Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction

Yu Hui Lui, Bowei Zhang, Shan Hu

PDF(6359 KB)
PDF(6359 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 53402. DOI: 10.1007/s11467-019-0903-6
REVIEW ARTICLE
REVIEW ARTICLE

Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction

Author information +
History +

Abstract

Solar energy has promising potential for building sustainable society. Conversion of solar energy into solar fuels plays a crucial role in overcoming the intermittent nature of the renewable energy source. A photoelectrochemical (PEC) cell that employs semiconductor as photoelectrode to split water into hydrogen or fixing carbon dioxide (CO2) into hydrocarbon fuels provides great potential to achieve zero-carbon-emission society. A proper design of these semiconductor photoelectrodes thus directly influences the performance of the PEC cell. In this review, we investigate the strategies that have been put towards the design of efficient photoelectrodes for PEC water splitting and CO2 reduction in recent years and provide some future design directions toward next-generation PEC cells for water splitting and CO2 reduction.

Keywords

photoelectrochemistry / water splitting / CO2 reduction

Cite this article

Download citation ▾
Yu Hui Lui, Bowei Zhang, Shan Hu. Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction. Front. Phys., 2019, 14(5): 53402 https://doi.org/10.1007/s11467-019-0903-6

References

[1]
I. Roger, M. A. Shipman, and M. D. Symes, Earthabundant catalysts for electrochemical and photoelectrochemical water splitting, Nat. Rev. Chem. 1(1), 0003 (2017)
CrossRef ADS Google scholar
[2]
T. Hisatomi and K. Domen, Introductory lecture: Sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis, Faraday Discuss. 198, 11 (2017)
CrossRef ADS Google scholar
[3]
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)
CrossRef ADS Google scholar
[4]
B. Zhang, Y. H. Lui, H. Ni, and S. Hu, Bimetallic (FexNi1–x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media, Nano Energy 38, 553 (2017)
CrossRef ADS Google scholar
[5]
B. Zhang, Y. H. Lui, A. P. S. Gaur, B. Chen, X. Tang, Z. Qi, and S. Hu, Hierarchical FeNiP@ultrathin carbon nanoflakes as alkaline oxygen evolution and acidic hydrogen evolution catalyst for efficient water electrolysis and organic decomposition, ACS Appl. Mater. Interfaces 10(10), 8739 (2018)
CrossRef ADS Google scholar
[6]
M. Schreier, L. Curvat, F. Giordano, L. Steier, A. Abate, S. M. Zakeeruddin, J. Luo, M. T. Mayer, and M. Grätzel, Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics, Nat. Commun. 6(1), 7326 (2015)
CrossRef ADS Google scholar
[7]
J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. Khaja Nazeeruddin, N.-G. Park, S. David Tilley, H. J. Fan, and M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts, Science 345(6204), 1593 (2014)
CrossRef ADS Google scholar
[8]
J. K. Stolarczyk, S. Bhattacharyya, L. Polavarapu, and J. Feldmann, Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures, ACS Catal. 8(4), 3602 (2018)
CrossRef ADS Google scholar
[9]
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
CrossRef ADS Google scholar
[10]
T. Inoue, A. Fujishima, S. Konishi, and K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature 277(5698), 637 (1979)
CrossRef ADS Google scholar
[11]
K. Sivula, F. Le Formal, and M. Grätzel, Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem 4(4), 432 (2011)
CrossRef ADS Google scholar
[12]
X. Shi, L. Cai, M. Ma, X. Zheng, and J. H. Park, General characterization methods for photoelectrochemical cells for solar water splitting, ChemSusChem 8(19), 3192 (2015)
CrossRef ADS Google scholar
[13]
C. Ding, J. Shi, Z. Wang, and C. Li, Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces, ACS Catal. 7(1), 675 (2017)
CrossRef ADS Google scholar
[14]
A. J. Bard and M. A. Fox, Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen water splitting, Acc. Chem. Res. 28(3), 141 (1995)
CrossRef ADS Google scholar
[15]
X. Liu, S. Inagaki, and J. Gong, Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation, Angew. Chem. Int. Ed. 55(48), 14924 (2016)
CrossRef ADS Google scholar
[16]
A. J. Nozik and R. Memming, Physical chemistry of semiconductor–liquid interfaces, J. Phys. Chem. 100(31), 13061 (1996)
CrossRef ADS Google scholar
[17]
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293, 2000 (2001)
CrossRef ADS Google scholar
[18]
T. Butburee, Y. Bai, H. Wang, H. Chen, Z. Wang, G. Liu, J. Zou, P. Khemthong, G. Q. M. Lu, and L. Wang, 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance, Adv. Mater. 30(21), 1705666 (2018)
CrossRef ADS Google scholar
[19]
Z. Wang, X. Li, H. Ling, C. K. Tan, L. P. Yeo, A. C. Grimsdale, and A. I. Y. Tok, 3D FTO/FTOnanocrystal/ TiO2 composite inverse opal photoanode for efficient photoelectrochemical water splitting, Small 14(20), 1800395 (2018)
CrossRef ADS Google scholar
[20]
Q. Liu, R. Mo, X. Li, S. Yang, J. Zhong, and H. Li, Cobalt phosphate modified 3D TiO2/BiVO4 composite inverse opals photoanode for enhanced photoelectrochemical water splitting, Appl. Surf. Sci. 464, 544 (2019)
CrossRef ADS Google scholar
[21]
G. K. Mor, K. Shankar, O. K. Varghese, and C. A. Grimes, Photoelectrochemical properties of titania nanotubes, J. Mater. Res. 19(10), 2989 (2004)
CrossRef ADS Google scholar
[22]
G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano Lett. 5(1), 191 (2005)
CrossRef ADS Google scholar
[23]
J. U. Kim, H. S. Han, J. Park, W. Park, J. H. Baek, J. M. Lee, H. S. Jung, and I. S. Cho, Facile and controllable surface-functionalization of TiO2 nanotubes array for highly-efficient photoelectrochemical water-oxidation, J. Catal. 365, 138 (2018)
CrossRef ADS Google scholar
[24]
R. Zhang, M. Sun, G. Zhao, G. Yin, and B. Liu, Hierarchical Fe2O3 nanorods/TiO2 nanosheets heterostructure: Growth mechanism, enhanced visible-light photocatalytic and photoelectrochemical performances, Appl. Surf. Sci. 475, 380 (2019)
CrossRef ADS Google scholar
[25]
S. Shen, J. Chen, M. Wang, X. Sheng, X. Chen, X. Feng, and S. S. Mao, Titanium dioxide nanostructures for photoelectrochemical applications, Prog. Mater. Sci. 98, 299 (2018)
CrossRef ADS Google scholar
[26]
X. Song, W. Li, D. He, H. Wu, Z. Ke, C. Jiang, G. Wang, and X. Xiao, The “Midas Touch” transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/nitrogen coimplantation, Adv. Energy Mater. 8(20), 1800165 (2018)
CrossRef ADS Google scholar
[27]
Z. Dong, D. Ding, T. Li, and C. Ning, Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting, Appl. Surf. Sci. 443, 321 (2018)
CrossRef ADS Google scholar
[28]
K. L. Hardee and A. Bard, The application of chemically vapor deposied iron oxide films to photosensitized electrolysis, J. Electrochem. Soc. 127, 1026 (1976)
CrossRef ADS Google scholar
[29]
K. Gelderman, L. Lee, and S. W. Donne, Flat–band potential of a semiconductor: Using the Mott–Schottky equation, J. Chem. Educ. 84(4), 685 (2007)
CrossRef ADS Google scholar
[30]
J. H. Kennedy, Flatband potentials and donor densities of polycrystalline α-Fe2O3 determined from mott-schottky plots, J. Electrochem. Soc. 125(5), 723 (1978)
CrossRef ADS Google scholar
[31]
I. S. Cho, H. S. Han, M. Logar, J. Park, and X. Zheng, Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways, Adv. Energy Mater. 6(4), 1501840 (2015)
CrossRef ADS Google scholar
[32]
J. H. Kennedy and K. W. Frese, Photooxidation of water at α-Fe2O3 electrodes, J. Electrochem. Soc. 125(5), 709 (1978)
CrossRef ADS Google scholar
[33]
I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Grätzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting, J. Phys. Chem. C 113(2), 772 (2009)
CrossRef ADS Google scholar
[34]
H. Jun, B. Im, J. Y. Y. Y. Y. Kim, Y. O. Im, J. W. Jang, E. S. Kim, J. Y. Kim, H. J. Kang, S. J. Hong, and J. S. Lee, Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding, Energy Environ. Sci. 5(4), 6375 (2012)
CrossRef ADS Google scholar
[35]
D. H. Kim, D. M. Andoshe, Y. S. Shim, C. W. Moon, W. Sohn, S. Choi, T. L. Kim, M. Lee, H. Park, K. Hong, K. C. Kwon, J. M. Suh, J. S. Kim, J. H. Lee, and H. W. Jang, Toward high-performance hematite nanotube photoanodes: Charge-transfer engineering at heterointerfaces, ACS Appl. Mater. Interfaces 8(36), 23793 (2016)
CrossRef ADS Google scholar
[36]
L. Li, Y. Yu, F. Meng, Y. Tan, R. J. Hamers, and S. Jin, Facile solution synthesis of α-FeF3α·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application, Nano Lett. 12(2), 724 (2012)
CrossRef ADS Google scholar
[37]
L. Wang, Y. Yang, Y. Zhang, Q. Rui, B. Zhang, Z. Shen, and Y. Bi, One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting, J. Mater. Chem. A 5(32), 17056 (2017)
CrossRef ADS Google scholar
[38]
A. Kay, I. Cesar, and M. Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films, J. Am. Chem. Soc. 128(49), 15714 (2006)
CrossRef ADS Google scholar
[39]
J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting, Sci. Rep. 3(1), 1 (2013)
CrossRef ADS Google scholar
[40]
J. Huang, G. Hu, Y. Ding, M. Pang, and B. Ma, Mndoping and NiFe layered double hydroxide coating: Effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation,J. Catal. 340, 261 (2016)
CrossRef ADS Google scholar
[41]
G. Wang, B. Wang, C. Su, D. Li, L. Zhang, R. Chong, and Z. Chang, Enhancing and stabilizing α-Fe2O3 photoanode towards neutral water oxidation: Introducing a dual-functional NiCoAl layered double hydroxide overlayer, J. Catal. 359, 287 (2018)
CrossRef ADS Google scholar
[42]
H.-J. Ahn, A. Goswami, F. Riboni, S. Kment, A. Naldoni, S. Mohajernia, R. Zboril, and P. Schmuki, Hematite photoanode with complex nanoarchitecture providing tunable gradient doping and low onset potential for photoelectrochemical water splitting, ChemSusChem 11(11), 1873 (2018)
CrossRef ADS Google scholar
[43]
Z. Wang, G. Liu, C. Ding, Z. Chen, F. Zhang, J. Shi, and C. Li, Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting, J. Phys. Chem. C 119(34), 19607 (2015)
CrossRef ADS Google scholar
[44]
T. W. Kim and K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343(6174), 990 (2014)
CrossRef ADS Google scholar
[45]
L. Wang, Y. Yang, Y. Zhang, Q. Rui, B. Zhang, Z. Shen, and Y. Bi, One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting, J. Mater. Chem. A 5(32), 17056 (2017)
CrossRef ADS Google scholar
[46]
A. Tsyganok, D. Klotz, K. D. Malviya, A. Rothschild, and D. A. Grave, Different roles of Fe1–xNixOOH cocatalyst on hematite (α-Fe2O3) photoanodes with different dopants, ACS Catal. 8(4), 2754 (2018)
CrossRef ADS Google scholar
[47]
Y. Park, K. J. Mcdonald, and K. S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev. 42(6), 2321 (2013)
