and J. R. Morante, Tuning the Fermi level and the kinetics of surface states of TiO2 nanorods by means of ammonia treatments, J. Phys. Chem. C 117(40), 20517 (2013)
CrossRef
ADS
Google scholar
|
[133] |
A. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev. 95(3), 735 (1995)
CrossRef
ADS
Google scholar
|
[134] |
A. Yamakata, T. Ishibashi, and H. Onishi, Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy, J. Mol. Catal. Chem. 199(1–2), 85 (2003)
CrossRef
ADS
Google scholar
|
[135] |
T. Zhang, Y. Liu, J. Liang, and D. Wang, Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment, Appl. Surf. Sci. 394, 440 (2017)
CrossRef
ADS
Google scholar
|
[136] |
T. Zhang, S. Cui, B. Yu, Z. Liu, and D. Wang, Surface engineering for an enhanced photoelectrochemical response of TiO2 nanotube arrays by simple surface air plasma treatment, Chem. Commun. 51(95), 16940 (2015)
CrossRef
ADS
Google scholar
|
[137] |
T. L. Villarreal, R. Go’mez, M. Neumann-Spallart, N. Alonso-Vante, and P. Salvador, Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer (I): Photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination, J. Phys. Chem. B 108(39), 15172 (2004)
CrossRef
ADS
Google scholar
|
[138] |
A. Kafizas, Y. Ma, E. Pastor, S. R. Pendlebury, C. Mesa, L. Francàs, F. Le Formal, N. Noor, M. Ling, C. Sotelo-Vazquez, C. J. Carmalt, I. P. Parkin, and J. R. Durrant, Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: A rate law analysis, ACS Catal. 7(7), 4896 (2017)
CrossRef
ADS
Google scholar
|
[139] |
S. H. Szczepankiewicz, A. J. Colussi, and M. R. Hoffmann, Infrared spectra of photoinduced species on hydroxylated titania surfaces, J. Phys. Chem. B 104(42), 9842 (2000)
CrossRef
ADS
Google scholar
|
[140] |
M. A. Grela, M. E. J. Coronel, and A. J. Colussi, Quantitative spin-trapping studies of weakly illuminated titanium dioxide sols: Implications for the mechanism of photocatalysis, J. Phys. Chem. 100(42), 16940 (1996)
CrossRef
ADS
Google scholar
|
[141] |
X. Cheng, Q. Cheng, X. Deng, P. Wang, and H. Liu, A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac, Chemosphere 144, 888 (2016)
CrossRef
ADS
Google scholar
|
[142] |
J. Cheng, J. VandeVondele, and M. Sprik, Identifying trapped electronic holes at the aqueous TiO2 interface, J. Phys. Chem. C 118(10), 5437 (2014)
CrossRef
ADS
Google scholar
|
[143] |
Y. Ji, B. Wang, and Y. Luo, GGA+Ustudy on the mechanism of photodecomposition of water adsorbed on rutile TiO2 (110) surface: Free vs. trapped hole, J. Phys. Chem. C 118(2), 1027 (2014)
CrossRef
ADS
Google scholar
|
[144] |
T. Hisatomi, F. Le Formal, M. Cornuz, J. Brillet, N. Tétreault, K. Sivula, and M. Grätzel, Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers, Energy Environ. Sci. 4(7), 2512 (2011)
CrossRef
ADS
Google scholar
|
[145] |
Z. Hu, Z. Shen, and J. C. Yu, Covalent fixation of surface oxygen atoms on hematite photoanode for enhanced water oxidation, Chem. Mater. 28(2), 564 (2016)
CrossRef
ADS
Google scholar
|
[146] |
C. Li, Z. Luo, T. Wang, and J. Gong, Surface, bulk, and interface: Rational design of hematite architecture toward efficient photo-electrochemical water splitting, Adv. Mater. 30(30), 1707502 (2018)
CrossRef
ADS
Google scholar
|
[147] |
Y. He, J. E. Thorne, C. H. Wu, P. Ma, C. Du, Q. Dong, J. Guo, and D. Wang, What limits the performance of Ta3N5 for solar water splitting? Chem 1(4), 640 (2016)
CrossRef
ADS
Google scholar
|
[148] |
Y. He, P. Ma, S. Zhu, M. Liu, Q. Dong, J. Espano, X. Yao, and D. Wang, Photo-induced performance enhancement of tantalum nitride for solar water oxidation, Joule 1(4), 831 (2017)
CrossRef
ADS
Google scholar
|
[149] |
E. Nurlaela, Y. Sasaki, M. Nakabayashi, N. Shibata, T. Yamada, and K. Domen, Towards zero bias photoelectrochemical water splitting: onset potential improvement on a Mg:GaN modified-Ta3N5 photoanode, J. Mater. Chem. A Mater. Energy Sustain. 6(31), 15265 (2018)
CrossRef
ADS
Google scholar
|
[150] |
Y. Kuang, T. Yamada, and K. Domen, Surface and interface engineering for photoelectrochemical water oxidation, Joule 1(2), 290 (2017)
