Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers

Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震)

PDF(4276 KB)
PDF(4276 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43604. DOI: 10.1007/s11467-019-0904-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers

Author information +
History +

Abstract

First-principles computations are performed to investigate phosphorene monolayers doped with 30 metal and nonmetal atoms. The binding energies indicate the stability of all doped configurations. Interestingly, the magnetic atom Co doping induces the absence of the magnetism while the magnetism is realized in phosphorene with substitutional doping of nonmagnetic atoms (O, S, Se, Si, Br, and Cl). The magnetic moment of transition metal (TM)-doped systems is suppressed in the range of 1.0-3.97 μB. The electronic properties of the doped systems are modulated differently; O, S, Se, Ni, and Ti doped systems become spin semiconductors, while V doping makes the system a half metal. These results demonstrate potential applications of functionalized phosphorene with external atoms, in particular to spintronics and dilute magnetic semiconductors.

Keywords

phosphorene / spin semiconductors / half metals / density functional theory

Cite this article

Download citation ▾
Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers. Front. Phys., 2019, 14(4): 43604 https://doi.org/10.1007/s11467-019-0904-5

References

[1]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef ADS Google scholar
[2]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[3]
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef ADS Google scholar
[4]
Y. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon, Nature 472(7341), 74 (2011)
CrossRef ADS Google scholar
[5]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef ADS Google scholar
[6]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[7]
A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
CrossRef ADS Google scholar
[8]
P. M. Bridgman, Two new modifications of phosphorus, J. Am. Chem. Soc. 36(7), 1344 (1914)
CrossRef ADS Google scholar
[9]
T. Nishii, Y. Maruyama, T. Inabe, and I. Shirotani, Synthesis and characterization of black phosphorus intercalation compounds, Synth. Met. 18(1–3), 559 (1987)
CrossRef ADS Google scholar
[10]
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef ADS Google scholar
[11]
E. S. Reich, Phosphorene excites materials scientists, Nature 506(7486), 19 (2014)
CrossRef ADS Google scholar
[12]
L. Shulenburger, A. D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, The nature of the interlayer interaction in bulk and few-layer phosphorus, Nano Lett. 15(12), 8170 (2015)
CrossRef ADS Google scholar
[13]
T. Low, R. Rold’an, H. Wang, F. N. Xia, P. Avouris, L. M. Moreno, and F. Guinea, Plasmons and screening in monolayer and multilayer black phosphorus, Phys. Rev. Lett. 113(10), 106802 (2014)
CrossRef ADS Google scholar
[14]
A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Straininduced gap modification in black phosphorus, Phys. Rev. Lett. 112(17), 176801 (2014)
CrossRef ADS Google scholar
[15]
X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, The renaissance of black phosphorus, Proc. Natl. Acad. Sci. USA 112(15), 4523 (2015)
CrossRef ADS Google scholar
[16]
J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus, Nat. Commun. 5(1), 4475 (2014)
CrossRef ADS Google scholar
[17]
F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5(1), 4458 (2014)
CrossRef ADS Google scholar
[18]
R. Schuster, J. Trinckauf, C. Habenicht, M. Knupfer, and B. Büchner, Anisotropic particle-hole excitations in black phosphorus, Phys. Rev. Lett. 115(2), 026404 (2015)
CrossRef ADS Google scholar
[19]
J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B. G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus, Science 349(6249), 723 (2015)
CrossRef ADS Google scholar
[20]
P. K. Li and I. Appelbaum, Electrons and holes in phosphorene, Phys. Rev. B 90(11), 115439 (2014)
CrossRef ADS Google scholar
[21]
J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun. 5(1), 4727 (2014)
CrossRef ADS Google scholar
[22]
K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys. 82(2), 1633 (2010)
CrossRef ADS Google scholar
[23]
Z. F. Wang, S. Jin, and F. Liu, Spatially separated spin carriers in spin-semiconducting graphene nanoribbons, Phys. Rev. Lett. 111(9), 096803 (2013)
CrossRef ADS Google scholar
[24]
Y. C. Zhao and J. Ni, Spin-semiconducting properties in silicene nanoribbons, Phys. Chem. Chem. Phys. 16(29), 15477 (2014)
CrossRef ADS Google scholar
[25]
M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. de Groot, Half-metallic ferromagnets: From band structure to many-body effects, Rev. Mod. Phys. 80(2), 315 (2008)
CrossRef ADS Google scholar
[26]
Y. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
CrossRef ADS Google scholar
[27]
D. D. Awschalom and M. E. Flatte, Challenges for semiconductor spintronics, Nat. Phys. 3(3), 153 (2007)
CrossRef ADS Google scholar
[28]
H. T. Wang, Q. X. Wang, Y. C. Cheng, K. Li, Y. B. Yao, Q. Zhang, C. Z. Dong, P. Wang, U. Schwingenschlögl, W. Yang, and X. X. Zhang, Doping monolayer graphene with single atom substitutions, Nano Lett. 12(1), 141 (2012)
CrossRef ADS Google scholar
[29]
A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, and R. M. Nieminen, Embedding transitionmetal atoms in graphene: Structure, bonding, and magnetism, Phys. Rev. Lett. 102(12), 126807 (2009)
CrossRef ADS Google scholar
[30]
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and C. G. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
CrossRef ADS Google scholar
[31]
Z. N. Ma, J. B. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
CrossRef ADS Google scholar
[32]
F. M. Xu, Z. Z. Yu, Z. R. Gong, and H. Jin, Firstprinciples study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices, Front. Phys. 12(4), 127306 (2017)
CrossRef ADS Google scholar
[33]
G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[34]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[35]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[36]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[37]
A. Brown and S. Rundqvist, Refinement of the crystal structure of black phosphorus, Acta Crystallogr. 19(4), 684 (1965)
CrossRef ADS Google scholar
[38]
X. H. Peng, Q. Wei, and A. Copple, Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene, Phys. Rev. B 90(8), 085402 (2014)
CrossRef ADS Google scholar
[39]
S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. K. Roelofs, Tunable transport gap in phosphorene, Nano Lett. 14(10), 5733 (2014)
CrossRef ADS Google scholar
[40]
K. T. Chan, J. Neaton, and M. L. Cohen, First-principles study of metal adatom adsorption on graphene, Phys. Rev. B 77(23), 235430 (2008)
CrossRef ADS Google scholar
[41]
T. T. Tung, F. Alotaibi, M. J. Nine, R. Silva, D. N. H. Tran, I. Janowska, and D. Losic, Engineering of highly conductive and ultra-thin nitrogen-doped graphene films by combined methods of microwave irradiation, ultrasonic spraying and thermal annealing, Chem. Eng. J. 338, 764 (2018)
CrossRef ADS Google scholar
[42]
D. Mombrú, R. Faccio, and A. W. Mombru, Possible causes for rippling in a multivacancy graphene system, Int. J. Quantum Chem. 118(7), e25529 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4276 KB)

Accesses

Citations

Detail

Sections
Recommended

/