CrossRef ADS Google scholar
[48]
Z. F. Huang, L. Pan, J. J. Zou, X. Zhang, and L. Wang, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: A review on recent progress, Nanoscale 6(23), 14044 (2014)
CrossRef ADS Google scholar
[49]
X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang, M. Wang, and Y. Shen, Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting, Appl. Surf. Sci. 439, 1065 (2018)
CrossRef ADS Google scholar
[50]
Y. Hu, Y. Wu, J. Feng, H. Huang, C. Zhang, Q. Qian, T. Fang, J. Xu, P. Wang, Z. Li, and Z. Zou, Rational design of electrocatalysts for simultaneously promoting bulk charge separation and surface charge transfer in solar water splitting photoelectrodes, J. Mater. Chem. A 6(6), 2568 (2018)
CrossRef ADS Google scholar
[51]
H. T. Bui, N. K. Shrestha, S. Khadtare, C. D. Bathula, L. Giebeler, Y. Y. Noh, and S. H. Han, Anodically grown binder-free nickel hexacyanoferrate film: Toward efficient water reduction and hexacyanoferrate film based full device for overall water splitting, ACS Appl. Mater. Interfaces 9(21), 18015 (2017)
CrossRef ADS Google scholar
[52]
Y. Yamada, K. Oyama, R. Gates, and S. Fukuzumi, High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: Visible-light driven water oxidation, Angew. Chem. Int. Ed. 54(19), 5613 (2015)
CrossRef ADS Google scholar
[53]
A. M. Al-Mayouf, P. Arunachalam, M. N. Shaddad, J. Labis, and M. Hezam, Fabrication of robust nanostructured (Zr)BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting, Appl. Catal. B 244, 863 (2018)
CrossRef ADS Google scholar
[54]
T. W. Kim, and K. S. Choi, Improving stability and photoelectrochemical performance of BiVO4 photoanodes in basic media by adding a ZnFe2O4 layer, J. Phys. Chem. Lett. 7(3), 447 (2016)
CrossRef ADS Google scholar
[55]
J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho, and H. S. Jung, BiVO4/WO3/SnO2 double-heterojunction photoanode with enhanced charge separation and visible-transparency for bias-free solar water-splitting with a perovskite solar cell, ACS Appl. Mater. Interfaces 9(2), 1479 (2017)
CrossRef ADS Google scholar
[56]
M. T. McDowell, M. F. Lichterman, J. M. Spurgeon, S. Hu, I. D. Sharp, B. S. Brunschwig, and N. S. Lewis, Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings, J. Phys. Chem. C 118(34), 19618 (2014)
CrossRef ADS Google scholar
[57]
K. Nakaoka, J. Ueyama, and K. Ogura, Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films, J. Electroanal. Chem. 571(1), 93 (2004)
CrossRef ADS Google scholar
[58]
M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. USA 105(8), 2783 (2008)
CrossRef ADS Google scholar
[59]
I. M. Chan, T. Y. Hsu, and F. C. Hong, Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode, Appl. Phys. Lett. 81(10), 1899 (2002)
CrossRef ADS Google scholar
[60]
M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, and Z. H. Lu, Effects of processing conditions on the work function and energy-level alignment of NiO thin films, J. Phys. Chem. C 114(46), 19777 (2010)
CrossRef ADS Google scholar
[61]
F. P. Koffyberg and F. A. Benko, p-type NiO as a photoelectrolysis cathode, J. Electrochem. Soc. 128(11), 2476 (1981)
CrossRef ADS Google scholar
[62]
S. Hüfner, Electronic structure of NiO and related 3d-transition-metal compounds, Adv. Phys. 43(2), 183 (1994)
CrossRef ADS Google scholar
[63]
W. Guo, K. N. Hui, and K. S. Hui, High conductivity nickel oxide thin films by a facile sol–gel method, Mater. Lett. 92, 291 (2013)
CrossRef ADS Google scholar
[64]
L. Cattin, B. A. Reguig, A. Khelil, M. Morsli, K. Benchouk, and J. C. Bernède, Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions, Appl. Surf. Sci. 254(18), 5814 (2008)
CrossRef ADS Google scholar
[65]
K. Matsubara, S. Huang, M. Iwamoto, and W. Pan, Enhanced conductivity and gating effect of p-type Li-doped NiO nanowires, Nanoscale 6(2), 688 (2014)
CrossRef ADS Google scholar
[66]
C. Hu, K. Chu, Y. Zhao, and W. Y. Teoh, Efficient photoelectrochemical water splitting over anodized p-type NiO porous films, ACS Appl. Mater. Interfaces 6(21), 18558 (2014)
CrossRef ADS Google scholar
[67]
Y. Suzuki, Z. Xie, X. Lu, Y. W. Cheng, R. Amal, and Y. H. Ng, Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting, Int. J. Hydrogen Energy (2018)
CrossRef ADS Google scholar
[68]
A. Sápi, A. Varga, G. F. Samu, D. Dobó, K. L. Juhász, B. Takács, E. Varga, Á. Kukovecz, Z. Kónya, and C. Janáky, Photoelectrochemistry by design: Tailoring the nanoscale structure of Pt/NiO composites leads to enhanced photoelectrochemical hydrogen evolution performance, J. Phys. Chem. C 121(22), 12148 (2017)
CrossRef ADS Google scholar
[69]
P. Wu, Z. Liu, D. Chen, M. Zhou, and J. Wei, Flake-like NiO/WO3 p–n heterojunction photocathode for photoelectrochemical water splitting, Appl. Surf. Sci. 440, 1101 (2018)
CrossRef ADS Google scholar
[70]
Y. Dong, Y. Chen, P. Jiang, G. Wang, X. Wu, R. Wu, and C. Zhang, Efficient and stable MoS2/CdSe/NiO photocathode for photoelectrochemical hydrogen generation from water, Chem. Asian J. 10(8), 1660 (2015)
CrossRef ADS Google scholar
[71]
J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renew. Sustain. Energy Rev. 68, 234 (2017)
CrossRef ADS Google scholar
[72]
Z. Ji, M. He, Z. Huang, U. Ozkan, and Y. Wu, Photostable p-type dye-sensitized photoelectrochemical cells for water reduction, J. Am. Chem. Soc. 135(32), 11696 (2013)
CrossRef ADS Google scholar
[73]
L. Tong, A. Iwase, A. Nattestad, U. Bach, M. Weidelener, G. Götz, A. Mishra, P. Bäuerle, R. Amal, G. G. Wallace, and A. J. Mozer, Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device, Energy Environ. Sci. 5(11), 9472 (2012)
CrossRef ADS Google scholar
[74]
E. A. Gibson, Dye-sensitized photocathodes for H2 evolution, Chem. Soc. Rev. 46(20), 6194 (2017)
CrossRef ADS Google scholar
[75]
X. Li, J. Wen, J. Low, Y. Fang, and J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Sci China Mater 57(1), 70 (2014)
CrossRef ADS Google scholar
[76]
X. Chang, T. Wang, P. Yang, G. Zhang, and J. Gong, The development of cocatalysts for photoelectrochemical CO2 reduction, Adv. Mater. 1804710, 1804710 (2018)
CrossRef ADS Google scholar
[77]
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Nano-photocatalytic materials: Possibilities and challenges, Adv. Mater. 24(2), 229 (2012)
CrossRef ADS Google scholar
[78]
K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, Enabling silicon for solar-fuel production, Chem. Rev. 114(17), 8662 (2014)
CrossRef ADS Google scholar
[79]
R. Asahi, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
CrossRef ADS Google scholar
[80]
W. Yang, D. Chen, H. Quan, S. Wu, X. Luo, and L. Guo, Enhanced photocatalytic properties of ZnFe2O4-doped ZnIn2S4 heterostructure under visible light irradiation, RSC Adv. 6(86), 83012 (2016)
CrossRef ADS Google scholar
[81]
B. Liu, H. M. Chen, C. Liu, S. C. Andrews, C. Hahn, and P. Yang, Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential, J. Am. Chem. Soc. 135(27), 9995 (2013)
CrossRef ADS Google scholar
[82]
H. Nasution, E. Purnama, S. Kosela, and J. Gunlazuardi, Photocatalytic reduction of CO on copper-doped Titania catalysts prepared by improved-impregnation method, Catal. Commun. 6(5), 313 (2005)
CrossRef ADS Google scholar
[83]
P. Li, J. Xu, H. Jing, C. Wu, H. Peng, J. Lu, and H. Yin, Wedged N-doped CuO with more negative conductive band and lower overpotential for high efficiency photoelectric converting CO2 to methanol, Appl. Catal. B156–157, 134 (2014)
CrossRef ADS Google scholar
[84]
N. Sagara, S. Kamimura, T. Tsubota, and T. Ohno, Photoelectrochemical CO2 reduction by a p-type borondoped g-C3N4 electrode under visible light, Appl. Catal. B 192, 193 (2016)
CrossRef ADS Google scholar
[85]
S. Liu, Z. R. Tang, Y. Sun, J. C. Colmenares, and Y. Xu, One-dimension-based spatially ordered architectures for solar energy conversion, Chem. Soc. Rev. 44(15), 5053 (2015)
CrossRef ADS Google scholar
[86]
N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, Semiconductor nanowires – Synthesis, characterization, and applications, Adv. Mater. 26(14), 2137 (2014)
CrossRef ADS Google scholar
[87]
J. Le Xie, C. X. Guo, and C. M. Li, Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage, Energy Environ. Sci. 7(8), 2559 (2014)
CrossRef ADS Google scholar
[88]
A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev. 110(1), 527 (2010)
CrossRef ADS Google scholar
[89]
S. K. Choi, U. Kang, S. Lee, D. J. Ham, S. M. Ji, and H. Park, Sn-Coupled p-Si nanowire arrays for solar formate production from CO2, Adv. Energy Mater. 4(11), 1301614 (2014)
CrossRef ADS Google scholar
[90]
S. Chu, S. Fan, Y. Wang, D. Rossouw, Y. Wang, G. A. Botton, and Z. Mi, Tunable syngas production from CO2 and H2O in an aqueous photoelectrochemical cell, Angew. Chem. Int. Ed. 55(46), 14262 (2016)
CrossRef ADS Google scholar
[91]
Q. Kong, D. Kim, C. Liu, Y. Yu, Y. Su, Y. Li, and P. Yang, Directed assembly of nanoparticle catalysts on nanowire photoelectrodes for photoelectrochemical CO2 reduction, Nano Lett. 16(9), 5675 (2016)
CrossRef ADS Google scholar
[92]
G. Ghadimkhani, N. R. de Tacconi, W. Chanmanee, C. Janaky, and K. Rajeshwar, Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays, Chem. Commun. 49(13), 1297 (2013)
CrossRef ADS Google scholar
[93]
K. Rajeshwar, N. R. De Tacconi, G. Ghadimkhani, W. Chanmanee, and C. Janáky, Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol, ChemPhysChem 14(10), 2251 (2013)
CrossRef ADS Google scholar
[94]
Q. Shen, Z. Chen, X. Huang, M. Liu, and G. Zhao, Highyield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays, Environ. Sci. Technol. 49(9), 5828 (2015)
CrossRef ADS Google scholar
[95]
M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury, and C. K. Cheng, Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: Study of their mechanisms to enhance photocatalytic activity, Catal. Sci. Technol. 5(5), 2522 (2015)
CrossRef ADS Google scholar
[96]
Y. J. Jang, J. Jang, J. Lee, J. H. Kim, H. Kumagai, J. Lee, T. Minegishi, J. Kubota, K. Domen, and J. S. Lee, Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system, Energy Environ. Sci. 8(12), 3597 (2015)
CrossRef ADS Google scholar
[97]
J. S. DuChene, G. Tagliabue, A. J. Welch, W. H. Cheng, and H. A. Atwater, Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes, Nano Lett. 18(4), 2545 (2018)
CrossRef ADS Google scholar
[98]
J. Hou, H. Cheng, O. Takeda, and H. Zhu, Threedimensional bimetal-graphene-semiconductor coaxial nanowire arrays to harness charge flow for the photochemical reduction of carbon dioxide, Angew. Chem. Int. Ed. 54(29), 8480 (2015)
CrossRef ADS Google scholar
[99]
G. Zeng, J. Qiu, Z. Li, P. Pavaskar, and S. B. Cronin, CO2 reduction to methanol on TiO2-passivated GaP photocatalysts, ACS Catal. 4(10), 3512 (2014)
CrossRef ADS Google scholar
[100]
T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43(22), 7520 (2014)
CrossRef ADS Google scholar
[101]
Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, Atomic layerdeposited tunnel oxide stabilizes silicon photoanodes for water oxidation, Nat. Mater. 10(7), 539 (2011)
CrossRef ADS Google scholar
[102]
D. V. Esposito, I. Levin, T. P. Moffat, and A. A. Talin, H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover, Nat. Mater. 12(6), 562 (2013)
CrossRef ADS Google scholar
[103]
B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, Using TiO2 as a conductive protective layer for photocathodic H2 evolution, J. Am. Chem. Soc. 135(3), 1057 (2013)
CrossRef ADS Google scholar
[104]
L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst, Nat. Nanotechnol. 10(1), 84 (2015)
CrossRef ADS Google scholar
[105]
S. Xie, Q. Zhang, G. Liu, and Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures, Chem. Commun. 52(1), 35 (2016)
CrossRef ADS Google scholar
[106]
B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, Photochemical and photoelectrochemical reduction of CO2, Annu. Rev. Phys. Chem. 63(1), 541 (2012)
CrossRef ADS Google scholar
[107]
Y. Oh, and X. Hu, Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction, Chem. Soc. Rev. 42(6), 2253 (2013)
CrossRef ADS Google scholar
[108]
J. Zhao, X. Wang, Z. Xu, and J. S. C. Loo, Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: A prospective review on semiconductor/metal complex co-catalyst systems, J. Mater. Chem. A 2(37), 15228 (2014)
CrossRef ADS Google scholar
[109]
S. Bai, W. Yin, L. Wang, Z. Li, and Y. Xiong, Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction, RSC Advances 6(62), 57446 (2016)
CrossRef ADS Google scholar
[110]
J. Yang, D. Wang, H. Han, and C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis,Acc. Chem. Res. 46(8), 1900 (2013)
CrossRef ADS Google scholar
[111]
W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, and S. Sun, Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO, J. Am. Chem. Soc. 135(45), 16833 (2013)
CrossRef ADS Google scholar
[112]
Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, and F. Jiao, A selective and efficient electrocatalyst for carbon dioxide reduction, Nat. Commun. 5(1), 3242 (2014)
CrossRef ADS Google scholar
[113]
D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, and X. Bao, Size-dependent electrocatalytic reduction mof CO2 over Pd nanoparticles, J. Am. Chem. Soc. 137(13), 4288 (2015)
CrossRef ADS Google scholar
[114]
F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei, and Y. Xie, Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction, Nat. Commun. 7(1), 12697 (2016)
CrossRef ADS Google scholar
[115]
M. Alvarez-Guerra, S. Quintanilla, and A. Irabien, Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode, Chem. Eng. J. 207, 278 (2012)
CrossRef ADS Google scholar
[116]
K. P. Kuhl, E. R. Cave, D. N. Abram, and T. F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces, Energy Environ. Sci. 5(5), 7050 (2012)
CrossRef ADS Google scholar
[117]
R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, and Y. Xiong, Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4, J. Am. Chem. Soc. 139(12), 4486 (2017)
CrossRef ADS Google scholar
[118]
S. Kaneco, H. Katsumata, T. Suzuki, and K. Ohta, Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes, Appl. Catal. B 64(1–2), 139 (2006)
CrossRef ADS Google scholar
[119]
R. Hinogami, Y. Nakamura, S. Yae, and Y. Nakato, An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles, J. Phys. Chem. B 102(6), 974 (1998)
CrossRef ADS Google scholar
[120]
T. E. Rosser, C. D. Windle, and E. Reisner, Electrocatalytic and solar-driven CO2 reduction to CO with a molecular manganese catalyst immobilized on mesoporous TiO2, Angew. Chem. Int. Ed. 55(26), 7388 (2016)
CrossRef ADS Google scholar
[121]
D. Guzmán, M. Isaacs, I. Osorio-Román, M. García, J. Astudillo, and M. Ohlbaum, Photoelectrochemical reduction of carbon dioxide on quantum-dot-modified electrodes by electric field directed layer-by-layer assembly methodology, ACS Appl. Mater. Interfaces 7(36), 19865 (2015)
CrossRef ADS Google scholar
[122]
S. K. Kuk, R. K. Singh, D. H. Nam, R. Singh, J. Lee, and C. B. Park, Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade, Angew. Chem. Int. Ed. 56(14), 3827 (2017)
CrossRef ADS Google scholar
[123]
L. Chen, Z. Guo, X. G. Wei, C. Gallenkamp, J. Bonin, E. Anxolabéhère-Mallart, K. C. Lau, T. C. Lau, and M. Robert, Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth-abundant metal complexes: Selective production of CO vs. HCOOH by switching of the metal center, J. Am. Chem. Soc. 137(34), 10918 (2015)
CrossRef ADS Google scholar
[124]
V. S. Thoi, N. Kornienko, C. G. Margarit, P. Yang, and C. J. Chang, Visible-light photoredox catalysis: Selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene–isoquinoline complex, J. Am. Chem. Soc. 135(38), 14413 (2013)
CrossRef ADS Google scholar
[125]
H. Takeda, H. Koizumi, K. Okamoto, and O. Ishitani, Photocatalytic CO2 reduction using a Mn complex as a catalyst, Chem. Commun. 50(12), 1491 (2014)
CrossRef ADS Google scholar
[126]
J. Bonin, M. Robert, and M. Routier, Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst, J. Am. Chem. Soc. 136(48), 16768 (2014)
CrossRef ADS Google scholar
[127]
K. Alenezi, S. K. Ibrahim, P. Li, and C. J. Pickett, Solar fuels: Photoelectrosynthesis of CO from CO2 at ptype Si using Fe porphyrin electrocatalysts, Chem.-Eur. J. 19(40), 13522 (2013)
CrossRef ADS Google scholar
[128]
H. Rao, L. C. Schmidt, J. Bonin, and M. Robert, Visiblelight- driven methane formation from CO2 with a molecular iron catalyst, Nature 548(7665), 74 (2017)
CrossRef ADS Google scholar
[129]
I. Taniguchi, B. Aurian-Blajeni, and J. O. Bockris, The mediation of the photoelectrochemical reduction of carbon dioxide by ammonium ions, J. Electroanal. Chem. Interfacial Electrochem. 161(2), 385 (1984)
CrossRef ADS Google scholar
[130]
M. Szklarczyk, On the dielectric breakdown of water: An electrochemical approach, J. Electrochem. Soc. 136(9), 2512 (1989)
CrossRef ADS Google scholar
[131]
D. H. Won, J. Chung, S. H. Park, E. Kim, and S. I. Woo, Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrole-coated p-ZnTe photocathode under visible light irradiation, J. Mater. Chem. A 3(3), 1089 (2015)
CrossRef ADS Google scholar
[132]
A. Bachmeier, V. C. C. Wang, T. W. Woolerton, S. Bell, J. C. Fontecilla-Camps, M. Can, S. W. Ragsdale, Y. S. Chaudhary, and F. A. Armstrong, How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction, J. Am. Chem. Soc. 135(40), 15026 (2013)
CrossRef ADS Google scholar
[133]
A. Bachmeier, S. Hall, S. W. Ragsdale, and F. A. Armstrong, Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode, J. Am. Chem. Soc. 136(39), 13518 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6359 KB)

Accesses

Citations

Detail

Sections
Recommended

/