Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers

Feng (冯景华)Jing-Hua , Li (李庚)Geng , Meng (孟祥飞)Xiang-Fei , Jian (菅晓东)Xiao-Dong , Dai (戴振宏)Zhen-Hong , Zhao (赵银昌)Yin-Chang , Zhou (周震)Zhen

Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43604

PDF (4276KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43604 DOI: 10.1007/s11467-019-0904-5
RESEARCH ARTICLE

Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers

Author information +
History +
PDF (4276KB)

Abstract

First-principles computations are performed to investigate phosphorene monolayers doped with 30 metal and nonmetal atoms. The binding energies indicate the stability of all doped configurations. Interestingly, the magnetic atom Co doping induces the absence of the magnetism while the magnetism is realized in phosphorene with substitutional doping of nonmagnetic atoms (O, S, Se, Si, Br, and Cl). The magnetic moment of transition metal (TM)-doped systems is suppressed in the range of 1.0-3.97 μB. The electronic properties of the doped systems are modulated differently; O, S, Se, Ni, and Ti doped systems become spin semiconductors, while V doping makes the system a half metal. These results demonstrate potential applications of functionalized phosphorene with external atoms, in particular to spintronics and dilute magnetic semiconductors.

Keywords

phosphorene / spin semiconductors / half metals / density functional theory

Cite this article

Download citation ▾
Feng (冯景华)Jing-Hua, Li (李庚)Geng, Meng (孟祥飞)Xiang-Fei, Jian (菅晓东)Xiao-Dong, Dai (戴振宏)Zhen-Hong, Zhao (赵银昌)Yin-Chang, Zhou (周震)Zhen. Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers. Front. Phys., 2019, 14(4): 43604 DOI:10.1007/s11467-019-0904-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)

[2]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

[3]

F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)

[4]

Y. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon, Nature 472(7341), 74 (2011)

[5]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)

[6]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

[7]

A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)

[8]

P. M. Bridgman, Two new modifications of phosphorus, J. Am. Chem. Soc. 36(7), 1344 (1914)

[9]

T. Nishii, Y. Maruyama, T. Inabe, and I. Shirotani, Synthesis and characterization of black phosphorus intercalation compounds, Synth. Met. 18(1–3), 559 (1987)

[10]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)

[11]

E. S. Reich, Phosphorene excites materials scientists, Nature 506(7486), 19 (2014)

[12]

L. Shulenburger, A. D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, The nature of the interlayer interaction in bulk and few-layer phosphorus, Nano Lett. 15(12), 8170 (2015)

[13]

T. Low, R. Rold’an, H. Wang, F. N. Xia, P. Avouris, L. M. Moreno, and F. Guinea, Plasmons and screening in monolayer and multilayer black phosphorus, Phys. Rev. Lett. 113(10), 106802 (2014)

[14]

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Straininduced gap modification in black phosphorus, Phys. Rev. Lett. 112(17), 176801 (2014)

[15]

X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, The renaissance of black phosphorus, Proc. Natl. Acad. Sci. USA 112(15), 4523 (2015)

[16]

J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus, Nat. Commun. 5(1), 4475 (2014)

[17]

F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5(1), 4458 (2014)

[18]

R. Schuster, J. Trinckauf, C. Habenicht, M. Knupfer, and B. Büchner, Anisotropic particle-hole excitations in black phosphorus, Phys. Rev. Lett. 115(2), 026404 (2015)

[19]

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B. G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus, Science 349(6249), 723 (2015)

[20]

P. K. Li and I. Appelbaum, Electrons and holes in phosphorene, Phys. Rev. B 90(11), 115439 (2014)

[21]

J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun. 5(1), 4727 (2014)

[22]

K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys. 82(2), 1633 (2010)

[23]

Z. F. Wang, S. Jin, and F. Liu, Spatially separated spin carriers in spin-semiconducting graphene nanoribbons, Phys. Rev. Lett. 111(9), 096803 (2013)

[24]

Y. C. Zhao and J. Ni, Spin-semiconducting properties in silicene nanoribbons, Phys. Chem. Chem. Phys. 16(29), 15477 (2014)

[25]

M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. de Groot, Half-metallic ferromagnets: From band structure to many-body effects, Rev. Mod. Phys. 80(2), 315 (2008)

[26]

Y. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)

[27]

D. D. Awschalom and M. E. Flatte, Challenges for semiconductor spintronics, Nat. Phys. 3(3), 153 (2007)

[28]

H. T. Wang, Q. X. Wang, Y. C. Cheng, K. Li, Y. B. Yao, Q. Zhang, C. Z. Dong, P. Wang, U. Schwingenschlögl, W. Yang, and X. X. Zhang, Doping monolayer graphene with single atom substitutions, Nano Lett. 12(1), 141 (2012)

[29]

A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, and R. M. Nieminen, Embedding transitionmetal atoms in graphene: Structure, bonding, and magnetism, Phys. Rev. Lett. 102(12), 126807 (2009)

[30]

R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and C. G. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)

[31]

Z. N. Ma, J. B. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)

[32]

F. M. Xu, Z. Z. Yu, Z. R. Gong, and H. Jin, Firstprinciples study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices, Front. Phys. 12(4), 127306 (2017)

[33]

G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)

[34]

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

[35]

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

[36]

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)

[37]

A. Brown and S. Rundqvist, Refinement of the crystal structure of black phosphorus, Acta Crystallogr. 19(4), 684 (1965)

[38]

X. H. Peng, Q. Wei, and A. Copple, Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene, Phys. Rev. B 90(8), 085402 (2014)

[39]

S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. K. Roelofs, Tunable transport gap in phosphorene, Nano Lett. 14(10), 5733 (2014)

[40]

K. T. Chan, J. Neaton, and M. L. Cohen, First-principles study of metal adatom adsorption on graphene, Phys. Rev. B 77(23), 235430 (2008)

[41]

T. T. Tung, F. Alotaibi, M. J. Nine, R. Silva, D. N. H. Tran, I. Janowska, and D. Losic, Engineering of highly conductive and ultra-thin nitrogen-doped graphene films by combined methods of microwave irradiation, ultrasonic spraying and thermal annealing, Chem. Eng. J. 338, 764 (2018)

[42]

D. Mombrú, R. Faccio, and A. W. Mombru, Possible causes for rippling in a multivacancy graphene system, Int. J. Quantum Chem. 118(7), e25529 (2018)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (4276KB)

828

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/