CrossRef
ADS
Google scholar
|
[151] |
P. Y. Tang, H. B. Xie, C. Ros, L. J. Han, M. Biset-Peiró, Y. M. He, W. Kramer, A. P. Rodríguez, E. Saucedo, J. R. Galán-Mascarós, T. Andreu, J. R. Morante, and J. Arbiol, Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering, Energy Environ. Sci. 10(10), 2124 (2017)
CrossRef
ADS
Google scholar
|
[152] |
R. d. Krol and M. Grätzel, Photoelectrochemical Hydrogen Production, Springer, New York, 2011, p 321
|
[153] |
K. J. McDonald and K. S. Choi, Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation, Chem. Mater. 23(21), 4863 (2011)
CrossRef
ADS
Google scholar
|
[154] |
B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes, Energy Environ. Sci. 5(6), 7626 (2012)
CrossRef
ADS
Google scholar
|
[155] |
X. Yang, C. Du, R. Liu, J. Xie, and D. Wang, Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination, J. Catal. 304, 86 (2013)
CrossRef
ADS
Google scholar
|
[156] |
G. Liu, S. Ye, P. Yan, F. Xiong, P. Fu, Z. Wang, Z. Chen, J. Shi, and C. Li, Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting, Energy Environ. Sci. 9(4), 1327 (2016)
CrossRef
ADS
Google scholar
|
[157] |
F. F. Abdi and R. van de Krol, Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes, J. Phys. Chem. C 116(17), 9398 (2012)
CrossRef
ADS
Google scholar
|
[158] |
B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes, J. Am. Chem. Soc. 134(40), 16693 (2012)
CrossRef
ADS
Google scholar
|
[159] |
D. K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, and D. R. Gamelin, Photo-assisted electrodeposition of cobalt– phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation, Energy Environ. Sci. 4(5), 1759 (2011)
CrossRef
ADS
Google scholar
|
[160] |
S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, Lightinduced water splitting with hematite: Improved nanostructure and iridium oxide catalysis, Angew. Chem. Int. Ed. 49(36), 6405 (2010)
CrossRef
ADS
Google scholar
|
[161] |
W. Y. Sohn, J. E. Thorne, Y. Zhang, S. Kuwahara, Q. Shen, D. Wang, and K. Katayama, Charge carrier kinetics in hematite with NiFeOx coating in aqueous solutions: Dependence on bias voltage, J. Photochem. Photobiol. Chem. 353, 344 (2018)
CrossRef
ADS
Google scholar
|
[162] |
X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng, and D. Wang, Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition, ACS Appl. Mater. Interfaces 6(15), 12005 (2014)
CrossRef
ADS
Google scholar
|
[163] |
R. Liu, Z. Zheng, J. Spurgeon, and X. Yang, Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers, Energy Environ. Sci. 7(8), 2504 (2014)
CrossRef
ADS
Google scholar
|
[164] |
M. Zhong, T. Hisatomi, Y. Sasaki, S. Suzuki, K. Teshima, M. Nakabayashi, N. Shibata, H. Nishiyama, M. Katayama, T. Yamada, and K. Domen, Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation, Angew. Chem. Int. Ed. 56(17), 4739 (2017)
CrossRef
ADS
Google scholar
|
[165] |
S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation, Science 344(6187), 1005 (2014)
CrossRef
ADS
Google scholar
|
[166] |
D. Eisenberg, H. S. Ahn, and A. J. Bard, Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide, J. Am. Chem. Soc. 136(40), 14011 (2014)
CrossRef
ADS
Google scholar
|
[167] |
A. G. Scheuermann, J. P. Lawrence, K. W. Kemp, T. Ito, A. Walsh, C. E. Chidsey, P. K. Hurley, and P. C. McIntyre, Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes, Nat. Mater. 15(1), 99 (2016)
CrossRef
ADS
Google scholar
|
[168] |
S. Hu, M. H. Richter, M. F. Lichterman, J. Beardslee, T. Mayer, B. S. Brunschwig, and N. S. Lewis, Electrical, photoelectrochemical, and photoelectron spectroscopic investigation of the interfacial transport and energetics of amorphous TiO2/Si heterojunctions, J. Phys. Chem. C 120(6), 3117 (2016)
CrossRef
ADS
Google scholar
|
[169] |
T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, Manipulating the interfacial energetics of n-type silicon photoanode for efficient water oxidation, J. Am. Chem. Soc. 138(41), 13664 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |